B.TECH

CURRICULUM

2021

SCHOOL OF COMPUTING

DEPARTMENT OF INFORMATION TECHNOLOGY

KALASALINGAM ACADEMY OF RESEARCH AND EDUCATION

(DEEMED TO BE UNIVERSITY)

(UnderSection 3 of the UGC Act 1956)

AnandNagar, Krishnankoil - 626126.

Srivilliputtur, Virudhunagar (Dist.), TamilNadu, India

(Website:https://kalasalingam.ac.in/)

KALASALINGAM ACADEMY OF RESEARCH AND EDUCATION

VISION

To be a University of Excellence of International Repute in Education and Research

MISSION

- M1:To provide a scholarly teaching- learning ambience which results in creating graduates equipped with skills and acumen to solve real-life problems.
- M2:To promote research and create knowledge for human welfare, rural and societal development.
- M3:To nurture entrepreneurial ambition, industrial and societal connect by creating an environment through which innovators and leaders emerge

DEPARTMENT OF INFORMATION TECHNOLOGY

VISION

To be a department of repute offering programmes in frontier areas of ITthrough quality education, research and imbibing societal values.

MISSION

- 1. To provide quality education through effective curriculum and innovative teaching.
 - 2. To facilitate conductive learning environment for students and faculty to investigate knowledge.
 - 3. To instill the ethical behavior and social responsibilities to provide sustainable information technology solutions

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO-1: The graduates will be successful IT professionals in their chosen areaand / or pursue higher studies.

PEO-2: The graduates will comprehend, analyze, design and create novelproducts and technologies that provide sustainable solutions.

PEO-3: The graduates will demonstrate multidisciplinary knowledge, personal and interpersonal skills and work as an effective team member with ethical standards.

PROGRAM SPECIFIC OBJECTIVES (PSOs)

PSO-1: Ability to identify, design and develop processes and systems for enterprises PSO-2: Ability to identify, deploy and maintain the IT infrastructure based on the needs of the businesses

PSO-3: Practice and promote information technologies for societal needs

PROGRAMME OUTCOMES (POs)

- 1. **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem Analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design / Development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct Investigations of Complex Problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

- 5. **Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The Engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable **development**.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

ABET STUDENT OUTCOMES

ASO1. Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.

ASO2. Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.

ASO3. Communicate effectively in a variety of professional contexts.

ASO4. Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.

ASO5. Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline.

ASO6. Identify and analyze user needs to take them into account in the selection, creation, integration, evaluation, and administration of computing-based systems.

KALASALINGAM ACADEMY OF RESEARCH AND EDUCATION DEPARTMENT OF INFORMATION TECHNOLOGY

B.TechIT-CURRICULUMSTRUCTURE

S.no	Curriculum Components	Credits	
	Foundation Core		
	Mathematics and Sciences		
	Engineering Sciences		
Ι	Computing	44	
	Sustainable Product Development		
	Human Values and Communication		
	Entrepreneurship and Innovation		
	University Elective		
II	Engineering (outside school)	16	
	Liberal arts (or) Mathematics and Sciences		
III	Program Core	52	
IV	Program Elective	24	
	Experiential Core		
v	Design Project	16	
	Capstone		
VI	Experiential Elective Courses		
V I	CSP / Internship / UG Research / Competitions		
VII	Honors Elective	20*	
	Total Credits	160	

Foundation Core

S.No	Course Code	Course Name	Course Type (TC/PC/IC-T/IC- P)	Course Credits
1	211CSE1401	Problem Solving using Computer Programming	IC-T	3
2	211CSE1402	Python Programming	IC-T	3

	Program core courses (52 credits)						
S.No.	Course Code	Course Name	Course Type (TC/PC/IC-T/IC-P)	Course Credits			
1	212INT1401	Web Application Development	IC-P	4			
2	212INT2301	Digital Logic and Design	IC-T	4			
3	212INT2302	Operating Systems Concepts	IC-T	4			
4	212INT2303	Data Structures and Algorithms	IC-T	4			
5	212INT2304	Object Oriented Programming using Java	IC-T	4			
6	212INT2305	Embedded Systems and Technology	Т	3			
7	212INT3302	Data Communications and Computer Networks	IC-T	4			
8	212INT2306	Information Storage, Modelling and Retrieval	IC-T	4			
9	212INT2307	Software Construction and Management	IC-T	4			
10	212INT3303	Data Science and Data Visualization	IC-T	4			
11	11 212INT1101 Computer Organization and Assembly Language Programming		Т	3			
12	12 212MAT2107Discrete Mathematics		Т	4			
13 212INT2308 Artificial Intelligence			Т	3			
14	212INT2102	Cyber Security and Forensics	Т	3			

	Program Elective Courses (24 credits)						
S.No.	Course Code	Course Name	Course Type (T/PC/IC-T/IC-P)	Course Credits			
1	213INT1101	Augmented Reality and Virtual Reality	Т	3			
2	213INT1102	Object Oriented Analysis and Design	Т	3			
3	213INT1103	Enterprise Resource Planning	Т	3			
4	213INT1104	Software Project Management	Т	3			
5	213INT1105	Digital Marketing	Т	3			
6	213INT1106	Signals and Systems	Т	3			
7	213INT1107	Cyber Physical Systems	Т	3			
8	213INT1108	5G Networks	Т	3			
9	213INT1100	Edge Computing	T	2			
10	2131111109			2			
10	213INT1110	Bio Informatics	Г	3			
11	2131111301			4			
12	213INT1302	Digital Image Processing	IC-T	3			
13	213IN11303	Parallel and Distributed Computing	IC-I	3			
14	213IN11304	Statistics with R Programming	IC-I	4			
15	213INT1305	Data Warehousing and Mining	IC-T	4			
16	213INT1306	Big Data Analytics	IC-T	4			
17	213INT1307	Full stack software Development	IC-T	3			
18	213INT1308	Principles of Digital Signal Processing	IC-T	4			
19	213INT1309	Information Security	IC-T	4			
20	213INT1310	Blockchain Technology	IC-T	4			
21	213INT1311	Neural Networks and Fuzzy Logic	IC-T	4			
22	213INT1312	Soft Computing	IC-T	4			
23	213INT1313	Deep Learning	IC-T	4			
24	213INT1314	Web services	IC-T	3			
25	213INT1315	Managing the cloud	IC-T	3			
26	213INT1316	Robotic Programming	IC-T	4			
27	213INT1317	Statistics Foundation of Data Science	IC-T	4			
28	213INT2301	Data Analysis Using Python	IC-T	4			
29	213INT2302	Principles of Compiler Design	IC-T	4			
30	213INT2303	Programming with Open Source	IC-T	4			

		Software		
31	213INT2304	Formal Language and Automata	IC-T	4
32	213INT2305	Speech and Natural Language	IC-T	3
33	213INT2306	System Software	IC-T	4
34	213INT2307	Distributed Systems	IC-T	4
35	213INT2308	Service Oriented Architecture	IC-T	3
36	213INT2309	Real Time Systems	IC-T	3
37	213INT2310	Design and Analysis of Algorithms	IC-T	4
38	213INT2311	Component Based Technology	IC-T	4
39	213INT2312	C# and .NET Programming	IC-T	4
40	213INT2313	Mobile Application Development	IC-T	4
41	213INT2314	Software Quality Assurance	IC-T	3
42	213INT3301	Game Programming	IC-T	4
43	213INT3302	Multimedia and Computer Graphics	IC-T	4
44	213INT3303	Graph Theory	IC-T	4
45	213INT3304	Machine Learning	IC-T	4
46	213INT3305	Advanced DBMS	IC-T	4
47	213INT3306	Information Storage Management	IC-T	4
48	213INT3307	Bluetooth Technology	IC-T	4
49	213INT3308	Wireless Sensor Networks	IC-T	4
50	213INT3309	Industrial IoT	IC-T	4
51	213INT3310	Network Design Security and Management	IC-T	4
52	213INT3311	Mobile Networks	IC-T	4
53	213INT3312	High Performance Networks	IC-T	4
54	213INT3313	Cryptography and Network Security	IC-T	4
55	213INT3314	Cloud Computing	IC-T	4
56	213INT3315	Green Computing	IC-T	3
57	213INT3316	Mobile Communication and Computing	IC-T	4
58	213INT3101	Wireless Application Protocol	Т	3
59	213INT3102	Computer Forensics	Т	3
60	213INT3103	Social Network Analysis	Т	3
61	213INT3104	Information Retrieval Techniques	Т	3

University Elective Courses (16 credits)

S.No.	Course Code	Course Name	Course Type (TC/PC/IC-T/IC- P)	Course Credits
1	214INT1301	Web Programming	IC-T	3
2	214INT1302	Introduction To Information Security	IC-T	3
3	214INT1303	Essentials Of Information Technology	IC-T	3
4	214INT1304	R Programming	IC-T	3
5	214INT1305	Programming With C++ And Java	IC-T	3
6	214INT1306	IT in Business	IC-T	3
7	214INT2301	Big Data Analytics	IC-T	3
8	214INT2302	Information Theory & Coding	IC-T	3
9	214INT2303	Cyber Forensics	IC-T	3
10	214INT2304	Internet And Java	IC-T	3
11	214INT2305	Network Protocols	IC-T	3
12	214INT2306	Introduction To Storage Management	IC-T	3
13	214INT2307	Principles and Practices of Communication Systems	IC-T	3
14	214INT2308	Software Testing	IC-T	3
15	214INT2309	Embedded C Programming	IC-T	3
16	214INT2310	Embedded System Automation	IC-T	3
17	214INT2311	System on Chip Design	IC-T	3
18	214INT3301	High Speed Networks	IC-T	3
19	214INT3302	Multimedia coding and Communications	IC-T	3

Experiential core Courses (16 credits)

S.No.	Course	Course Name	Course Type	Course
	Code		(TC/PC/IC-T/IC-P)	Credits
1	215INT2201	Design Project – I	PC	3
2	215INT3201	Design Project – II	PC	3
3	215INT4201	Capstone Project	PC	10

	Experient			
S.No.	Course	Course Name	Course Type	Course
	Code		(TC/PC/IC-T/IC-P)	Credits
1	216INT2201	Industry Internship	PC	2
2	216INT2202	Industrial Training	PC	2
3	216INT2203	Competitive Programming	PC	1
4	216INT2204	Micro Project	PC	1
5	216INT3201	Community Service Project	PC	3

211CSE1401: PROBLEM SOLVING USING COMPUTERPROGRAMMING

211CSE1401	Problem Programmi	Solving ng	using	Computer	L 1	Т 0	P 2	X 3	C 3
Pre-re	equisite :NIL								
Course Category :Foundation Core									
Course Type :Integrated Course - Theory									

COURSE OBJECTIVES:

- To introduce the students with the foundations of computing, programming and problemsolving
- To make the students understand the concept of data representation in computers
- To make the students solve simple and complex problems through programmingconcepts

COURSE OUTCOMES:

- CO1: Understand and formulate algorithms and pseudocode for problems
- CO2: Able to represent, organize, manipulate and interpret data
- CO3: Apply programming skills to implement pseudocodes and algorithms
- CO4: Apply user defined and built in functions to frame efficient programs
- CO5: Apply programming techniques to permanently store and retrieve large datasets for the problems

MAPPING OF COURSE OUTCOMES WITH PO, PSO:

	PO'S											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	2		2						3	2
CO2	3	3	3		2						3	2
CO3	3	2	2								2	
CO4	3	2	2								2	
CO5	3	3	3		3						3	3

UNIT I

Problem Solving - Pillars of Problem Solving - Analysing and representing Algorithms – Flowcharts - Importance of programming in problem solving - Expressing Algorithms in Pseudocode - Case studies in the specific domain of study in analysing and representing algorithms

UNIT II

Computational thinking – Information to Data Format – Data Encoding – Binary Con- versions and

Binary Logic - Representation of Problem data in computer format - In- troducing compiler, compiler features and, working with basic datatypes - working with DMA, creating strings using DMA concepts

UNIT III

Writing Problem Workflow in Computer Language – Use control structures to write sim- ple algorithms for sort, search and similar algorithms – Organizing multiple datasets in problem domain to computer format – Working with Single dimensional, multidimen- sional arrays, One dimensional character arrays - Declaration and String Initialization Arrays of Strings

UNIT IV

Decomposing complex problems to simple solutions - functions - parameter passing - recursion - Organizing complex and variable datasets - Structures, self-referential struc- tures - Unions - Applications

UNIT V

Representing and organizing large problem dataset – Files – Types - Modes - File oper- ations – Applications, Idea of pointers, Defining pointers, Use of Pointers.

Week	Lecture (2 hours)	Practical (2	X-Component (3 Hours)
		hours)	
	What is a problem (bound-	Take Real life	Case studies in the spe-
Week 1	aries of problem)- Intro-	problems, Apply	cific domain of study (de-
	duction to Problem Solv-ing	the four pillars in	partment specific) Identify the
	– 4 Pillars of Prob- lem	solving the prob-	boundaries of the prob- lem
	Solving (Decomposi- tion,	lems (Individual	domain, find solu- tion
	Pattern Recognition, Data	/ Group Activity	applying the pillars of problem
	Representation, Algo- rithms)	can be planned)	solving Examples: Car Parking
		_	problem Water scarcity
			problem
Week 2	Analysing and representing	Finding Maxi-	Write algorithms for the
WEEK 2	Algorithms and *flowcharts	mum/Minimum	problem chosen (Done in
	(Common Algorithms to	Searching, Sorting	Week-1)
	discuss)	(Algorithms	
		&	
		flowchart alone.	
		No program)	
Week 3	Importance of program-	Practical expo-	Convert all algorithms to
WCCK J	ming in problem solving,	sure to computer	Pseudocode for the problem
	Expressing Algorithms in	and computer	(Done in Week-2)
	Pseudocode	hardware, Intro-	
		ducing operating	
		system, applica-	
		tion software and	
		compilers	

15 WEEK COURSE PLAN

Week 4	Introduction to Computa-	Practice with	Identify the different data
	tional thinking – Informa-tion	Numeral, Binary,	available in the problem
	to Data Format – Data	Conversions to	(Done in Week-3)
	Encoding	Binary	
Week 5	Representation of Problem	Introducing com-	Analyse the proper data
	data in computer format	piler, compiler	type and memory require-ment
		reatures and,	for the problem (Done in
		working with	week-4)
West C	Dennes and the set of Duck land	basic datatypes	
week o	deta in computer format	reatly with com	mamory limitations and
	data in computer format	puter memory	wherever possible apply
		puter memory	minimal momory access for
			the problem (Done in Week
			5)
	Writing Problem Workflow	Use control struc-	Convert pseudo codes to
Week 7	in Computer Language	tures to write sim-	programs for the problem (Done
		ple algorithms for	in week 2-5)
		sort, search and	,
		similar algorithms	
Week 8	Organizing multiple	Organizing mul-	Analyse multiple datasets
	datasets in problem do-	tiple datasets in	and represent the same in
	main to computer format	problem do- main	program(Done in Week 4)
		to computer format	
Week 9	Organizing multiple	String operations,	Wherever possible, apply
	datasets in problem do-	working with	dynamic memory creation
	main to computer format	DMA, creating	instead of static in the prob-
		DMA concepts	lem (Done m wee 3-4,8)
Week 10	Decomposing complex	Simple decompo-	Decompose the complex
Week 10	problems to simple solu-tions	sition using func-	problems to simple pro-
	Freedom to compression to the	tions	grams (Done in Week7)
Week 11	Decomposing complex	Decomposition	Decompose the complex
	problems to simple solu-tions	with parameters	problems to simple pro-
		and recursion	grams (Done in Week7)
Week 12	Organizing complex and	Create com-	Analyse complex data
	variable datasets in prob- lem	plex data using	structures available in the
	domain to computerformat	Structure.	problem. Apply the same in
			Program(Done in Week 4)
Waal 12	Organizing complex and	Implementation of	Write the programs into
WEEK 15	variable datasets in prob- lem	single Linked list	grating complex data struc-ture
	domain to computerformat	single Linked list	(Done in Week 12–11)
	asinum to computeriorinat		(2010 III WOOK 12, 11)
		1	

Week 14	Representing and organiz-	Reading, Writing	Check for Large Data Set as			
	ing large problem dataset in		inputs to the system / ne-			
	secondary storages		cessity for permanent stor- age			
			to the solution (Done inWeek			
			13)			
Week 15	Representing and organiz-	Develop solutions	Represent the data in Per-			
	ing large problem dataset in	for domain spe-	meant storage for the prob-lem			
	secondary storages	cific problems.	(Done in Week 14)			

TEXT BOOK(S):

- 1. David D. Riley and Kenny A. Hunt, ComputationalThinking for the Modern Prob-lem Solver, CRC Press, 2014.
- 2. Pradip Dey and Manas Ghosh, Programming in C, Oxford University Press, ThirdEdition 2018.
- 3. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill, ThirdEdition, 2010

REFERENCES:

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Pren-tice Hall of India, Second Edition 1988
- 2. 2. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill, Seventh Edi-tion 2017

211CSE1402: PYTHON PROGRAMMING

211CSE1402	Python Programming		L 1	Т 0	Р 2	X 3	C 3	
Pre-r	equisite :NIL							
Course Category :Foundation Core								
Course Type :Integrated Course - Theory								

COURSE OBJECTIVES:

- To learn how to use lists, tuples, and dictionaries in Python programs.
- To learn how to identify Python object types.
- To learn how to use indexing and slicing to access data in Python programs.
- To define the structure and components of a Python program.
- To learn how to write loops and decision statements in Python.
- To learn how to write functions and pass arguments in Python.
- To learn how to build Python modules for reusability.
- To learn how to read and write files in Python.
- To learn how to design object-oriented programs with Python classes.
- To practice data processing, analysis and visualization with python

COURSE OUTCOMES:

- CO1: Understand the constructs and concepts of a programming language
- CO2: Apply Python data structures for problem solving and programming
- CO3: Implement user defined python functions and build an efficient program leveragingmodules
- CO4: Create python programs to handle file I/O and exceptions, and solve problems withObject Oriented Concepts
- CO5: Understand Data processing, Validation, Visualization concepts in python withregex, pandas, matplotlib and numpy packages.

	PO'S											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3									3	
CO2	3	3									3	
CO3	3	2	2								2	
CO4	3	3			3						3	3
CO5	3	2	2		3						2	3

MAPPING OF COURSE OUTCOMES WITH PO, PSO:

UNIT I: Getting Started with Programming

Introduction, Python Versions, Applications of Python in mainstream technologies. Strings and Formatting: Basic Syntax, Comments, String Values, String Methods, The format Method, String Operators, Numeric Data Types, Conversion Functions, Sim-ple Output, Simple Input, The % Method, The print Function

Language Components: Indenting Requirements, the if Statement, Relational and Logical Operators, Bit Wise Operators, the while Loop, break and continue, The for Loop.

UNIT II: Python Data Structures

Introduction to Python Data Structures, Lists, Tuples, List Comprehensions, Nested List Comprehensions, Sets, Dictionaries, Sorting Dictionaries, Copying Collections, Dic- tionary Comprehensions, Dictionaries with Compound Values

UNIT III: Functions and Modules

Functions: Introduction, Defining Your Own Functions, Parameters, Function Docu- mentation, Keyword and Optional Parameters, Passing Collections to a Function, Vari- able Number of Arguments, Scope, Functions - "First Class Citizens", Passing Functions to a Function, map, filter, Mapping Functions in a Dictionary, Lambda, Inner Functions, Closures

Modules: Modules, Standard Modules – sys, math, time, The dir Function

UNIT IV: Exceptions, I/O and OOP

Exceptions: Errors, Runtime Errors, The Exception Model, Exception Hierarchy, Han- dling Multiple Exceptions, raise, assert.

Input and Output: Introduction, Data Streams, Creating Your Own Data Streams, Access Modes, Writing Data to a File, Reading Data from a File

Object Oriented Programming: Class Coding Basics Class Statement Methods In- heritance Attribute Tree Construction Specializing Inherited Methods Class InterfaceTechniques Abstract Super Classes

UNIT V: Data Processing, Analysis and Visualization

Regular Expressions: Introduction, Simple Character Matches, Special Characters, Character Classes, Quantifiers, The Dot Character, Greedy Matches, Grouping, Matching at Beginning or End, Match Objects, Substituting, Splitting a String, Compiling Regular Expressions, Flags.

Numerical Analysis & Plotting: Numpy – Overview, Setup, Datatypes, Basic Op- erators, Indexing, Broadcasting, Matrix Operators. Matplotlib-Overview, Setup, Basic plots, Customizing plots, Subplots, 3D plots.

Data Processing with Pandas: Pandas – Overview, Setup, Data Structures, Indexing & Selecting Data, groupby Operations, Reshaping data.

X Component

- Competitive coding using Core Python Practical Assignments and Hacker-rank challenges
- GUI Development using Python Project

Syllabus for GUI Development

An Example GUI, The Tk Widget, Button Widgets, Entry Widgets, Text Widgets, Checkbutton Widgets, Radiobutton Widgets, Listbox Widgets, Frame Widgets, Menu Widgets, Toplevel Widgets, Dialogs

Week	Lecture (1	Pedagogy	Practical (2	X Component (3			
	hours)		hours)	hours)			
	Introduction	Explicit	Python Ver-sions,	Access and			
Week 1	to Python -	Teaching	Installing Python,	perform			
	Applications		Envi- ronment	operations on			
	of Python in		Vari- ables,	Open Source			
	Mainstream		Executing Python	Environments			
	Technologies		from the	like Raspberry			
			Command Line	Pi			
	Strings in	Explicit	String functions				
	Python	Teaching/	and formatting				
		Demon-					
		stration					
	Language Com-	Explicit	Indenting Re-				
	ponents – Part 01:	Teaching	quirements, the if				
	Simple if		Statement				
Week 2	Language Com-	Explicit	while Loop,	Provide			
W CON 2	ponents – Part02:	Teaching/	break and con-	programming			
	Relational	Demon-	tinue, for Loop	solution for			
	and Logical	stration		decision and			
	Operators, Bit			looping problem			
	Wise Operators			scenarios			
	Lists, Tuples	Explicit	Hands-on ses-				
		Teaching	sion for Lists and				
			Tuples				
			- methods				
			and functions				
			Hackerrank –				
			Problem Solving				
	<i>a</i> b		Challenge	~			
Week 3	Sets, Dictionary	Explicit	Hands-on ses-	Create solutions			
		Teaching	sion for Sets	for complex			
			and Dictionary	problem			
			- methods and	statements			
			tunctions	leveraging			

15 WEEK COURSE PLAN

Week 4	Comprehension Functions	Explicit Teaching Explicit	List Comprehen- sion, Dictionary Comprehen- sion, Lambda, Hackerrank – Problem Solving Challenge Getting started	Python Data structures
		reaching	oriented pro- gramming	user defined functions tocreate efficient programs lever- aging Pythonmodules.
	Modules	Explicit Teaching	Modular Pro- gramming, Built-in Mod- ules	
Week 5	Exceptions	Explicit Teaching	Practicing pro- grams that are robust against exceptional inputs	Get data from sensors through Raspberry Pi, with appropriate Exceptional
	Input/Output	Explicit Teaching	Getting data out from Excel, Notepad	Handling
Week 6	Object Oriented Programming: Class State- ment Methods Inheritance	Explicit Teaching	Attribute Tree Construction Specializing Inherited Meth- ods, Class Interface Tech- niques Abstract Super Classes	Create Ob- ject Oriented Solution for solving appli- cation oriented problems
Week 7	Regular Expres- sions, Simple Character Matches, Spe- cial Characters, Character Classes, Quan- tifiers, The Dot Character	Explicit Teaching	Practicing regular expression rules for different problem scenarios	Validate data using RegExp package for realtime inputs, from integrated environment

	Greedy Matches, Grouping, Matching at Beginning orEnd, Match Objects, Substi- tuting, Splitting a String, Com- piling Regular Expressions, Flags.	Explicit Teaching		
Week 8	Numerical Anal- ysis, Datatypes, Basic Opera- tors, Indexing, Broadcasting, Matrix Opera- tors.	Explicit Teaching	Performing op- erations on data frames obtained from real time datasets	Perform com- plex mathetical operations lever- aging Numpy
Week 9	Plotting, Basic plots, Customiz- ing plots, Sub- plots, 3D plots	Explicit Teaching	Practicing data plots for Real time datasets	Perform data visualization on streaming data
Week 10	Data Processing, Data Structures, Indexing & Selecting Data, groupby Opera- tions, Reshaping data.	Explicit Teaching	Working with data processing operations using Pandas	Process data from benchmark sites using Pan- das, Numpy, Matplotlib
Week 11	Tkinter:TkWidget,ButtonWidgets,EntryWidgets,TextWidgets,TextWidgets,Check-buttonWidgets,RadiobuttonWidgets,Widgets,List-boxWidgets,FrameWidgets,FrameWidgets,ToplevelWid-gets,Dialogs	Explicit Teaching	Tkinter Pro- gramming for UI Snips	Create a well-defined user interface, based on the problem requirement (GUI Development)
Week 12	Developing User Interface with OOP	Explicit Teaching	Efficient UI Development using Tkinter and OOP	

Week 13	Desktop App	Project	Problem Identification and Backend details
	Development	Based	
		Learning	
Week 14	Creating own	Project	Pip, PyPi, Licence Reception
	Python Pack-	Based	
	ages	Learning	
Week 15	UI Development	Project	UI Development for Integrated Application
		Based	
		Learning	

EXPERIMENTS:

1. Let d(n) be defined as the sum of proper divisors of n (numbers less than n whichdivide evenly into n).

If d(a) = b and d(b) = a, where a = b, then a and b are an amicable pair and each of a and b are called amicable numbers.

For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.

Find the count of the matching proper divisors of the given amicable number

- 2. We come across varying magic numbers or so called occult numbers. There are very few numbers in having a particular property. The so called occult number in our scenario is the number, whose individual digits' factorial sum will give back the same number. For instance: 40585 = 4! + 0! + 5! + 8! + 5! = 40585 Calculate the number of occult numbers in the less than a particular value 'alpha' Alpha will be given in the input
- 3. A positive integer, n, is factorised into prime factors. We define f(n) to be theproduct when each prime factor is replaced with 2. In addition we define f(1)=1.For example, 90=2*3*3*5, then replacing the primes, 2*2*2*2=16, hence f(90)=16.Calculate f(n), for the given n
- 4. Each new term in the Fibonacci sequence is generated by adding the previous twoterms. By starting with 1 and 2, the first 10 terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

By considering the terms in the Fibonacci sequence whose values do not exceedfour million, find the sum of the even-valued terms upto the given V terms series.

5. Namonical charge is a value that is calculated by inputting the name of the person. The charge is calculated by first coverting the characters in the name to its corre-sponding alphabetical position and then accumulating a sum based on the followingrules:

(i) if the number is even, take factorial of it

(ii) if the number is odd, take the square root of the number

The accumulated sum is returned as the Namonical charge of the given nameEg.

name = "abcd"

a - 1 (odd, take square root)b - 2

(even, take factorial)

c - 3 (odd, take square root)d - 4

(even, take factorial) Namonical charge = sqrt(1) + factorial(2) + sqrt(3) + factorial(4) = 28.732Note: Round the output to three decimal digits

- 6. For a positive integer n, define f(n) to be the number of non-empty substrings of n that are divisible by 3. For example, the string "2573" has 10 non-empty substrings, three of which represent numbers that are divisible by 3, namely 57, 573 and 3. So f(2573)=3. If f(n) is divisible by 3 then we say that n is 3-like. If the given number is 3-like, print 'yes', otherwise print 'no'
- 7. Natural Numbers are simply the numbers 1, 2, 3, 4, 5, ... (and so on).
 Given a number k and N, take sum of all numbers less than or equal to N, that are divisible by k.
 Example:

Given k = 5, N = 10, the natural numbers less than or equal to 10 and divisible by 5 are 5,10 The sum is 5+10=15

8. Sorting is a base for any problem solving. Sorting can be done in ascending or descending order. Various algorithms exist in the literature to do the sorting effi- ciently.

Create a sorting algorithm that sorts elements between a particular range (i,j)Example: Given the inputs

7 // Number of elements 5 2 6 3 9 1 7 // The array (index starts from zero)2 // Start range 5 // end range Output: 5 2 3 6 9 1 7

9. Convert the given word into magnet word. Magnet word is a word which will have a property. Each character of the word will be assigned index starting from 1.Alphabets

in English will be numbered from index 1.

Reverse of the multiplied indices of the character in string and alphabers, mod 26 gives the corresponding magnetic character.

Replace all the characters in the given string with its magnetic character, resultingin magnetic word.

Note: If a character is changed to magnetic once, all its subsequents appearances will have the same magnetic character.

(space character remains untouched)

The elements between the range 2 and 5-1 are sorted

10. Ak gave a challenge to Vj. Ak gave a decimal number N.

Vj needs to find the product of unique critical digits of the number N.Critical digits are those digits which are divisible by X.

The value X is 2, if the number of unique even numbers is greater than those of unique odd numbers, else, the value of X is 1.

Help Vj to crack the challenge.Eg. N

= 123564.2654916465

If the count of numbers to the left of . (dot) is greater than the count of numbers to the right, then . (dot) is considered as even number. Else . (dot) is considered as odd number. In above

case, . (dot) is considered as odd number.

11. n! means $n \times (n - 1) \times ... \times 3 \times 2 \times 1$

For example, 20! = 2432902008176640000,

The number is so long. We need to compress this number in such a way that much information is not last.

Essential information of the number is its case: even or odd. We shall preserve the highest case in the given number (i.e.,) if the number of even numbers is greater than the odd, then even is the highest case, and vice versa.

The resultant compressed number should have unique numbers in ascending order.

12. RSK is going to play KPL in 2021. RSK consist of many players in its player pool in different type: batsman, bowler, wicket keeper and all-rounder. Each player will have a X factor determining his own strength. In addition to strength, the modeof the player, either aggressive or defensive will also be provided.

Team RSK management and its captain is in ambiguity on how to select their best team. The selected team should be highly competent in the tournament. A teamcan be competent enough only when it has competent players in aggressive mode. Given with the set of team player details including their X factor, mode and type, the task is to form an optimal team.

A team should require minimum two batsmen, one bowler and one wicket keeper

out of its 11 field players. Team should contain minimum 4 aggressive players Note: An all-rounder can be accounted as either batsmen or bowler

Help team RSK management to finds its best 11-squad to win the trophy. Prove to the management by selecting a optimal team with highest cumulative x-factor value

TEXT BOOK(S):

1. Mark Lutz, "Learning Python", Fifth Edition, O, Reilly, 2018

REFERENCES:

- 1. Charles Severance, 2016, Python for everybody: exploring data in Python 3
- 2. Charles Dierbach, 2013, Introduction to Computer Science using Python: a com-putational problem-solving focus, Wiley Publishers

PROGRAM CORE

212INT2201	DIG	TAL	LOG	FIC AN	ND	L	Т	P		Х			С	H	[
21211 12301		DE	SIGN	N		3	0	2	1	0			4	5	
Prerequisite	Basic I	Electri	cal ar	nd Elec	troni	cs En	gineeri	ing							
Course	Basic	Engin	eering	g											
Category															
Course	Integra	ated C	ourse	with 7	Theor	У									
Туре															
Objective(s) • To understand different methods used for the simplification of Functions.								Bo	olea	n					
	• To design and implement combinational circuits.														
	• To	o des	ign a	und im	plem	ent s	synchro	onous	and	asyncl	hronou	ıs se	que	entia	ıl
circuits.															
	• To	o stud	y the	fundan	nenta	l of V	HDL/	Veril	og HD	DL.					
Course Outcome(s)															
CO1 Able to design Logic gates with multi functionality implementation							tion	n of	ĩ						
	Boolea	n func	ctions	-	-					-	_				
CO2	Write I	Progra	m for	r comb	oinati	onal	and se	equent	ial cir	cuits	like N	Aultip	plex	kers,	,
	Flip flo	ops, C	ounter	rs using	g VH	DL la	anguag	ge							
CO3	Analyz	e and	devel	lop Syr	nchro	nous	Seque	ntial c	ircuits						
CO4	Analyz	e and	Desig	gn Asy	nchro	onous	Seque	ential o	circuit	S					
CO5	Design	the s	specif	ied log	gic (s	imple	e electi	ronic	circuit	ts) wi	th CM	10S/N	Mer	nor	y
	and Im	pleme	ntatio	on of P	rogra	mmir	ıg logi	cs con	cepts						
Mapping of C	Os with	Pos													
COs Program	n Outco	mes									PSO)			
CO 1 2	3	4	5	6	7	8	9	10	11	12	1	2	3	;	
CO1 3	1	3									3				l
CO2 3								2				2			
CO3	2	3							3		3				
CO4	1	3		2		3							3	5	
CO5	3										3				Ì
3 3	2	3	0	2	0	3	0	2	3	0	3	2	3		

Course Topic(s)

UNIT 1 :BOOLEAN ALGEBRA AND LOGIC GATES

Binary Numbers-Boolean functions as sum if product and product of sum terms-Representation of Boolean function using Venn Diagram

UNIT 2: COMBINATIONAL LOGIC

Introduction to combinational circuits-Developing boolean functions from given logicdiagram-Designing logic diagram from given design objective-Types of Combinational Circuits-Writing Hardware Description Language for some combinational circuits

UNIT 3 :SEQUENTIAL LOGIC

Sequential Circuits-Analysis and design procedure-Flip Flops-Realization of one Flip Flop using other Flip Flops-Shift Registers & Counters-State Reduction & Assignment-HDL for

Sequential Logic Circuits- Realization of one flip flop over another-Introduction to circuits with flipflops- Writing Hardware Description Language for some sequential circuits

UNIT 4: ASYNCHRONS SEQUENTIAL LOGIC

Introduction to Asynchronous Circuit- Developing boolean functions from given logic diagram.

Designing logic diagram from given design objective-Hazards

UNIT 5 :MEMORIES AND LOGICAL PROGRAMMING

Classification of Memory- Techniques used to detect and correct errors- Programmable Logic Devices-Types

LIST OF EXPERIMENTS

- 1. Verification of Boolean expressions using digital logic gates
- 2. Design and implementation of combinational circuits using basic gates for arbitrary functions, code converters, etc.

3. Design and implementation of 4-bit binary adder / subtractor using basic gates and MSI

devices.

- 4. Design and implementation of parity generator / checker using basic gates and MSI devices.
- 5. Design and implementation of magnitude comparator
- 6. Design and implementation of application using multiplexers
- 7. Design and implementation of Flip-flops
- 8. Design and implementation of Shift registers
- 9. Design and implementation of Synchronous and Asynchronous counters

10. Coding combinational circuits using Hardware Description Language (HDL software required)

11. Coding sequential circuits using HDL (HDL software required) Additional Experiments:

12) Error Detection and Correction using Hamming Code

TEXT BOOK

1. Morris Mano M, "Digital Design", Pearson Education, 5th edition, 2013. REFERENCES

- 1. Charles H.Roth, Jr., "Fundamentals of Logic Design", Jaico Publishing House, 7th Edition, 2014.
- 2. Donald D.Givone, "Digital Principles and Design", Tata McGraw-Hill, 2003.

Week	Lecture(3 Hours)	Practical (2 Hours)				
Week 1	What is signed binary number? -	Realization of Boolean				
	Representation of signed binary number	Expressions using Digital				
Week 2	Expressing boolean functions as sum of product and product of sum terms	Logic Gates				
Week 3	Representing boolean functions using venn diagram					
Week 4	Introduction to combinational circuits	Verification of truth table for				
	Developing boolean functions from given logic	combinational circuits				
	diagram.					

	Designing logic diagram from given design					
Week 5	Types of Combinational Circuits					
Week 6	Writing Hardware Description Language for some	HDL coding for				
	combinational circuits	combinational circuits				
Week 7	Introduction to Sequential Circuits-	Verification of truth table offlip				
	Developing boolean functions from given logic	flops and shift registers				
	diagram.					
	Designing logic diagram from given design					
	objective.					
	Reduction in states and assigning states.					
Week 8	Realization of one flip flop over another					
	Introduction to circuits with flipflops					
Week 9	Writing Hardware Description Language for some	HDL coding for Sequential				
W 1 10	sequential circuits	Circuits				
Week 10	Introduction to Asynchronous Circuit	Verification of truth table for				
Week 11	Developing boolean functions from given logic	Synchronous Sequential				
	diagram.	circuits				
	Designing logic diagram from given design					
	objective.					
Week 12	Hazards					
Week 13	Classification of Memory	Memory Decoding				
Week 14	Techniques used to detect and correct errors	Error detecting and correcting				
		codes				
Week 15	Programmable Logic Devices-Types	Design of PLD				

			CC	OMPU	TER	OR	GANIZ	ZATI	ON A	ND	L	Т	Р	X	С
212IN	NT11()1	AS	SEM	BLY			LAN	IGUA	GE	3	0	0	0	3
Duono		ha.	PR	OGR	AMN	AING									
Prere	equisit	te	IN11 Dragrad	m Co	•••										
Cours	se		Progra	m Co	e										
Calley	gory		Theory	7											
Type	50		Theory	/											
Obje	ctive(s	5)	To ma	ke ac	quain	ted th	e stud	ents a	bout t	he fu	nction	al uni	ts of	comp	uter and
	now each unit works along with the architectural and performance issues.										105.				
Course Outcome(s)															
C	201		Exami	ne fun	ction	al unit	ts of c	ompu	ter, bus	s struc	ture a	nd the	e diff	erent	
			address	sing n	nodes										
C	202		Apply	the kr	nowle	dge of	falgor	ithms	to sol	ve ari	thmeti	c unit	prob	lems	
C	203		Demor	istrate	sing	le bus,	, multi	iple b	us orga	nizati	on an	d pipe	linin	g cono	cepts
C	CO4		Analyz	ze the	diffe	rent ty	pes of	f men	nory lil	ke RA	M,RO	DM, C	ache	memo	ory and
			virtual	memo	ory co	oncept	S	0			~*	a a a *			
CO5 Evaluate the various I/O interfaces like USB, PCI an SCSI															
C	206		Create	effici	ent al	gorith	ms for	r impl	ementi	ng the	e diffe	erent a	rithm	netic a	nd
logic operations by applying appropriate design strategies							•	1 .							
C	.07		implen	docio		Terent	archit	ecture	e and a	naiyze	e its p	eriorr	nance	e using	g logic
Monn	ing of		Circuit	Dec	1										
Mapp			5 with	FUS									DC	<u>.</u>	
COs	PO's	5		1.	1_	1	1 -		-	1.4.0	1		PSG	J's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												1		
CO2	3												3		
CO3	3												3	2	
CO4	3	2											3	2	
CO5	3	1											3	2	
CO6	3	3	2										3	3	3
CO7	3	3	2		1				1				3	3	3
	3	2	2		1								3	2	3
Cour	se To	pic(s)	<u> </u>	1			1	1	L	1	1	1		1 1
TINIT		 (~/												
	. 1;				c		0	<i>,</i> .	c				~		1 /
Diffei	rent F	unct	tional P	arts o	t a co	ompute	er,Ope	eratior	is of a	comp	uter,	Data 1	ranst	erring	betwee
differ	ent na	rts_9	Storing	the da	ta int	o the l	Memo	ry and	lite I c	cation	ne Me	thode	of de	to hro	ught int

different parts-Storing the data into the Memory and its Locations, Methods of data brought into different Instructions and execution-Types of Addressing Modes, Assembly Language programming – Input and Output operations of data

UNIT 2 :

Binary numbers Addition and Subtraction with different methods-Multiplication of Positive binary Numbers using signed and unsigned numbers-Division methods using different binary numbers

UNIT 3:

Fundamental Concepts of a computer organization, Execution of a Complete Instruction using Single Bus and Multiple Bus Organization- Data execution methods using the Pipelining concept-How errors are happening during the process of data and its types **UNIT 4**:

Random Access Memory and Read Only Memory concepts and its comparison-Different Memory (Cache and Virtual) system and its Performance-Managing all the different memories, Data storing system of ROM.

UNIT 5 :

Input and Output devices and functions-Accessing the memory directly for fast process-Different Input Output Interfaces comparison

List of Practical Components

- 1. Implementation of booth algorithm
- 2. Implementation of sequential circuit binary multiplier
- 3. Implementation of bit pair recording
- 4. Implementation of carry save addition
- 5. Implementation of Integer restoring division
- 6. Implementation of Integer Non restoring division
- 7. Implementation of twos complement addition
- 8. Implementation of twos complement subtraction

TEXT BOOK:

1. Carl Hamacher, ZvonkoVranesic and SafwatZaky, Computer Organization, McGraw-Hill, 5th Edition 2012

REFERENCE BOOKS:

- 1. William Stallings, Computer Organization and Architecture Designing for Performance, PHI pvt Ltd, 4th Edition, 2012.
- 2. David A.Patterson and John L.Hennessy, Computer Organization and Design: The hardware software interface, Morgan Kaufmann, 3rd Edition, 2007.
- 3. John P.Hayes, Computer Architecture and Organization, McGraw Hill, 3rd Edition, 1998

Week	Lecture (3 Hour)
Week 1	Different Functional Parts of a computer, Operations of a computer, Data transferring
	between different parts
Week 2	Storing the data into the Memory and its Locations, Methods of data brought into
	different Instructions and execution
Week 3	Types of Addressing Modes, Assembly Language programming – Input and Output
	operations of data
Week 4	Binary numbers Addition and Subtraction with different methods
Week 5	Multiplication of Positive binary Numbers using signed and unsigned numbers
Week 6	Division methods using different binary numbers
Week 7	Fundamental Concepts of a computer organization, Execution of a Complete Instruction
	using Single Bus and Multiple Bus Organization
Week 8	Arranging of different units and Controlling methods, Data execution methods using the
	Pipelining concept
Week 9	How errors are happening during the process of data and its types
Week 10	Random Access Memory and Read Only Memory concepts and its comparison

Week 11	Different Memory (Cache and Virtual) system and its Performance
Week 12	Managing all the different memories, Data storing system of ROM.
Week 13	Input and Output devices and functions
Week 14	Accessing the memory directly for fast process
Week 15	Different Input Output Interfaces comparison

212IN	NT23()2	OPER	RATI	NG S	YSTE	MS C	CONC	CEPTS	S L 3		Г)	P 2	X 0	C 4
Prere	equisit	te	Computer Organization and Assembly Language Programming (212INT1101)												
Cours	se		Program	n Cor	e										
Categ	gory														
Cours Type	se		Integra	ted Co	ourse	with T	Theory	7							
Objective(s) 1. To learn the mechanisms of OS to handle processes and threads a Communication 2. To learn the mechanisms involved in memory manage contemporary OS 3. To gain knowledge on distributed operating system concepts that											s and geme hat in	their ent in cludes			
			architecture, Mutual exclusion algorithms, deadlock detection algorithms and agreement protocols 4. To know the components and management aspects of concurrency management												ns and
Cours	se Ou	tco	me(s)												
C	01	Understand the basic characteristics of operating systems and to explore the various functions of UNIX and windows operating systems.											e the		
C	202		Underst schedul	and th	e proc gorithr	ess ma ns to s	inagen chedul	nent p e the p	olicies process	and ap s for C	ply F (PU.	CFS, S	JF and	RR C	PU
C	203		Evaluat handled	te the 1 by o	requii perati	remen ng sys	t for p stem.	proces	s sync	chroniz	zation	and c	oordir	nation	
C	204		Apply b	anker	s algor	rithm t	o avoi	d dead	llocks i	in oper	ating s	ystem	s		
C	205		Analyz for pag	e the e repl	efficie aceme	ency o ent in	f men virtua	nory r l men	nanag nory a	ement nd dis	techn k sche	iques, duling	the al g	lgoritl	nms
C	206		Unders	tand t	he goa	als of	securi	ty in (OS Do	omain	and a	oply b	asiccr	yptog	raphy
algorithms using programming languages															
CO7 Implement the domain problems by applying various operating sy principles to minimize time and space complexity									stem	8					
Mapp	ing of	CC	Os with 1	Pos											
COs	PO's	5											PSO	's	
СО	1	2	2 3 4 5 6 7 8 9 10 11 12 1 2								3				
CO1	3														
CO2	3														
CO3	3	2													
CO4	3	2													
CO5	3	2		1											
CO6	2											1	3	2	1
CO7	3	2	1	1									3	2	1
	3	2	1	1								1	3	2	1

Course Topic(s)

UNIT 1: INTRODUCTION TO OPERATING SYSTEMS

Introduction: Concept of Operating Systems, Generations of Operating systems, Types of Operating Systems, OS Services, System Calls, Structure of an OS - Layered, Monolithic, Microkernel Operating Systems, Concept of Virtual Machine. Case study on UNIX and WINDOWS Operating System

UNIT 2 : PROCESS SCHEDULING

Processes: Definition, Process Relationship, Different states of a Process, Process State transitions, Process Control Block (PCB), Context switching **Thread:** Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads,

Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and EDF.

UNIT 3: PROCESS SYNCHRONIZATION AND DEADLOCK

Operations on Processes, Cooperating Processes, Inter-process Communication: Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The Producer Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem etc. **Deadlocks:** Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery.

UNIT 4 : MEMORY MANAGEMENT

Memory Management: Basic concept, Logical and Physical address map, Memory allocation: Contiguous Memory allocation – Fixed and variable partition–Internal and External fragmentation and Compaction; Paging: Principle of operation – Page allocation – Hardware support for paging, Protection and sharing, Disadvantages of paging.

Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU).

UNIT 5: FILE AND SECONDARY STORAGE MANAGEMENT

I/O Hardware: I/O devices, Device controllers, Direct memory access Principles of I/O Software **Disk Management:** Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C- SCAN, Disk reliability, Disk formatting, Boot-block, Bad blocks

File Management: Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed), Free-space management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and performance.

List of Practical Components:

- 1. Windows and UNIX Commands
- 2. Simulation of System calls
- 3. Implementation of CPU Scheduling algorithms
- 4. Simulation of IPC in UNIX
- 5. Implementation of deadlock avoidance algorithms
- 6, Implementation of Page replacement algorithms
- 7. Implementation of memory management functions
- 8. Implementation of disk scheduling algorithms

TEXT BOOKS :

1. Abraham Silberschatz, Peter Galvin, Greg Gagne, "Operating System Concepts and Essentials", 9th Edition, Wiley Asia Student Edition.

2. William Stallings, "Operating Systems: Internals and Design Principles", 5th Edition, , Prentice Hall of India.

REFERNCE BOOKS

- Charles Crowley, "Operating System: A Design-oriented Approach", 1st Edition by, Irwin Publishing.
- 2. Gary J. Nutt, "Operating Systems: A Modern Perspective", 2nd Edition, Addison-Wesley.
- 3. Design of the Unix Operating Systems, 8th Edition by Maurice Bach, Prentice-Hall of India
- 4. Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reilly and Associates

Week	Lecture (3 Hour)	Practical (2 Hours)
Week	Introduction: Concept of Operating Systems,	Windows and UNIX Commands
1	Generations of Operating systems	
Week	Types of Operating Systems, OS Services, System	
2	Calls	
Week	Structure of an OS - Layered, Monolithic,	Simulation of System calls
3	Microkernel Operating Systems, Concept of Virtual	
	Machine. Case study on UNIX and	
	WINDOWS Operating System	
Week	Processes: Definition, Process Relationship,	Implementation of FCFS and SJF
4	Different states of a Process, Process State	Scheduling algorithms
	transitions, Process Control Block (PCB),	
	Operations on Processes	
Week	Cooperating Processes , Context switching	
5	Thread: Definition, Various states, Benefits of	
	threads, Types of threads, Concept of multithreads	
Week	Process Scheduling: Foundation and Scheduling	Implementation of Round robin and
6	objectives, Types of Schedulers, Scheduling criteria:	Priority Scheduling algorithms
	CPU utilization, Throughput, Turnaround Time,	
	Waiting Time, Response Time; Scheduling	
	algorithms: Pre-emptive and Non pre-emptive,	
	FCFS, SJF, RR; Multiprocessor scheduling: Real	
	Time scheduling: RM and EDF	
Week	Inter-process Communication: Critical Section,	Simulation of IPC in UNIX
/	Race Conditions, Mutual Exclusion, Hardware	
XX / 1	Solution, Strict Alternation, Peterson's Solution,	
Week	The Producer Consumer Problem, Semaphores,	Implementation of Readers writers
8	Event Counters, Monitors, Message Passing,	problem
	Classical IPC Problems: Reader's & writer	
XX7 1	Problem, Dinning Philosopher Problem etc	
Week	Deadlocks: Definition, Necessary and sufficient	Implementation of deadlock avoidance
9	Conditions for Deadlock, Deadlock Prevention,	argorunins
	Deadlock Avoidance: Banker's algorithm,	
	Deadlock detection and Recovery	

Week	Memory Management: Basic concept, Logical and	Implementation of memory
10	Physical address map, Memory allocation:	management functions
	Contiguous Memory allocation – Fixed and variable	
	partition-Internal and External	
	fragmentation and Compaction	
Week	Paging: Principle of operation – Page allocation –	Implementation of Page replacement
11	Hardware support for paging, Protection and	algorithms
	sharing, Disadvantages of paging.	
Week	Virtual Memory: Basics of Virtual Memory -	
12	Hardware and control structures - Locality of	
	reference, Page fault, Working Set, Dirty page/Dirty	
	bit – Demand paging, Page Replacement	
	algorithms: Optimal, First in First Out (FIFO),	
	Second Chance (SC), Not recently used (NRU) and	
	Least Recently used (LRU).	
Week	I/O Hardware: I/O devices, Device controllers,	Implementation of disk scheduling
13	Direct memory access Principles of I/O Software	algorithms
	Disk Management: Disk structure, Disk	
	scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk	
	reliability	
Week	Disk formatting, Boot-block, Bad blocks	Implementation of Access control
14	File Management: Concept of File, Access	mechanisms
	methods, File types, File operation, Directory	
	structure, File System structure	
Week	Allocation methods (contiguous, linked, indexed),	Implementation of security algorithms
15	Free-space management (bit vector, linked list,	
	grouping), directory implementation (linear list,	
	hash table), efficiency and performance. Protection	
	and Security	

212INIT1401	WEB APPLICATIONDEVELOPMENT L T P X C												
2121N 11401													
Prerequisite	Nil												
Course	Program Core												
Category													
Course Type	Integrated Course with Practical												
Objective(s)	 To learn the theoretical and practical concepts of web programming. To introduce the programming languages for developing simple web applications. To make students to understand about the architecture of web server and deployment of web site To teach methodologies useful for the implementation of dynamic web applications To efficiently design and implement web applications using server side programming languages 												
Course Outco	ome(s)												
CO1	Apply frontend web development concepts in designing static pages.												
CO2	Apply frontend web development concepts in deigning dynamic pages.												
CO3	Develop web server incorporating multimedia features.												
CO4	Develop dynamic server based applications through ASP.												
CO5	Apply database concepts in storing and managing data generated through web applications												

Mapping of COs with Pos																
COs	PO's													PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	2			2						3			2	
CO2	2	2	3					2				3			2	
CO3			3		2	2						3		3	2	
CO4		3	3		3			2				3	3	2		
CO5	2	2	2		2			2				3	3	2		
	2	2	3		2	2	2	2				3	3	2	2	

Course Topic(s) UNIT – I (Web Basics and HTML)

History of Internet and W3C – Internet Protocols – HTTP Request and Response – HTTP Message Header Types – HTML (5): Basic Tags – Metadata Tags – Section Tags – Grouping Tags – Text Formatting Tags – Embedded Content Tags – Multimedia – Tables – Forms

UNIT – II (Dynamic HTML, Client Scripting and CSS)

 $JavaScript:\ History-Syntax-variables-data\ types-operators\ \text{- control structures}-$

functions – arrays - objects – events - ajax; CSS: Inline, Embedded and External style sheets – positioning elements – backgrounds – element dimensions – box model and flow model

UNIT -III (Server Side Scripting using ASP.NET with .NET Framework)

ASP.NET Introduction – Server Controls: HTML Server Controls - ASP.NET Web Controls – Validation controls – List – User Controls – State Management: Client Side state management - Server Side state management- ASP.NET Ajax Controls - URL Rewriting -Working with XML documents – IIS

Unit – IV (Accessing Database)

ADO.NET – Connecting Database – Performing CURD operations with SqlCommand, SqlDataReader objects – Disconnected Database - Working with stored procedures – SQL Injection Attacks and prevention

Unit – V (Web Services and Security)

Web Services: WSDL – SOAP – RDF – RSS – Web Security Issues: Broken Authentication and Session Management - Sensitive Data Exposure - XML External Entities (XXE) - Broken Access Control - Security Misconfiguration - Cross-Site Scripting XSS

TEXT BOOK

1. Deitel&Deitel, Goldberg, "Internet and World Wide Web 5th Edition – How to Program", Pearson Education Asia, 2012.

REFERENCES

- 1. Eric Ladd, Jim O' Donnel, "Using HTML 4, XML and JAVA1.2", Prentice Hall of India, QUE, 1999.
- 2. Aferganatel, "Web Programming: Desktop Management", PHI, 2004.
- 3. Rajkamal, "Web Technology", Tata McGraw-Hill, 2001.

Lab experiments:

- 1. Familiarizing Web Applications and browsers Web portals, e-commerce, blogs, social media, etc.
- 2. Working with basic HTML Tags
- 3. Working with tables and Form Elements
- 4. Create a profile page in Google Sites
- 5. Java Scripts
 - a. Registration Form with Table
 - b. String, Math & Date Object's predefined methods
 - c. Calendar Creation : with all months
 - d. Event Handling Validating Simple Form
 - e. Event Handling Multi-Validating Registration Form
 - f. Event Handling Background Color Change
 - g. Event Handling calendar for the month and year by combo box
 - h. Event Handling OnMouseover event
 - i. Event Handling OnMouseover using objects
 - j. Online Exam a Mini Project
- 6. Understanding .NET IDE for ASP Application Development
- 7. IIS Installation and Study
- 8. ASP.NET Application for Form validation
- 9. ASP.NET application for state management
- 10. ASP.NET application with ajax controls
- 11. Use ADO.NET for DB Connection with ASP.NET application
- 12. Working with disconnected databases in ASP.NET
- 13. Working with stored procedures
- 14. Create a mini project with ASP.NET application will all technologies and security concerns.

Week	Lecture (2 Hour)	Practical (2 Hours)	X-Component (3 Hours)
Week	History of Internet andW3C	Familiarizing Web	Create a profile page in Google
1	- Internet Protocols	Applications and	Sites
	– HTTP Request and	browsers - Web portals,e-	Include Name and public
	Response – HTTP	commerce, blogs, social	personal details
	Message Header Types	media, etc.	Include photo
Week	HTML5: Basic Tags –	Working with basic	Include About Yourself
2	Metadata Tags – Section	HTML Tags	Your expertise and
	Tags – Grouping Tags –		achievements
	Text Formatting Tags		Your strengths
Week	Embedded Content Tags -	Working with tables and	Photo gallery
3	Multimedia – Tables –	Form Elements	Any specific interests
	Forms		
Week	JavaScript: History – Syntax	Event Handling - Validating	Simple game using JS and CSS
4	– variables – data types –	Simple Form	tricks
	operators - control structures	Event Handling -	
		Event Handling	
		OnMouseover event	
		Event Handling -	
		OnMouseover using objects	
Week	functions – arrays - objects –	b. String, Math & Date	
5	events - ajax	Object's predefined	
		methods	
Week	CSS: Inline, Embedded and	Calendar Creation : with all	
6	External style sheets –	months	
	positioning elements –		
	backgrounds – element		
	dimensions – box model and		
Weels	ASP NET Introduction	Understanding NET IDE	Installing and configuring US
week	Server Controls: HTMI	for ASP Application	instanting and configuring fits
/	Server Controls - ASP NET	Development	
	Web Controls – Validation	P	
	controls – List – User	ASP.NET Application for	
	Controls, IIS	Form validation	
Week	State Management: Client	ASP.NET application for	Mini Project – Form Designing and
8	Side state management -	state management	

	Server Side state management		validation
Week 9	ASP.NET Ajax Controls - URL Rewriting - Working with XML documents	ASP.NET application with ajax controls	
Week 10	ADO.NET – Connecting Database – Performing CURD operations with SqlCommand, SqlDataReader objects	Use ADO.NET for DB Connection with ASP.NET application	Use the Mini project to connect with database and do DB operations
Week 11	Disconnected Database	Working with disconnected databases in ASP.NET	
Week 12	Workingwithstoredprocedures-SQLInjectionAttacksandprevention	Working with stored procedures	
Week 13	Web Services: WSDL – SOAP – RDF – RSS	Implement WSDL – SOAP – RDF – RSS in the Mini Project	Case study of WSDL – SOAP – RDF – RSS with different platforms
Week 14	Web Security Issues: Broken Authentication and Session Management - Sensitive Data Exposure - XML External Entities (XXE)	Add appropriate security measures for the attacks	Test the Mini Project for these specific attacks. Try to resolve it.
Week 15	Broken Access Control - Security Misconfiguration - Cross-Site Scripting XSS, RCE	Add appropriate security check for XSS, RCE etc.	Test the Mini Project for these specific attacks. Try to resolve it.

212INT2202	DATA STRUCTURES AND	L	Т	Р	X	С						
212IN 12505	ALGORITHMS	3	0	2	0	4						
Prerequisite	Python for Programming and Product Developmen	Python for Programming and Product Development (211CSE1401)										
Course	Program Core											
Category												
Course Type	Integrated Course with Theory	Integrated Course with Theory										
Objective (s)	• To learn the systematic way of solving problem	ms.										
	• To understand the different methods of organized	zing la	arge a	amou	nts ofd	lata.						
	• To introduce the practical and formal aspects	of data	a struc	ctures	5							
	• To teach methodologies useful for the imp	lemen	tation	and	empir	ical						
	evaluation of sorting and searching algorithms.				-							
	• To efficiently implement the solutions for sp	ecific	prob	lems	using o	data						
	structures											
Course Outco	me(s)											
CO1	Implement different Linear Data structures in different	applic	ations									
CO2	Design real time applications using general tree data	a struc	tures	and o	compare	e its						
	complexity											
CO3	Illustrate the various operations of hashing techniques a	ndsor	ing al	aorith	me							
003	industrate the various operations of nashing techniques a	nu son	ing ai	gom	iiiis,							
CO4	Identify proper algorithms for problem optimization	ıs										
CO5	Implement the various algorithms - design techniques.											
CO6	Design an efficient algorithm for real time problem											
CO7	Implement the problem statements in programming	langu	ages	and a	analyze	its						
	efficiency.											

Mapping of COs with Pos															
COs	Os PO's											PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	1								2	3		
CO2	3	3	2	3			1					2	3		
CO3	3	3	2	3								2	3		
CO4	2	2	2	3								2	3		
CO5	2	2	2	3								2	3		
CO6	3	2	3	2	1			2	3	3		2	2	3	3
CO7	3 2 3 2 2 3 3 3							3	1	3	3				
	3	2	2	2	2		1	3	3	3		2	3	3	3

UNIT 1: LINEAR STRUCTURES

Abstract Data Types (ADT)-List ADT- Array based implementation- linked list implementation-Cursor based linked lists-Doubly linked lists- Applications of lists- stack ADT- Queue ADT-Circular queue implementation- Applications of stacks and queue.

UNIT 2: TREE STRUCTURES

Tree ADT- Tree Traversals Binary Tree ADT – Express trees Application of trees- binary search tree ADT- Threaded Binary Trees. AVL Trees – Splay Trees – B – Tree – heaps – Binary heaps – Applications of binary heaps

UNIT 3 : HASHING AND SORTING

Hashing- Separate chaining – open addressing – rehashing – extendible hashing – Sorting – Insertion Sort – Selection Sort - Shell Sort – Heap Sort – Merge Sort – Quick Sort

UNIT 4 : GRAPHS

Graph Definitions and types, Graph Representation -topological sorting – breadth first traversal – shortest path algorithm – minimum spanning tree – Prims and Kruskal's algorithm

– Depth first traversal- biconnectivity- Euler circuits – Applications of graphs

UNIT 5: ALGORITHM DESIGN TECHNIQUES

Introduction – Greedy Method- Divide and Conquer – Dynamic Programming- Back Tracking-Branch and Bound.

PRACTICE COMPONENTS

- 1. Write a program to implement Stack Using Array and Linked list.
- 2. Write a program to implement Queue Using Array and Linked list.
- 3. Write a program to create a singly linked list.
- 4. Develop a date structure for trees, Include addition, deletion, access procedures. Apply this to problems like students list, passengers list, and polynomial representations.
- 5. Write a program to implement Binary Search Tree.
- 6. Write a program to implement Conversion of Infix Expression to Postfix Expression.
- 7. Write a program to implement Conversion of Postfix Expression to Infix Expression.
- 8. Write a program to implement Postfix Expression Evaluation.
- 9. Write an algorithm to convert a tree into a binary tree. Also traverse the tree.
- 10. Write a program to check for balanced parentheses of an expression using array implementation of stack.
- 11. Write a program to check for balanced parentheses of an expression using linked list implementation of stack.
- 12. Write a program to sort a set of elements using bubble sort, insertion sort, shell sort, heap sort, merge sort and quick sort.
- 13. Write a C program to implement the Dijkstra's Algorithm

14. Write C program for the implementation of minimum spanning using Kruskal

Write C program for the implementation of minimum spanning using Prims algorithm **TEXT BOOK**

1. M.A.Weiss, "Data Structures and Algorithm Analysis in C", 4th Edition, Pearson Education, 2013.

REFERENCES

- 1. A.V.Aho, J.E.Hopcroft and J.D.Ullman, "Data Structures and Algorithms", Pearson Education, 2005.
- 2. R.F.Gilberg, B.A.Forouzan, "Data Structures", Second Edition, Thomson IndiaEdition, 2005.

Week	Lecture (2 Hour)	Practical (2 Hours)	X-Component (3 Hours)
Week	Abstract Data Type(ADT)-	Create linear list using	Need to provide programming
1	List ADT- Array Based implementation- Linked List implementation	array and linked list	solution using array and pointers
Week 2	Cursor based Linked List- Doubly Linked List- Application of Lists- Stack ADT	Creation of Doubly linked- polynomial representation using doubly linked. Write a program to implement a Stack using an array and pointers	 (i) Absolute sorting on a single linked list. (ii) Intersection Point in Y-Shaped Linked List (iii) Sum of two numbers represented by linked lists
Week 3	Queue ADT- Circular queue implementation- Application of Stack and Queue	Write a program to implement a Queue using an array and pointers. Write a program to create a singly linked list Write a program to implement postfix evaluation. Write a program to checkfor balanced parentheses of an expression using array implementation of stack. Write a program to checkfor balanced parentheses of an expression using pointers implementation of stack	Understand and develop computationally efficient solution for the Problems using Data Structures, like (i) stock span problem(ii) Given a pattern containing only I's and D's . ' I' stands for increasing and ' D' for decreasing. Devise an algorithm to print the minimum number following that pattern. Digits are from 1-9 and digits can't repeat.
Week 4	Tree ADT -Tree Traversals Binary Tree ADT	Develop a date structure for trees, Include addition, deletion, access procedures. Apply this to problems like students list, passengers list, and polynomial representations.	Develop a date structure for trees, Include addition, deletion, access procedures. Apply this to problems like students list, passengers list.
Week 5	Expression tree and Application of Tree- Threaded binary tree- AVL Trees	Write a program to implement Binary Search Tree.	Need to provide programming
Week 6	Splay Trees – B –Tree – heaps – Binary heaps – Applications of binary heaps	Write an algorithm to convert a tree into a binary tree. Also traverse the tree.	tree problem scenarios.
Week 7	Hashing- Separate chaining – open addressing	Implementation of separate chaining.	Design and implementation Hashing using open addressing
Week 8	rehashing – extendible hashing – Sorting – Insertion Sort	Write a program to sort a set of elements using bubble sort, insertion sort	Comparison of searching and sorting algorithms.
Week	Selection Sort -Shell Sort –	Write a program to sort a	

9	Heap Sort – Merge Sort – Quick Sort	set of elements using, shell sort, heap sort, merge sort and quick sort	
Week 10	Graph Definitions and types, Graph Representation - topological sorting	Graph Representation - topological sorting	 Alien Dictionary problem-i.e-Given a sorted dictionary (array of words) of an alien language, find order of characters in the language. (ii) Rotten Oranges-Given a matrix of dimension r*c where each cell in the matrix can have values 0, 1 or 2 which has thefollowing meaning: 0: Empty cell 1: Cells have fresh oranges 2: Cells have rotten oranges So, we have to determine what is the minimum time required to all oranges. A rotten orange at index [i,j] can rot other fresh orange at indexes [i-1,j], [i,j+1] (up, down, left and right) in unit time. If it is impossible to rotevery orange then simply return -1.
Week 11	breadth first traversal – Depth first traversal shortest path algorithm –	BFS and DFS , shortest path algorithm	Design and implement graph Representation. Also demonstrate programs implementing Graph traversal techniques. Shortest Source to Destination Path-Given a Boolean 2D matrix (0-based index), find whether there is a path from (0,0) to (x,y) and if there is one path, print the minimum no of steps needed to reach it, else print -1 if the destination is not reachable. Moves are possible in only four directions i.e. up,

			down, left and right. The path can only be created out of a cellif its value is 1.
Week 12	minimum spanning tree – Prims and Kruskal's algorithm - biconnectivity- Euler circuits – Applications of graphs	minimum spanning tree – Prims and Kruskal's	 (i) Knight walk problem-There is a chessboard of size N×M and starting position (sx, sy) and destination position (dx,dy). You have to find out how many minimum numbers of moves a knight goes to that destination position? (ii) PPATH - Prime Path Problem-You are given two prime numbers n and m of 4 digits each, you need to convertn into m in the minimum number of steps, in each step you can change one of the digits of thenumber n such that a resulting number is also a prime number. Finally, give the number of minimum steps that you would take to complete the task if you can't change n to m then print "Impossible".
Week 13	Introduction – Greedy Method-	Knapsack Problem	
Week 14	Divide and Conquer – Dynamic Programming	Tower of Hanoi and Implement the Dijkstra's algorithm, Huffman encoding techniques	Understand and develop computationally efficient solution for the Problems using Algorithm design Techniques
Week 15	Back Tracking- Branch and Bound.	Eight Queen problem	- ingerinnin designi i cominques

313NJ & T3107			L	Т					
212MA121	.07	DISCRETE MATHEMATICS	3	0					
Prerequisite		Nil							
Course Catego	ory	Program Core							
Course Type		Theory							
Objective (s)		To enable the students to understand the concept of sets, relations, function	ons, logic a	nd					
-		algebraic structure	-						
Course Outco	me(s)								
CO1	Unde	erstand the concepts of Cartesian product, binary operation, partially order	r, relation, f	unction					
	andit	s properties.							
CO2	Knov	Know about the pigeon-hole principle, inclusion and exclusion principles, tautology and normal							
	form	forms.							
CO3	Unde	Understand the concepts of lattice, homomorphism, modular and distributive lattices.							
CO4	Unde	erstand the concepts of semigroup, group, Boolean algebra, Booleanring a	s of semigroup, group, Boolean algebra, Booleanring and duality.						
CO5	Unde	Understand the concepts in graph theory such as walk, cycle,path, trees,Hamiltonian and Eulerian							
	grapl	ns.							

Mapping of COs with Pos															
COs	PO's	5											PSO	PSO's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		
CO2	3	3											3		
CO3	3			3	2	1							3	2	
CO4	3			3	2	1							3	2	
CO5	3	3			2								3		
	3	3	0	3	2	1	0	0	0	0	0	0	3	2	0

Week	Lecture (3 Hour)	Practical (1 Hours)
Week		Matlab Programs to
1	Principle of Inclusion-Exclusion, Some operations of relations	understand types of relations
Week		Matlab programs to find
2	Compositions of Relations, Types of Relations, Equivalence classes	equivalence classes
Week		Matlab for functions, inverse
3	Functions – one-to-one – onto, Composition of functions– Inverse of a function.	of functions
Week		Matlab for Tautology and
4		Contradiction
	Propositions - Connectives, Tautology and contradiction	
Week		Matlab for Algebra of
5	Algebra of propositions, Conditional and bi-conditional propositions	Propositions
Week 6	Tautological implications ,Normal Forms, Disjunctive and conjunctive normal forms	Matlab for Disjunctive and

		conjuctive normal forms
Week 7	Principal disjunctive normal forms, Principal conjunctive normal forms	Matlab for PCNF and PDNF
Week		Matlab for Permutations and
8		combinations
	Permutations, Combinations	
Week		Matlab for generating
9	Recurrence relations, Particular solutions, Solutions of	functions
	recurrence relations using generating functions	
Week		Matlab for Lattices
10	Lattices, Properties of Lattices	
Week		Matlab for Lattices as
11		algebraic system
	Lattices as algebraic system, Sub lattices	
Week		Matlab for Boolean Algebra
12	Boolean algebra, Additional properties of Boolean algebra.	-
Week	Basic definitions - Degree of a vertex - Some special	Matlab for degree of a vertex
13	simple graphs, Matrix representation of graphs	
Week		Matlab for verifying Eulerian
14	paths, cycles and connectivity - Eulerian and Hamiltonian	and Hamiltonian graphs
	graphs, Connectedness in directed graphs	
Week		Matlab for Prim's algorithm
15	Trees – Spanning trees, Prim's algorithm – Kruskal's algorithm	and Krushkals algorithm
	argonumi.	

212INT2304	Object Oriented Programming Using Java	L	Т	Р	X
21211 12304	Object Oriented Programming Using Java	2	0	2	3
Prerequisite	Python for Programming and Product Development	(2110	CSE140	1)	
Course Category	Program Core				
Course	Integrated Course with Theory				
Туре					
Objective (s)	• To understand the basic Java Programming	skills	and o	bject (oriented
	programming concepts				
	• To know the working nature of Inheritances,	Packa	ages an	d Inter	faces
	• To examine the errors and to find the Handling and threads	soluti	on usi	ng Ex	ception
	• To apply the event handlers in the real time	scenar	ios		
	• To develop applications using Graphical Use	er Inter	rfaces		
	• To aggregate the advanced Java skills of Sw	ings			
	• To develop web applications using Java App	olets			
Course Outco	me(s).				
CO1	Know the basic knowledge and programming programming in Java	skills	of ob	ject o	riented
CO2	Apply the Inheritance, package and interface conc elevated applications	epts o	f Java	to dev	elop the
CO3	Apply the concepts of Multithreading and Exception and error free codes.	handli	ing to d	levelop	pefficient
CO4	Design event driven GUI and web related applica word scenarios.	tions	which	mimic	the real
CO5	Able to develop interactive programs using applets	and sw	vings		
CO6	Propose the use of certain technologies by imp programming language to solve the given problem.	lement	ting th	em in	the Java
CO7	To design and develop the stand-alone applications	as a te	am		

Mapping of COs with Pos															
COs	PO's	PO's										PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3			2		2	2				2		2	2	3
CO2	2	2		3								1	3	2	2
CO3				3	3								3	2	
CO4				2		3	3	2		2	2				
CO5	2	2	2	2			3		1						2
CO6										3					
CO7									3		3				
	3	2	2	3	3	3	3	2	2	3	3	2	3	2	3

UNIT I: OOP Basics

JAVA BASICS: Review of Object oriented concepts, History of Java, Java buzzwords, JVM architecture, Data types- Variables, Scope and life time of variables, arrays, operators, control statements, type conversion and casting, simple java program, constructors- methods, Static block, Static Data, Static Method, String and String Buffer Classes, Using Java API Document.

UNIT II: Inheritance, Packages and Interfaces

Basic concepts, Types of inheritance, Member access rules, Usage of this and Super key word, Method Overloading.- Method overriding, Abstract classes, Dynamic method dispatch, Usage of final keyword. Defining package, Access protection, importing packages; Defining and Implementing interfaces, and Extending interfaces.

UNIT III: Exception Handling, I/O and Multithreading

Concepts of Exception Handling - Benefits of Exception Handling Exception types, Usage of Try, Catch, Throw, Throws and Finally keywords- Built-in Exceptions, Creating own Exception classes, Input/Output: The I/O Classes and Interfaces, I/O Exceptions, Stream classes, Concepts of Thread, Thread life cycle- creating threads using Thread class and Runnable interface, Synchronization, Thread priorities, Inter Thread communication

UNIT IV: Event Handling

Events:Event Sources, Event Classes, Event Listeners, Delegation Event Model, Handling Mouse and Keyboard Events, Adapter Classes; **AWT:**The AWT Class Hierarchy, User Interface Components- Labels, Button, Canvas, Scrollbars, Text Components, Check Box, Check Box Groups, Choices, Lists Panels – Scrollpane, Dialogs, Menubar, Graphics, Layout Managers – Flow Layout, Border Layout, Grid Layout and Card Layout, Menu Bars and Menus.

UNIT V: GUI Programming with Swing

Swing:Introduction, Limitations of AWT, MVC Connection, Components and Containers, Exploring Swing:JLabel and ImageIcon, JTextField, The Swing Buttons- JButton, JToggleButton, Check Boxes and Radio Buttons, JTappedPane, JScrollPane, JList, JComboBox, Trees and JTable.Introducing Swing Menus- Menu Basics, Overview of JMenuBar, JMenu and JMenuItem, Create a Main Menu.

S.No	Experiments
1	Basic Java Programming
2	Programs using Objects and Classes
3	Programs using Array and String
4	Programs using Static data, Static block and Static Method
5	Programs using Inheritance
6	Programs using Interface
7	Programs using Exception Handling
8	Programs using Stream Classes
9	Programs using Multithreading
10	Programs using Event Handling
11	Programs using AWT
12	Programs using Swings and Swing Menus
13	Additional Experiments if any

TEXT BOOK

- 1. HerbertSchildt, TheCompleteReference-Java, TataMcGraw-HillEducation, TenthEdition, 2017
- PaulJ. Deitel, HarveyDeitel ,Java SE8forProgrammers (Deitel Developer Series) 3rd,Edition, 2014
- 3. Y.DanielLiang, IntroductiontoJavaprogramming-comprehensiveversion-TenthEdition,Pearsonltd 2015
- 4. E.Balagurusamy. "Programming with JAVA" A primer, Tata McGraw Hill Publication company, fourth edition, 2010

REFERENCES

- 1. PaulDeitel HarveyDeitel, Java How to Program, PrenticeHall;9th edition, 2011.
- 2. CayHorstmannBIG JAVA,4th Edition,JohnWileySons,2009
- 3. NicholasS.Williams, ProfessionalJava for WebApplications, Wrox Press, 2014
- 4. T. Budd (2009), An Introduction to Object Oriented Programming, Addison Wesley Longman, 2002

Course Chart: #Weeks	Lecture (3 Hours)	Pedagogy	Practical (2 Hours)	Pedagogy
Week 1	JAVA BASICS: Review of Object oriented concepts, History of Java, Java buzzwords, JVM architecture Data types- Variables, Scope andlife time of variables	Explicit Teaching Explicit Teaching PPT	Disseminate with Java Compiler and OOPS concepts	Study Experiment
Week 2	Arrays and operators Control statements Type conversion and casting, simple java program	PPT Explicit Teaching Explicit Teaching	Hands on session for Basic Java Programming	Demonstration
Week 3	Constructors- methods Static block, Static Data, Static Method String and String Buffer Classes, Using Java API Document.	PPT Explicit Teaching Explicit Teaching	Hands on session for Objects and Classes	Demonstration
week 4	Basic concepts, Types of	rr I	Hands on	Demonstration

Course Chart: #Weeks	Lecture (3 Hours)	Pedagogy	Practical (2 Hours)	Pedagogy
	inheritance Member access rules Usage of this and Super key word Method Overloading Method	Explicit Teaching	session for Array and String Hands on	
Week 5	overriding, Abstract classes, Dynamic method dispatch Usage of final keyword.	PPT Explicit Teaching PPT	session for Static data, Static block and Static Method	Demonstration
Week 6	Definingpackage,AccessprotectionImporting packagesImporting packagesDefiningandImplementinginterfaces, and Extending interfaces.	PPT PPT Explicit Teaching	Hands on session for Inheritance	Demonstration
Week 7	Concepts of Exception Handling - Benefits of Exception Handling Exception types Usage of Try, Catch, Throw, Throws and Finally keywords Built-in Exceptions	Explicit Teaching Explicit Teaching PPT	Hands on session for Interface	Demonstration
Week 8	Creating own Exception classes Input/Output: The I/O Classes and Interfaces	PPT PPT	Hands on session for Exception	Demonstration

Course						
Chart:	Lecture (3 Hours)	Pedagogy	Practical (2 Hours)	Pedagogy		
#Weeks						
	I/O Exceptions, Stream classes	Explicit Teaching	Handling			
	Concepts of Thread, Thread lifecycle	PPT		L		
Week 9	creating threads using Thread class and Runnable interface	PPT	Mid-semester examination-I	practical		
	Synchronization, Thread priorities,	Explicit				
	Inter Thread communication	Teaching				
	Events: Event Sources, Event Classes,	PPT	Hands on			
Week 10	Event Listeners, Delegation Event Model,	PPT	session for Stream Classes	Demonstration		
	Handling Mouse and Keyboard	Explicit				
	Events, Adapter Classes	Teaching				
Week	AWT: The AWT Class Hierarchy, User Interface Components- Labels, Button, Canvas	PPT	Hands on			
WEEK	Scrollbars, Text Components,	Explicit	session for	Demonstration		
11	Check Box, Check Box Groups	Teaching	Multithreading			
	Choices, Lists Panels – Scrollpane	Explicit Teaching				
Week 12	Dialogs, Menubar, Graphics, Layout Managers – Flow Layout,	PPT	Hands on session for	Demonstration		

Course Chart: #Weeks	Lecture (3 Hours)	Pedagogy	Practical (2 Hours)	Pedagogy		
	Border Layout, Grid Layout andCard Layout	РРТ	Event Handling			
	Menu Bars and Menus.	Explicit Teaching				
Week	Swing: Introduction, Limitations of AWT	PPT	Hands on	Demonstration		
13	MVC Connection	PPT PPT	AWT	Demonstration		
Week	Exploring Swing : JLabel and ImageIcon, JTextField, The Swing Buttons- JButton, JToggleButton	Explicit Teaching	Hands on session for	Demonstration		
14	JTappedPane, JScrollPane JList, JComboBox, Trees and JTable.	PPT PPT	Swings and Swing Menus			
	Introducing Swing Menus- Menu Basics	PPT				
Week 15	Overview of JMenuBar, JMenu and JMenuItem	Explicit Teaching	Mid-semester examination-II	practical		
	Create a Main Menu.	Explicit Teaching				

212INT2305		EN	MBEI	DDED	SYS	TEM		L		Т	P	Х	С
		TI	ECHN	IOLO	GY			2		0	2	0	3
Prerequisite	Digita	l Log	ic and	l Desig	gn(212	2INT2	301)						
Course	Progra	m Co	ore										
Category													
Course	Integra	Integrated Course with Theory											
Туре													
Objective(s)	 To introduce the Significance and the role of embedded system for automation. To understand the embedded system role in IOT and use it for application development. To observe the need for smart cities and systems To introduce the automotive embedded systems To observe the evolving trend in communication based automotive systems. 												
Course Outco	ome(s)												
CO1	Ability to understand hardware and software requirements in embeddedsystems.												
CO2	Ability	y to d	o deve	elop da	ata ma	nager	nent th	rough	clou	d inter	face	withpro	cessor
	techno	ology		•		U		U				Ĩ	
CO3	Learn	the d	evelop	oment	smart	syste	m solu	itions	and a	nalyse	issue	es.	
CO4	Ability	y to u	nderst	and th	e type	es of s	ensors	and E	Bus fo	r cont	rolim	plemen	tation.
CO5	Capac	ity t	o in	volve	con	ımuni	cation	cond	cepts	for	vehi	cle ap	plicatior
	develo	pmen	ıt.										
Mapping of C	Us with	Pos											
COs PO's		- 1				- 1			-	-	PS	O's	
CO 1 2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1 1 3											3		
CO2 3	2		3								2		
CO3 3	2		2		3				1			2	
CO4 2			2						1		2		
CO5							3					3	
1 3	2	0	2	0	3	0	3	0	1	0	2	3	0
Course Topic UNIT I EMB	(s) EDDEI) SYS	STEM	IS DE	SIGN		·		-			· · · · · · · · · · · · · · · · · · ·	

Overview of Embedded system - Design process in embedded system- CommunicationProtocols Embedded SOC- RTOS- Embedded product Development Life Cycle.

UNIT II INTRODUCTION TO 8051 MICROCONTROLLER

Introduction-8051 Architecture- Memory Organization- Internal RAM Structure- Stack Operation- Addressing Modes- Instruction Set- Assembler Directives; Assembly Language Programming Examples.

UNIT III 8051 HARDWARE AND INTERFACE

8051 Hardware- Introduction, Parallel ports, External Memory Interfacing- Program and Data Memory; Timers and Counters, Interrupts, Serial ports; 8051 Interface- Interfacing 8255 with 8051, 7-Segment display, Interfacing ADC and DAC, Interfacing Stepper Motor, Traffic Light Control.

UNIT IV EMBEDDED SYSTEM FOR IOT

Overview of IOT- Sensing- Actuation- IOT Networking- Communication protocols-data handling and analytics- cloud computing- Implementation of IOT with Raspberry pi- Industrial IOT.

UNIT V EMBEDDED SYSTEMS AND IOT APPLICATIONS

Embedded system for Smart Meter- smart Grid -Smart cities and smart homes, Agriculture and Healthcare, Energy auditing.

TEXT BOOKS:

- 1. Peckol, "Embedded system Design", JohnWiley&Sons, 2010
- 2. William B. Ribbens, Understanding Automotive Electronics, 6th edition, YES DEE Publishing Private Limited, 2011.
- 3. The Internet of Things: Enabling Technologies, Platforms, and Use Cases", byPethuru Raj and Anupama C. Raman (CRC Press), 1st Edition, 2017

REFERENCES:

- 1. Rajkamal, 'Embedded system-Architecture, Programming, Design', TMH,2011
- 2. Ronald k. Jurgen, Automotive Electronics Handbook, 2nd edition, McGraw-Hill, 2007.
- 3. Mehrdad Ehsani, 'Modern Electric, Hybrid Electric and Fuel cell vehicles', CRCPress Second edition 2011

Internet of Things: A Hands-on Approach", by Arshdeep Bahga and Vijay Madisetti (Universities Press) Research papers, 2014.

Week	Lecture (3 Hour)	Practical (1 Hours)
Week 1	Embedded systems, processor embedded into a system, embedded hardware units and devices in a system, embedded software in a system, examples of embedded systems	Installing of embedded software
Week 2	embedded SOC and use of VLSI circuitdesign technology, Complex systems design and processors, Design process in embedded system	Design an VLSI circuit in embedded software
Week 3	formalization of system design, design	Create a simple program using

	process and design examples, classification of	embedded software				
	embedded systems, skills required for an					
	embedded system designer					
Week 4	Introduction-8051 Architecture- Memory	Create an simple ALP using PIC				
	Organization- Internal RAM Structure- Stack	controller based on registers and				
	Operation	memories				
Week 5	Addressing Modes- Instruction Set-	Implement the interface programs				
	Assembler Directives	based on parallel ports and				
		interrupts.				
Week 6	Assembly Language Programming Examples.	Create a memory based ALP using				
		PIC.				
Week 7	8051 Hardware- Introduction, Parallel ports,	Draw a simple IoT design in				
	External Memory Interfacing- Program and	tinkercad.				
	Data Memory					
Week 8	Timers and Counters, Interrupts, Serial ports;	Implement these designs in				
	8051 Interface- Interfacing 8255 with 8051	tinkercad.				
Week 9	7-Segment display, Interfacing ADC andDAC,	Implement these designs in				
	Interfacing Stepper Motor, Traffic	tinkercad.				
	Light Control.					
Week 10	Functional Requirements - Components of IoT:	Create a simple designs based on				
	Sensors – Actuators – Embedded	sensors and actuators in tinkercad.				
	Computation Units – Communication					
	Interfaces					
Week 11	Software Development. RFID – ZigBEE –	Create a Bluetooth and ZigBEEbased				
	Bluetooth – Internet Communication- IP	design				
	Addresses - MAC Addresses					
Week 12	TCP and UDP – IEEE 802 Family of Protocols					
	– Cellular-Introduction to					
	EtherCAT.					
Week 13	Embedded system for Smart Meter	Implement the Embedded System				
Week 14	smart Grid -Smart cities and smart homes	Create a RFID based design and				
Week 15	Agriculture and Healthcare, Energy auditing.	security attacks in Bluetooth				

212IN	NT330)1	D	ATA CO	C MPU	OMM TER	IUNI(NETV	CATIO VORK	DN S	ANI)L 2	T 0	P 2	X 3	C 4	
Prere	auisit	e C	Derati	ing S	vstem	s Con	cepts ((212IN)	T230)2)	<u> </u>	v	-	<u> </u>	-	
Cour	se	P	Program Core													
Categ	gory															
Cours	se	I	Integrated Course with Theory													
Туре																
Obje	ctive(s	s) T	 The student will be able to learn Provide a detailed introduction to the basic principles andtechniques used in analog and digital communications. To know about analytical techniques to evaluate the performance 													
		 To provide students with an overview of the concepts and fundamentals of data communication and computer networks. 														
Cours	se Ou	tcom	e(s)													
C	201	II a	nspect nd its	the l secur	oasics ities	of da	ta cor	nmuni	cation	and y	variou	s cate	gori	es of 1	netwoi	ſks
C	202	Io 1a	dentify ayer	y the	techn	ologie	s for e	error fr	ee sea	cure tr	ansmi	ssion	of d	ata in	data li	nk
C	203	A e	Apply ntities	variou in N	is rou etwor	ting p k lave	rotoco r	ols to s	elect	optim	al patl	h and	relat	e addr	ressing	r
C	204	A	nalyz	e the	vario	us sec	urity r	orotoco	ols at	differe	ent lay	vers of	f OS	I archi	tectur	e
C	205	A	Analyz	e the	vario	us pro	tocols	in app	olicati	on lay	ver					
C	:06	U	Jnders	tand a	and aj	oply d	ifferer	nt netw	ork c	omma	nds u	sing p	acke	et trace	er	
C	207	Ai so co ii	nalyze olution ommur n both	and a throu throu thy the v	apply igh w vritter	the dif orking	fferent g as a t oral fo	rms	orking nd co	conce mmun	epts fo icate e	or impleffecti	leme vely	nting 1 with te	netwoi echnic	ːk al
Mapp	ing of	COs	with 1	Pos												
COs	PO's	5		T	-		-					-	PS	O's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3												3	2		
CO2	3												3	2		
CO3	3	2											3	2		
CO4	3	2		1									3	2		
CO5	3	2		1									3	2		
CO6	3				2							2	3	3	3	
CO7	3	3	3	2	3				3	3		3	3	3	3	
	3	2 3 1 3 3 3 3 2 3														
Cour	se To	pic(s)	·	-	- 	·	·		·		·					
Unit	I			-								-				
Data	Data Communication: History of Data Communication - Standards Organizations for Data															

Communication-Data Communication Circuits - Data Communication Codes - Error Detection and Correction Techniques - Data communication Hardware - serial and parallel interfaces. Pulse Communication: Pulse Amplitude Modulation (PAM) – Pulse Time Modulation (PTM) – Pulse code Modulation (PCM) - Comparison of various Pulse Communication System (PAM – PTM – PCM).

Unit II

Introduction: Networks, Uses of Networks, Network Topology, Transmission Modes - Network Hardware - Transmission technology - Categories of Networks - Network Software

- Protocol Hierarchy - Design issues for the layers – Services - Reference Model: TCP/IP and OSI - Internet: Architecture of Internet - Physical Layer: Need and Issues, Data Communication, Guided transmission media, Wireless Transmission, Communication Satellites, Multiplexing and Switching.

Unit III

DLL: Need and Issues - Error Detection and Correction - Protocol Verification and Data Link Layer protocols - MAC Sub layer - Channel Allocation Problem - Multiple Access Protocols - Ethernet - Wireless LANs and VLAN - Data Link Layer Switching - Connectivity Devices - Configuration of Switches.

Unit IV

Network Layer - Need and Issues - Routing algorithms - Congestion Control Algorithms – QOS - Network Layer in Internet - Network Addressing - Configuration of Router - ARP and RARP. **Unit V**

Application Layer - Need and Issues - DNS - Electronic Mail - FTP - HTTP - WWW - RPC - RMI.

List of Experiments:

- 1. Study of Socket Programming
- 2. Socket Programming for Client-Server Communication
- 3. Configuration of Switch
- 4. Implementation of ARP
- 5. Implementation of RARP
- 6. Configuration of Router
- 7. Enable Client Server Communication using TCP Protocol
- 8. Implementation of Client Server communication using UDP Protocol
- 9. Implementation of FTP client
- 10. Download a File from HTTP Server
- 11. Implementation of Port Scanning

TEXT BOOKS:

1. Andrew S Tenenbaum, David J. Wetherall, "Computer Networks", Fifth Edition Pearson Education, 2011

REFERENCE BOOKS:

- 1. Behrouz A. Forouzan, "Data Communications and Networking", Fiftth Edition, McGraw-Hill, 2012
- 2. Larry Peterson, Bruce Davie, Morgan Kaufmann, "Computer Networks A Systems Approach", Fifth Edition, 2011
- **3.** Todd Lammle, "CCNA Cisco Certified Network Associate Study Guide", 7th Edition, 2011

B. S. Manoj, C. Siva Ram Murthy, "Ad Hoc Wireless Networks Architectures and Protocols", Prentice Hall, 2004

Week	Lecture (2 Hour)	Practical (2 Hours)	X-Component (3 Hours)
Week	Introduction: Networks, Uses	Study of different types of	
1	of Networks, Network	network cables	Impact of Networks in Day
	Topology, Transmission		today life, Researching
	Modes - Network Hardware.		Converged Network Services.
	Transmission technology -		
	Categories of Networks		
Week	Network Software - Protocol	Study of various networking	
2	Hierarchy - Design issues for	devices	
	the layers – Services.		
	Reference Model: TCP/IP and		
	OSI - Internet: Architecture of		Packet Tracer - Help and
	Internet - Physical Layer:		Navigation, Network
	Need and Issues. Computer		Representation, Exploring
	Security Concepts The OSI		internetworking devices
	Security Architecture Security		
	Attacks Socurity Services		
	Attacks, Security Services,		
	Security Mechanisms, A Model		
XX 7 1	for Network Security.		
Week	Data Communication, Guided	Study of Basic Network	
3	transmission media, Wireless	Configuration Commands	FTP Servers,
	Setellites Multipleving and	Configuration Commands	
	Switching		
Wook	DLL: Need and Issues Error	Checking Laver 2	
A	Detection and Correction -	functionality using packet	
-	Protocol Verification and Data	tracer	Wah and Email Exploring
	Link Laver protocols MACSub		Wireshark
	laver - Channel Allocation		
	Problem - Multiple Access		
	Protocols – Ethernet		
Week	Wireless Network Security -	Checking Layer 3	
5	Wireless Security, IEEE	functionality using packet	DUCD
	802.11 Wireless LAN	tracer	DHCP
	Overview, IEEE 802.11i		
	Wireless LAN Security		
Week	Wireless LANs and VLAN -	Network Protocol analysis	
6	Data Link Layer Switching -	a. Capture and Analyze TCP	
	Connectivity Devices -	Segment.	DNS Servers
	Configuration of Switches	Datagram	
		c. Capture and Analyze IP	
		Packets	
Week	Network Layer - Need and	Network Protocol analysis:	
7	Issues - Routing algorithms.	a. Capture and Analyze	Investigating the TCD/ID and
	Network Access Control,	ICMP Packets.	OSI Models in Action
	Extensible Authentication	b. Capture and Analyze	osi models in Action
	Protocol, IEEE 802.1X Port-	ARP frame	
	Based Network Access		

	Control		
Week 8	CongestionControlAlgorithms – QOS - NetworkLayer in Internet	Domain Name Service	Configuring a Linksys router
Week 9	Network Addressing - Configuration of Router - ARP and RARP.	HTTP download Perform an experiment for port scanning with Nmap, Superscan or any other Software	Configure layer 3 switches
Week 10	Transport Layer - Need and Issues - Transport service -	ImplementthefollowingSUBSTITUTION&TRANSPOSITION	Identify MAC & IP Addresses, configure a small LAN
Week 11	Elements of Transport Protocols - Simple Transport Protocol - TCP and UDP	TECHNIQUES concepts: a. Caesar Cipher b. Playfair Cipher c. Hill Cipher d. Vigenere Cipher	Managing the Medium, Examine the ARP Table, Configuring Secure Passwords and SSH
Week 12	Transport-Level Security - Secure Sockets Layer, Transport Layer Security, Secure Shell (SSH).	Implement the following algorithms a. DES b. RSA Algorithm	Connecting a Wired and Wireless,
Week 13	Application Layer - Need and Issues – DNS	d. MD5 e. SHA-1	Scenario 1
Week 14	Electronic Mail – FTP – HTTP – WWW - RPC - RMI	Checking Layer 2 functionality using packet tracer. c) Configure Spanning Tree Protocol, d) Configure ARP and MAC Table.	Scenario 2
Week 15	HTTPS, DHCP Security, Web Security.	Checking Layer 2 functionality using packet tracer. a) Topologies - Ring Topology, Mesh Topology	Scenario 3

212IN	NT23		Artificial Intelligence							L	Т	Р	X	С	H	
08							U			2	0	2	0	3	4	
Prere	equisi	Da	ta Str	ucture	es and	Algo	rithms	s (212	INT23	03)						
te																
Cour	se	Pro	ogram	Core												
Categ	gory															
Cour	se	Int	egrate	ed Cou	urse w	vith Tl	heory									
Туре																
Obje	ctive(•	То	under	stand	the ba	asic co	oncept	s in A	Ι						
s)		•	То	under	stand	vario	us sea	rch te	chniqu	les in	proble	em sol	ving			
		•	То	under	stand	prope	osition	al log	ic, fir	st logi	c and	their	appli	cation	8	
		•	То	under	stand	vario	us lea	rning	techni	ques						
Cour	se Ou	tcom	e(s)													
C	01	Ex	plain	the fo	oundat	ion a	nd his	story o	of Arti	ficial	Intelli	gence	as w	ell as	scienc	ce
		of	Agent	t desig	gn.											
C	02	Illu	istrate	the	use o	of pro	blem	solvir	ng tecl	nnique	s suc	h as t	the va	arious	searc	h
	~ ~	me	thods	, gan	nes an	d con	straint	t satist	action	probl	ems.					
C	03	De	mons	trate A	Al's u	se of l	knowl	ledge 1	represe	entatio	on thro	ough le	ogic a	igent a	nd fir	st
	0.4	orc	ter log	gic to	addre	ss the	Al pr	oblem	l.				1 1		1.	
C	04	De	signsi	mples	softwa	retoey	kperin	nentwi	thvari	ousAl	conce	eptsanc	lanaly	zeresi	ilts.	
C	05	Bu	ildsel	t-	1.	-1-11-4	. 1 1.	1	-1-1 4				. /1			
		lea	rning	andres	search	skillst	obeab	letota	ckleato	opicofi	interes	stonnis	s/hero	wnora	spart	
Mana	· · · · ·			D												-
Mapp	oing of	COs	With	Pos									Dat			_
COs	PO's	5		Т	1		-1	-1	-1	1		1	PSC)´s		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1	3												2		
CO2		3	2		3								3			1
CO3		3	2		2		3					1	3	3	2	1
CO4		2			2						3	1	2	3		
CO5									3		3		3	3		
	1	3	2	0	2	0	3	0	3	0	3	1	3	3	2	1
Cour	se To	pic(s)		1			1	1								

UNIT I

Intelligent Agents – Agents and environments, Goodbehaviour, The nature of environments-The structure of agents. ProblemSolving- problemsolving agents, example problems, search for solutions, uniformed search strategies.

UNIT II

Informedsearchandexploration–Informedsearchstrategies, heuristicfunction–, localsearch algorithmsandoptimisticproblems. Constraintsatisfactionproblems(CSP)-Backtrackingsearchand LocalsearchforCSP, The Structure ofproblems- AdversarialSearch-Games,Optimaldecisions in games , Alpha – Beta Pruning

UNIT III

Logical Agents- Knowledge based agents, Propositional logic, Reasoning patterns in Propositional logic- Firstorderlogic–Syntaxandsemanticsforfirstorderlogic- Using firstorderlogic, Knowledgeengineeringinfirstorderlogic

UNIT IV

InferenceinFirstorderlogic- prepositionalversusfirstorder logic, unificationandliftingforwardchaining-backward chaining – Resolution.- Ontological Engineering, Categories and Objects, Actions, Situations and Events.

UNIT V

Learningfromobservations-Formsoflearning,Inductivelearning,Learningdecisiontrees, Ensemble learning,Knowledgeinlearning- Logicalformulationoflearning, Explanation basedlearning,Learningusingrelevantinformation, Inductivelogicprogramming- Statistical learningmethods-Learningwithcompletedata-Learningwithhiddenvariable

ТЕХТВООК

1. StuartRussell,PeterNorvig,"ArtificialIntelligence–AModernApproach",2ndEdition, Pearson Education / Prentice Hall of India, 2004.

REFERENCES

- 1. Nils J. Nilsson, "Artificial Intelligence: A new Synthesis", Harcourt Asia Pvt. Ltd., 2000.
- 2. ElaineRichandKevinKnight, "ArtificialIntelligence", 2ndEdition, TataMcGraw-Hill, 2003.
- 3. GeorgeF.Luger, "ArtificialIntelligence-StructuresandStrategiesforComplexProblem Solving", Pearson Education / PHI, 2002

List of Experiments:

S.No Name of the Experiment

- 1 Study of Prolog.
- 2 Write simple fact for the statements using PROLOG.
- 3 Write predicates One converts centigrade temperatures to Fahrenheit, the other checks if a temperature is below freezing.
- 4 WAP to implement Factorial, Fibonacci of a given number.
- 5 Write a program to solve 4-Queen problem.
- 6 Write a program to solve 8 queens problem
- 7 Write a program to solve traveling salesman problem.
- 8 Write a program to solve water jug problem using LISP
- 9 Solve any problem using depth first search.
- 10 Solve any problem using best first search.
- 11 Solve 8-puzzle problem using best first search
- 12 Solve Robot (traversal) problem using means End Analysis

Week	Lecture (2 Hour)	X-Component (3 Hours)			
Week 1	Intelligent Agents – Agents and environments,	Basics of Turbo Prolog			
	Goodbehaviour, The nature of environments				
Week 2	The structure of agents. Problem Solving	Program to categorize			
		animal characteristics.			
Week 3	problem solving agents, example problems, search	Implement the uninformed			
	for solutions, uniformed search strategies.	search strategies.			
Week 4	Informed search and exploration – Informed search	Solve the CSP problems.			
	strategies, heuristic function –, local search algorithms				
	and optimistic problems. Constraint				
	satisfaction problems (CSP)				
Week 5	Backtracking search and Local search for CSP, The	Write a program to solve			

	Structure of problems	traveling salesman problem.
Week 6	Adversarial Search - Games , Optimal decisions in games , Alpha – Beta Pruning	Implement the Alpha and Beta pruning.
Week 7	Logical Agents- Knowledge based agents, Propositional logic, Reasoning patterns in Propositional logic	Implement the Proportional logic problems
Week 8	First order logic –Syntax and semantics for first order logic	Implement the first order logic syntax, semantics and
Week 9	Using first order logic, Knowledge engineering in first order logic	their knowledge engineering
Week 10	Inference in First order logic – prepositional versus first order logic, unification and lifting	Program to demonstrate family relationship.
Week 11	forward chaining – backward chaining – Resolution.	Implement the forward and backward chaining
Week 12	Ontological Engineering, Categories and Objects, Actions, Situations and Events.	Implement the objects and actions in family relationships.
Week 13	Learning from observations - Forms of learning , Inductive learning ,Learning decision trees , Ensemble learning , Knowledge in learning	Implement the Ensemble learning
Week 14	Logical formulation of learning, Explanation based learning ,Learning using relevant information, Inductive logic programming	Solve Robot (traversal) problem using means End Analysis
Week 15	Statistical learning methods - Learning with complete data - Learning with hidden variable	

212INT2306	INFORMATIONSTORAGEMODELINGLTPXAND RETRIEVAL2023
Prerequisite	Nil
Course Category	Professional Elective
Course Type	Integrated Course with Theory
Objective(s)	 Understand Storage Area Networks characteristics and components. Describe the challenges associated with data center networking and the need for switch network convergence. Storage Area Networks including storage architectures, logical and physical components of a storage infrastructure, managing and monitoring the data center. Describe the business continuity and disaster recovery in a storage infrastructure. Describe the different backup and recovery topologies and their role in providing disaster recovery and business continuity capabilities. Identify key areas to monitor in a data center for different components in a storage
Course Outco	me(s)
CO1	Identify and describe the functions to build data center networking for switch network
CO2	Discuss different types of logical and physical components of a storage infrastructure
CO3	Understand the importance of fiber Channel protocols and how to communicate with each other and the benefits of the different network storage options for different application environments
CO4	Identify single points of failure in a storage infrastructure and list solutions
CO5	Identify and analyzes the common threats in each domain

Mapp	ing of	f COs	with	Pos											
COs	PO's	8											PSO	's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3		3										3		
CO2	1	3				3					3		3	3	
CO3	1			3			3			3			3		
CO4	1	3	3	3					3				3		2
CO5	1	3	3								3			3	
	2	3	3	2	0	3	3	0	3	3	3	0	3	3	2

Week	Lecture (2 Hour)	Practical (2 Hours)	X-Component (3 Hours)			
Week 1	File Systems – Database	Study of different	1. Case Study:			
	Systems – Levels of	database models	Oracle DB,			
	Abstraction - Schema		MySQL/MongoDB,			
	and Instances – Data		MS Access,			

	Models – Relational		MS Sql ServerPostgreSQL
	Model: Structure of		
	relational model	~	2. Analyse a DB Design
Week 2	Schema-instance	Create a relational	project, find its requirements
	distinction - keys –	structure for a data base	
	relational query language	system	
Weels 2	- relational algebra	Less have at DDI	Use the DD Designation of the second second
week 5	SQL - Data definition	implement DDL	Use the DB Projectrequirements
	manipulation language	constraints (keys) to	and keys
	(DML)	create/alter/drop tables	and Keys.
		create, aren arop tables	
		Use DML commands to	
		operate on the databases	
		(insert/update/delete)	
Week 4	Data retrieval (clauses -	Use data retrieval	Use Data retrieval commands
	joins – set operators –	commands with SQL	and DCL commands to retrieve
	aggregate functions - sub	a. SELECT clause	data from the database Project
	queries)	b. WHERE clause	
		d. ORDERBY	
		e. WITH clause	
		f. Aggregate functions	
Week 5	Transaction control -Data	Use DCL to grand and	
	control language (DCL) –	revoking permissions on	
	integrity constraints -	tables and database	
	views – sequences –		
	indexes –		
Week 6	synonyms	Implement Stored	
WEEK U	- triggers	procedures and functions	
Week 7	Entity-Relationship	Create ER diagrams.	Create ER diagram for the Project
	Model – Attributes –	analyse functional	6
	keys – design issues -	dependencies and	
	Functional Dependencies	decompositions	
	– Non-Loss		
	Decomposition		
	Functional Dependencies		
Week 8	First Normal Form –	Normalization case	Apply normalization on the DB
	Second Normal Form –	studies	Project
Weelr 0	Dependency Dressmustics	Normalization	
week 9	– Boyce/Codd Normal	studies case	
	Form – Multi-Valued	Studies	
	Dependencies and Fourth		
	Normal Form – Join		
	Dependencies and Fifth		
	Normal Form		
Week 10	Physical Storage Media -	Study the recent RAID	Use the DB project to apply
	RAID - File Organization	models provided by OS	indexing, hashing technique

	– Organization of	and DB	and analyse the query execution
	Records in Files		speed with the DB
Week 11	Indexing and Hashing –	Use index and hash with	
	Ordered Indices – B+ tree	tables	
	Index Files Static Hashing		
	– Dynamic		
	Hashing		
Week 12	Query Processing	Use catalogue with tables	
	Overview – Catalog		
	Information for Cost		
	Estimation – Query		
	Optimization.		
Week 13	Transaction Concepts –	Transaction management	Analyse the DB for transaction
	Transaction Recovery –	Study	management, use TCL tomanage
	ACID Properties		the DML commands
Week 14	Need for Concurrency	Study of TCL commands	
	Control - Schedule and		
	Recoverability-		
	Serializability and		
	Schedules		
Week 15	Concurrency Control –	Handle DML through	
	Types of Locks-	transaction control	
	Deadlock Handling-Time	queries	
	Stamp based Concurrency		
	Control – Recovery		
	Techniques - Immediate		
	Update -Deferred Update		
	-		
	Shadow Paging.		

212INT2307	SOFTWARECONSTRUCTIONANDLTPXMANAGEMENT3020							
Prerequisite	Nil							
Course	Program Core							
Category								
Course Type	Theory with Practical							
Objective(s)	• This course helps to understand theories, methods, and technologies applied for professional software development.							
	 To learn how the requirements for the software project is extracted from customers. To learn how design and testing are carried out for a project and also how the software is budgeted. 							
CO1	Analyze and identify an appropriate process model to develop a given project							
CO2	Understand the importance of requirements engineering process							
CO3	Understand the design concepts and different real time systems and translate requirements in to design document							
CO4	Knowledgeable to choose and conduct required testing activity for the given project							
CO5	Understand how the project budget is estimated based on measures and metrics.							

Mapp	ing of	f COs	with	Pos											
COs	PO's	s											PSC)'s	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1		3					3					1		
CO2		2	3			2	3				3			3	
CO3		3	1			3									2
CO4					3					3				2	
CO5							3				3		1		
	1	3	2	0	3	3	3	3	0	3	3	0	1	3	2

Week	Lecture (3 Hour)	Practical (1 Hours)
Week	What is Software? How it is getting developed	How to use Rational Rose software?.
1	(Phases).Discussion on different software	Introduction to UML diagrams.
	development life cycle models.	
	Course Highlights.	
Week	Comparison of various life cycle models. How	Problem discussion and
2	to justify the selection of particular SDLC	Preparation of SRS Document.
	model for a given project.	
Week	Discussion on most popular SDLC model used	Preparation of Project Plan based on SRS.
3	currently in the industry	

Week	How to gather/extract requirements from	Develop an Use case diagram for a project
4	customers	
Week	The steps involved in requirements gathering	Develop an Entity Relationship diagram for a
5	engineering process.	project
Week	How to validate and manage the requirements	Develop a Data flow diagram for a project
6		
Week	What is the condition for best design?	Develop a Sequence diagram for a project
7		
Week	How to choose the architectural styles for a	Developing a software
8	given project.	
Week	Discussion on some real time system design.	Writing test cases based on SRS
9		
Week	Devising a strategy to test the developed	Test bed setup.
10	software.	Perform Smoke and Sanity Test
Week	How a developer can test the software	Executing the test cases
11		
Week	How to perform System testing? and How to	Preparing a Bug report
12	manage the different software versions?.	
Week	How software cost is estimated?	Debugging
13		
Week	How to make Risk Management Plan and	Performing regression test and retest
14	Mitigation Plan.	
Week	How to speed up the software development	Demo of a Project
15	process?.	

TEXT BOOKS

1.1. Roger S. Pressman, "Software Engineering: A Practitioner's Approach", seventh Edition, Mc-Graw Hill, 2014.

REFERENCE BOOKS

1. Steve McConnell, "Code Complete", Second Edition, Microsoft Press.2004

2. Ian Somerville, "Software Engineering", Addison-Wesley, Ninth edition, 2011.

3. Richard E. Fairley, "Software Engineering Concepts", Second Edition McGraw-Hill, 1985.

212INT2102	Cyber Security and Forensics						L	Т		Р	X				
		3 0									0	0 0			
Prerequisite	Nil														
Course	Progr	am Co	ore												
Category	Theor	AX 7													
Type	Theor	y y													
Objective(s)		• Understand Keyterms and concepts in Cryptography.													
		• To	be al	ole to s	ecure	a mess	sage o	ver ins	secure	chan	nel by	vario	us mea	ıns.	
		• To	lear	n abou	ıt hov	v to m	ainta	in the	Conf	identi	ality.	Integ	rity ar	ıd	
		Av	ailab	ility o	f a da	ta.					J ,	0	5		
CO1	Under	stand th	ne bas	sic con	cepts c	of secu	rity, co	ompute	er crim	e and	attack	s.			
CO2	Learn	securit	y poli	cies an	d fore	nsics c	omput	ation.							
CO3	Analy	ze the	crim	es and	secu	rities /	attacl	ks							
CO4	Implement the securities.														
CO5	Discover the issues and forensics data.														
Mapping of G	COs with	n Pos												Т	
COs PO's											PSG	D's			
CO 1	2 3	4	5	6	7	8	9	10	11	12	1	2	3	1	
CO1 3	2				2				1		2				
CO2 3	3 1			2		2				2	2				
CO3 3	3 3	1	2				2	2	1			1]	
CO4 3	3 3			1	1				2	1			2		
CO5 3	1 2		2	2		1	1			2	2	1			
3 2	2	1	2	2	2	2	2	2	1	2	2	1	2		

Course Topic(s)

UNIT I

History of Internet- Cyber Crime- Information Security- Guidelines to choose web browsers-Securing web browser- Antivirus- Email security- Guidelines for setting up a Secure password-Two-steps authentication- Password Manager- Wi-Fi Security.

UNIT II

Guidelines for social media security- Tips and best practices for safer Social Networking-Basic Security for Windows- User Account Password- Trojans and backdoors-Sniffers and Keyloggers-Honeypot

UNIT III

Introduction to mobile phones- Smartphone Security- Android Security- IOS Security- Online Banking Security- Mobile Banking Security- Security of Debit and Credit Card- UPISecurity - Security of Micro ATMs- e-wallet Security Guidelines- Security Guidelines for Point of Sales(POS)

UNIT IV

Introduction to Forensic Tools, Usage of Slack space, tools for Disk Imaging- Data Recovery, Encase and FTK tools, retrieving information- process of computer forensics and digital investigations, processing of digital evidence, digital images.

UNIT V

Mobile Forensics-Imaging/Cloning-Analysis & Examination, Reporting- SIM card Forensics, Imaging and Analysis and Reporting – Faraday Bag-and data recovery- retrieving deleted data: desktops, laptops and mobiles, retrieving data from slack space, renamed file, ghosting, compressed files.

TEXT BOOKS

1. 1. Roger S. Pressman, "Software Engineering: A Practitioner's Approach", seventh Edition, Mc- Graw Hill, 2014.

REFERENCE BOOKS

1. Steve McConnell, "Code Complete", Second Edition, Microsoft Press.2004

2. Ian Somerville, "Software Engineering", Addison-Wesley, Ninth edition, 2011.

3. Richard E. Fairley, "Software Engineering Concepts", Second Edition McGraw-Hill, 1985.

Week	Lecture (3 Hour)	X-Component (3)
Week	History of Internet- Cyber Crime-	How to secure our personal Information?
1	Information Security	List suitable applications for the same and
		have a practice on it.
Week	Guidelines to choose web browsers- Securing	How to choose the suitable web browser
2	web browser- Antivirus- Email security	for our personal use?
Week	Guidelines for setting up a Secure password-	Show different password cracking
3	Two-steps authentication- Password Manager- Wi-Fi Security.	mechanisms And explain how to create a secure password?
Week	Guidelines for social media security- Tipsand	How our Identity is stolen in the social
4	best practices for safer Social	media? How to prevent it?
	Networking	
Week	Basic Security for Windows- User Account	How to crack windows password?
5	Password	
Week	Trojans and backdoors-Sniffers and	How to steal others confidential
6	Keyloggers-Honeypot	information? How to prevent it?
Week	Introduction to mobile phones- Smartphone	What are secure mobile settings?
7	Security- Android Security	Do you know what type of informationcan
		be extracted from mobile phone?
Week	IOS Security- Online Banking Security-	How debit card frauds are happening?How
8	Mobile Banking Security- Security of Debit	to prevent it?
	and Credit Card	
Week	UPI Security - Security of Micro ATMs- e-	What is the problem in POS? How people
9	wallet Security Guidelines- Security	are losing their money? How to prevent it?
	Guidelines for Point of Sales(POS)	
Week	Introduction to Forensic Tools, Usage of	Download FTK Imager and Install it in a
10	Slack space, tools for Disk Imaging	system. Use pen drive as evidence.
Week	Data Recovery, Encase and FTK tools,	Use encase tool and extract information
11	retrieving information	from any evidence
Week	process of computer forensics and digital	How investigations can be done on
12	investigations, processing of digital evidence,	particular evidence?

	digital images.			
Week	Mobile Forensics-Imaging/Cloning-Analysis	Take mobile phone as evidence and clone		
13	& Examination, Reporting	it using forensics tools?		
Week	SIM card Forensics, Imaging and Analysisand	How to study the SIM card details?		
14	Reporting – Faraday Bag-and data			
	recovery			
Week	retrieving deleted data: desktops, laptops and	What is hashing? How it will be useful in		
15	mobiles, retrieving data from slack space,	the forensic study?		
	renamed file, ghosting, compressed files.			

INT21RXXX	DATA SCIENCE AND DATAL T P X C H VISUALIZATION 2 0 2 3 4 7								
Prerequisite	Information Storage, Modelling and Retrieval (212INT2306)								
Course Category	Program Core								
Course Type	Integrated Course with Theory								
Objective(s)	 The student will be able to learn Students will develop relevant programming abilities. Students will develop the ability to build and assess data-based models. Students will demonstrate skill in data management. Students will apply data science concepts and methods to solve problems in real-world contexts and will communicate these 								
Course Outcome(s)									
CO1	Demonstrate proficiency with statistical analysis of data.								
CO2	Develop the ability to build and assess data-based models.								
CO3	Execute statistical analyses with professional statistical software.								
CO4	Demonstrate skill in data management .								
CO5	Apply data science concepts and methods to solve problems in real- world contexts and will communicate these solutions effectively								

Mapping of COs with Pos															
COs	PO's								PSO's						
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3				3								3		
CO2		3	3				3							3	
CO3			2	2	3							1	2		
CO4			2	2				3						2	
CO5										3		1			1
	3	3	2	2	3	0	3	3	0	3	0	1	3	3	1

Week	Lecture (2 Hour)	Practical (2 Hours)	X-Component (3 Hours)			
Week 1	Introduction to Data	Introduction to R tool for	Introduction to R tool fordata			
	collection and Management,	data science	science			
	Data science process,	data science				
	Sources of data					
Week 2	Data collection and APIs,	Perform Data exploration	Basics of R programming			
	Exploring and fixing data	and preprocessing in				
		Python				
Week 3	Data storage and	Perform data analysis				
	management, using multiple	from multiple data				
	data sources	sources				

Week 4	Univariate Statistics :	Perform Univariant	MapReduce application for
	Understanding the uses of	statistics using R	word counting on Hadoop
	measures of locations,	_	cluster
	dispersion and shapes for		
	univariate data sets using		
	numerical values		
Week 5	Multivariate Statistics:	Perform multivariant	K-means clustering using
	Covariance – Correlations:	statistics using R	map reduce in Hadoop
	Pearson, Kendall and	_	
	Spearman Correlations –		
	Covariance matrix-Partial		
	and Multiple correlations in		
	general case		
Week 6	using numpy and scipy	Data analysis using	Graph Analytics Use Cases
	packages, using pandas and	python	
	linalg packages		
Week 7	Simple and multiple bar	Data visualization usingR	
	charts – Histograms –	_	
	Boxplots – Density plots –		
	Violin pots - Beesworm		
	plots, Scatter plots		
Week 8	Creating heatmaps -	Working with heatmaps	Real time AnalyticsPlatform
	drawing conclusions and		
	understanding the nature of		
	data		
Week 9	Python packages like	Working with python	
	matplotlib, seaborn etc for	packages	
	data visualization		
Week 10	Inferential Statistics :	Implementation of	Unstructured data into
	Testing of statistical	Inferential statistics	NoSQL data and do all
	hypothesis – Learning the		operations such as NoSQL
	formulation of null and		query with API
	alternative hypothesis for		
	various situations		
Week 11	Understanding the		
	significance of p-values –		
	Confidence intervals Testsof		
	significance related to		
XX 1 12	mean	***	
Week 12	including one way ANOVA	Working on ANOVA	Big data for blogs
	and the significance of	tool	
	correlation -Confidence		
W1-12	Intervals	Dete et l' d' 1	
week 13	visualization of volumetric	Data visualization and	
	and simulations	sinulations	
West 14	And Simulations	Chudru of CIC	Decommentation Off
week 14	visualization of maps,	Study of GIS systems for	Recommendation Systems
	sustants	uata analysis	using Hadoop libraries
Week 15	systems	Study of collaborative	
week 15	evoluting visualizations,	visualization	
	evaluating visualizations	visualization	
PROFESSIONAL ELECTIVES

COMPUTER PROGRAMMING

213INT2306	SYSTEM SOFTWARE	L 3	T 0		P 2	X 0	C 4	Н 5
Prerequisite	Computer Organization and Assembly Langua	ige Pro	ogran	nn	ning	(212	INT	101)
Course Category	Professional Electives							
Course Type	Integrated Course with Theory							
Objective(s)	 To introduce the essential concepts of To know about the functions of loaders 	Syster s, linke	n Pro ers an	ogr nd	amı ma	ning crop	roces	sors.
Course Outcom	ne(s)							
CO1	Know the background Knowledge of System	Softwa	are					
CO2	Design a simple Assembler							
CO3	Identify the use of Linkers and Loaders							
CO4	Understand Machine Independent Macro Proc	essor						
CO5	Formulate various Compilers and Interpreters							

Mapp	ing of	COs	with l	Pos									
COs	PO's	5									PSO	's	
CO	1	2	12	1	2	3							
CO1	1	3		2									
CO2		1				3		2		3		1	
CO3		3				2		3					2
CO4		3				2						3	
CO5		1				1		3			2		

Course Topic(s)

UNIT 1: BACKGROUND

 $\label{eq:Introduction-System Software and Machine Architecture - The Simplified Instructional Computer (SIC) - Machine architecture - Data and instruction formats - addressing modes - instruction sets - I/O and programming. Practical: Basic system programming$

UNIT 2 : ASSEMBLERS

Basic Assembler Functions – Machine Dependent Assembler Features – Machine Independent Assembler Features – Program relocation - Machine independent assembler

features - Literals -

Symbol-defining statements – Expressions - One pass assemblers and Multi pass assemblers - Implementation example - MASM assembler. Practical: Assembly languageprogramming

UNIT 3: LOADERS AND LINKERS

Basic loader functions - Design of an Absolute Loader – A Simple Bootstrap Loader -Machine dependent loader features - Relocation – Program Linking – Algorithm andData Structures for Linking Loader - Machine-independent loader features - AutomaticLibrary Search – Loader Options - Loader design options - Linkage Editors – DynamicLinking – Bootstrap Loaders - Implementation example - MSDOS linker. Practical: Dynamic link programming

UNIT 4: MACRO PROCESSORS

Basic macro processor functions - Macro Definition and Expansion – Macro Processor Algorithm and data structures - Machine-independent macro processor features - Concatenation of Macro Parameters – Generation of Unique Labels – Conditional Macro Expansion – Keyword Macro Parameters-Macro within Macro-Implementation example - MASM Macro Processor – ANSI C Macro language. Practical: Macro implementation

UNIT 5: SYSTEM SOFTWARE TOOLS

Text editors - Overview of the Editing Process - User Interface – Editor Structure. - Interactive debugging systems - Debugging functions and capabilities – Relationship withother parts of the system – User-Interface Criteria. Practical: User interface design

TEXT BOOK

1. Leland L. Beck, "System Software – An Introduction to Systems Programming", 3rd Edition, Pearson Education Asia, 2006.

- 1. J. Nithyashri, "System Software", Tata McGraw Hill, 2nd Edition, 2010.
- 2. A.A. Puntambekar, I. A. Dhotre, "System Programming", McGraw Hill, 2008.

212INT1102	OBJECT ORIENTED ANALYSIS	L	Т	Р	X	С	H
2131111102	AND DESIGN	3	0	0	0	3	3
Prerequisite	Nil						
Course	Professional Elective						
Category							
Course	Theory						
Туре							
Objective (s)	• To know about OOAD method						
	• To know about software design steps						
Course Outco	ome(s)						
CO1	Pointing out the importance and function of ea	ach UN	ML r	node	el thro	oughou	t the
	process of object-oriented analysis and design	n and	expl	ainii	ng the	e notati	ion of
	various elements in these models						
CO2	Highlighting the importance of object-oriented	analys	sis ai	nd d	esign	pattern	IS
CO3	Providing students with the necessary knowle	edge ai	nd sl	kills	in us	sing ob	ject-
	oriented CASE tools	-				-	-
CO4	Applying Design Patterns in software developm	nent p	roces	ss			
CO5	Familiar with various coding and testing proce	SS					

Mapp	ing of	COs	with 1	Pos										
COs	PO's	5										PSO	's	
CO	1	2	12	1	2	3								
CO1		3	3	1	2									
CO2		3	2		3								1	
CO3		3	3		2									2
CO4					3	3					1		3	
CO5		2	2				3		1			2		

Course Topic(s)

UNIT 1 : UML DIAGRAMS

Introduction to OOAD – Unified Process - UML diagrams – Use Case – Class Diagrams– Interaction Diagrams – State Diagrams – Activity Diagrams – Package, component and Deployment Diagrams

UNIT 2 : DESIGN PATTERNS

GRASP: Designing objects with responsibilities – Creator – Information expert – Low Coupling – High Cohesion – Controller - Design Patterns – creational - factory method - structural – Bridge – Adapter -behavioral – Strategy – observer

UNIT 3 : CASE STUDY

Case study – the Next Gen POS system, Inception -Use case Modeling - Relating Use cases – include, extend and generalization - Elaboration - Domain Models - Finding conceptual classes and description classes – Associations – Attributes – Domain model refinement – Finding conceptual class Hierarchies - Aggregation and Composition

UNIT 4 : APPLYING DESIGN PATTERNS

System sequence diagrams - Relationship between sequence diagrams and Logical

architecture and UML package diagram – Logical architecture refinement - UML class diagrams - UML interaction diagrams - Applying GoF design patterns

UNIT 5 : CODING AND TESTING

Mapping design to code – Testing: Issues in OO Testing – Class Testing – OO Integration Testing – GUI Testing – OO System Testing

TEXT BOOK

1. Craig Larman, "Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development", fourth Edition, Pearson Education, 2013.

- 1. Simon Bennett, Steve Mc Robb and Ray Farmer, "Object Oriented Systems Analysis and Design Using UML", Fourth Edition, Mc-Graw Hill Education, 2010.
- 2. Erich Gamma, and Richard Helm, Ralph Johnson, John Vlissides, "Design patterns: Elements of Reusable Object-Oriented Software", Addison-Wesley, 1995.
- 3. Martin Fowler, "UML Distilled: A Brief Guide to the Standard Object Modeling Language", Third edition, Addison Wesley, 2003.

212IN	JT721	0]	DESI	GN	AND	A	NAL	YSIS	OI	ŗ L	Т	Р	X	(C	Η	
21511	1231	U			AL	GOR	ITHM	[3	0	2	0	4		5	
Prere	equisit	te D	ata St	ructur	res and	d Algo	orithm	s (21)	2INT2	303)								
Cour	se	P	rofessi	ional	Electiv	ves												
Categ	gory																	
Cour	se	Ir	itegrat	ed Co	ourse v	with T	heory											
Туре																		
Obje	ctive(s	S)	• A1	nalyze	the a	sympt	otic p	erfori	nance	of alg	gorithr	ns.						
			• W	rite ri	gorou	s corre	ectnes	s prod	ofs for	algor	rithms.							
			• De	Demonstrate a familiarity with major algorithms and data structures. Apply important algorithmic design paradigms and methods of analysis. Synthesize efficient algorithms in common engineering design situations														
			• Ap	Demonstrate a familiarity with major algorithms and data structures. Apply important algorithmic design paradigms and methods of analysis. Synthesize efficient algorithms in common engineering design situations														
			• Sy	Apply important algorithmic design paradigms and methods of analysis. Synthesize efficient algorithms in common engineering design situations														
Cour	se Ou	tcom	e(s)	Synthesize efficient algorithms in common engineering design situations														
C	01	A	pply	the b	asic c	oncep	ots of	algo	rithms	and	anal	yze tl	he	perf	forma	nce	of	
		al	gorith	ms														
C	202	Ic	lentify	varic	ous alg	gorithr	n desi	gn te	chniqu	les fo	r devel	lopin	g al	lgor	ithms			
C	03	A	nalysi	s vari	ous se	earchir	ng, son	rting a	and gr	aph ti	raversa	l alg	orit	hms				
C	204	U	nderst	and N	VP cor	nplete	ness a	and id	entify	diffe	rent N	P cor	npl	ete	probl	ems		
C	205	F	ormula	ate the	e adva	inced	topics	on al	gorith	ms								
Mapp	ing of	COs	with 1	Pos														
COs	PO's	5											I	PSO	's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	1	2	3		
CO1	1	3											2					
CO2		3	3									1			1			
CO3		3	3	2												2		
CO4	1	3	2				3								3			
CO5	1	2	1	3	1		1					3	2				-	

UNIT 1 : BASIC CONCEPTS OF ALGORITHMS

Introduction – Notion of Algorithm – Fundamentals of Algorithmic Solving – Important Problem types – Fundamentals of the Analysis of Algorithm Efficiency - Analysis Framework – Asymptotic Notations and Basic Efficiency Classes.

UNIT 2: MATHEMATICAL ASPECTS AND ANALYSIS OF ALGORITHMS

Mathematical Analysis of Non-recursive Algorithm – Mathematical Analysis of Recursive Algorithm – Example: Fibonacci Numbers – Empirical Analysis of Algorithms – Algorithm Visualization. Practical: Mathematical Analysis of Recursive Algorithm

UNIT 3: ANALYSIS OF SORTING AND SEARCHING ALGORITHMS

Brute Force – Selection Sort and Bubble Sort – Sequential Search and Brute-force string matching – Divide and conquer – Merge sort – Quick Sort – Binary Search – Binary tree- Traversal and Related Properties – Decrease and Conquer – Insertion Sort – Depth first Search and Breadth First Search. Practical: Sorting

UNIT 4: ALGORITHMIC TECHNIQUES

Transform and conquer – Presorting – Balanced Search trees – AVL Trees – Heaps and Heap sort – Dynamic Programming – Warshall's and Floyd's Algorithm – Optimal Binary Search trees – Knapsack problem and memory functions - Greedy Techniques – Prim's Algorithm – Kruskal's Algorithm – Dijkstra's Algorithm – Huffman trees. Practical: Trees

UNIT 5: ALGORITHM DESIGN METHODS

Backtracking – n-Queen's Problem – Hamiltonian Circuit problem – Subset-Sum problem – Branch and bound – Assignment problem – Knapsack problem – Traveling salesman problem – NP and NP-Complete problems – Approximation Algorithms for NP – Hard Problems.

Practical: Knapsack problem

TEXT BOOK

- 1. Anany Levitin, "Introduction to the Design and Analysis of Algorithm", 3rd Edition, Pearson Education India, 2013.
- 2. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, "Introduction to Algorithms", PHI Learning Private Limited, 2012..

- 1. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, "Introduction to Algorithms", PHI Pvt. Ltd., 2001.
- 2. Sara Baase and Allen Van Gelder, "Computer Algorithms Introduction to Design and Analysis", 2nd Impression, Pearson Education India, 2008.
- 3. A.V.Aho, J.E. Hopcroft and J.D.Ullman, "The Design and Analysis of Computer Algorithms", Pearson Education Asia, 2003.

213IN	NT230	1	П٨	та л	NAT	vsis	WITI	H PV	THON	J	L	Т	P	Χ	C	Η		
21311	11230	1	DA			1 515	**111		mor		3	0	2	0	4	5		
Prere	equisit	e P	ython	for Pi	rogran	nming	and H	Produc	t Dev	elopn	nent (2	211C	SE1	401)				
Cour	se	P	rofessi	ional	Electiv	ves												
Categ	gory																	
Cour	se	Ir	ntegrat	ed Co	ourse v	with T	heory											
Туре			-															
Obje	ctive(s	s) T	his co	urse is	s desig	gned to	o teach	n stude	ents ho	ow to	analyz	ze dif	fere	ent typ	es of	data		
		u	sing P	ython	. Stuc	lents	will le	earn he	ow to	prepa	are da	ta fo	r ar	nalysis	, perf	orm		
		si	mple	statist	ical ar	nalysis	s, crea	te mea	aningf	ul dat	a visu	aliza	tion	s and				
		p	redict	future	trend	s fron	n data.											
Cour	se Ou	tcom	e(s)	ore Python language fundamentals, including basic syntax, variables, and														
C	201	E	xplore	ore Python language fundamentals, including basic syntax, variables, and														
		ty	vpes	lore Python language fundamentals, including basic syntax, variables, and														
C	202	U	se fur	nction	s, cre	ate a	nd ma	anipula	ate re	gular	Pyth	on li	sts	by u	sing	data		
		st	ructur	es cor	ncepts													
C	203	U	nderst	tand th	he bas	ic obj	ect or	iented	conce	epts in	pythe	on						
C	204	E	ffectiv	vely us	se nun	nerica	l analy	ysis lil	oraries	s of p	ython							
C	205	C	reate	and cu	ıstomi	ze plo	ots on	real da	ata an	d supe	erchar	ge yo	our	scripts	with			
		co	ontrol	flow,	and g	et to k	know t	he Par	ndas I	Data F	rame							
Mapp	ing of	COs	with 1	Pos														
COs	PO's	5											P	SO's				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	3		
CO1	1	3			2								2					
CO2	1	3			2					2				1				
CO3	1	3		2	2		1				3				2			
CO4		3	3	3	2		1			2	3			3				
CO5		3	3	2	2					2			2					
Cour	se To	nic(s)																

UNIT I: PYTHON FUNDAMENTALS FOR DATA ANALYSIS

Python data structures, Control statements, Functions, Object Oriented programming concepts using classes, objects and methods, Exception handling, Implementation of user- defined Modules and Package, File handling in python.

UNIT II: INTRODUCTION TO DATA UNDERSTANDING AND PREPROCESSING

Knowledge domains of Data Analysis, Understanding structured and unstructured data, Data Analysis process, Dataset generation, Importing Dataset: Importing and Exporting Data, Basic Insights from Datasets, Cleaning and Preparing the Data: Identify and Handle Missing Values.

UNIT III: DATA PROCESSING AND VISUALIZATION

Data Formatting, Exploratory Data Analysis, Filtering and hierarchical indexing using

Pandas. Data Visualization: Basic Visualization Tools, Specialized Visualization Tools, Seaborn Creating and Plotting Maps.

UNIT IV: MATHEMATICAL AND SCIENTIFIC APPLICATIONS FOR DATA ANALYSIS

Numpy and Scipy Package, Understanding and creating N-dimensional arrays, Basicindexing and slicing, Boolean indexing, Fancy indexing, Universal functions, Data processing using arrays, File input and output with arrays. Analysing Web Data: Data wrangling, Web scrapping, Combing and merging data sets, Reshaping and pivoting, Data transformation, String Manipulation, case study for web scrapping.

UNIT V: MODEL DEVELOPMENT AND EVALUATION

Introduction to machine learning- Supervised and Unsupervised Learning, Model development using Linear Regression, Model Visualization, Prediction and Decision Making, Model Evaluation: Over-fitting, Under-fitting and Model Selection.

TEXT BOOKS

- 1. David Ascher and Mark Lutz, Learning Python, Publisher O'Reilly Media.
- 2. Reema Thareja, "Python Programming using Problem Solving approach",Oxford University press
- 3. Wes Mckinney "Python for Data Analysis", First edition, Publisher O'Reilly Media.

REFERENCE BOOKS

- 1. Allen Downey ,JeffreyElkner ,Chris Meyers,: Learning with Python, Dreamtech Press
- 1. David Taieb ,"Data Analysis with Python: A Modern Approach "1st Edition, Packt Publishing

213IN	NT130	4 8	TATI	STIC	S US	ING	R PR	OGR/	AMM	ING	L	T	P	X	C	Н		
		- ~						0010			3	0	2	0	4	5		
Prere	equisit	e N	11															
Cour	se	P	rofessi	ional	Electiv	ves												
Categ	gory																	
Cour	se	Ir	ntegrat	ed Co	ourse v	with T	heory											
Туре			-															
Obje	ctive(s	s) T	he stu	dent v ● U	vill be se R f	able for sta	to lear	n 1 nroo	ramm	ing c	omput	ation	σr	anhic	s and			
				m	odelin	ig.		1 1102	,	<u>6</u> , e	ompat	acion	, 5,	apine	s, and	•		
				• W	rite fi	nctio	ns and	l use I	R in ar	ı effic	ient w	av.						
				• Fi	t som	e basi	c type	s of s	tatistic	al mo	dels	,,						
				• U	se R i	n thei	r own	reseat	rch.									
				 Use R in their own research, Be able to expand their knowledge of R on their own. motivation for learning a programming language 														
Cours	se Ou	tcom	e(s)	Be able to expand their knowledge of R on their own. motivation for learning a programming language as online resources for R and import new function packages into the learning the second sec														
C	01	L	ist mo	Be able to expand their knowledge of R on their own. s) t motivation for learning a programming language cess online resources for R and import new function packages into the														
C	202	A w	ccess orkspa	Be able to expand their knowledge of R on their own. s) t motivation for learning a programming language cess online resources for R and import new function packages into the rkspace														
C	03	Ir	nport,	revie	w, ma	nipula	ate and	l sum	marize	e data-	-sets ir	ı R						
С	CO4	E st	xplore atistic	e data al test	-sets	to cr	eate	testabl	le hyj	pothes	ses ar	nd id	enti	ify a	pprop	riate		
C	05	P w	erform vith	1 appr	opriate	e stat	istical	tests	using	g R C	Create	and	edi	t visı	ıalizat	ions		
Mapp	ing of	COs	with l	Pos														
COs	PO's	5											P	SO's				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	2 3	3		
CO1	3				3								2					
CO2		3	3				3							1				
CO3			2	2	3							1			2			
CO4			2	2				3						3				
CO5										3		1	2					
Cour	se Toj	pic(s)																

UNIT-I:

Introduction, How to run R, R Sessions and Functions, Basic Math, Variables, Data Types, Vectors, Conclusion, Advanced Data Structures, Data Frames, Lists, Matrices, Arrays, Classes. **UNIT-II:**

R Programming Structures, Control Statements, Loops, - Looping Over NonvectorSets,- If- Else, Arithmetic and Boolean Operators and values, Default Values for Argument, Return Values, Deciding Whether to explicitly call return- Returning Complex Objects, Functions are Objective, No Pointers in R, Recursion, A Quicksort Implementation-Extended Extended Example: A Binary Search Tree.

UNIT-III:

Doing Math and Simulation in R, Math Function, Extended Example Calculating Probability-Cumulative Sums and Products-Minima and Maxima- Calculus, Functions Fir Statistical Distribution, Sorting, Linear Algebra Operation on Vectors and Matrices, Extended Example: Vector cross Product- Extended Example: Finding Stationary Distribution of Markov Chains, Set Operation, Input /output, Accessing the Keyboard and Monitor, Reading and writer Files, **UNIT-IV:**

Graphics, Creating Graphs, The Workhorse of R Base Graphics, the plot() Function – Customizing Graphs, Saving Graphs to Files, Probability Distributions, Normal Distribution-Binomial Distribution-Poisson Distributions Other Distribution, Basic Statistics, Correlation and Covariance, T-Tests, ANOVA.

UNIT-V:

Linear Models, Simple Linear Regression, -Multiple Regression Generalized Linear Models, Logistic Regression, - Poisson Regression- other Generalized Linear Models-Survival Analysis, Nonlinear Models, Splines- Decision- Random Forests,

TEXT BOOKS:

The Art of R Programming, A K Verma, Cengage Learning.
 R for Everyone, Lander, Pearson
 The Art of R Programming, Norman Matloff, No starch Press.
 REFERENCE BOOKS: R Cookbook, Paul Teetor, Oreilly.
 R in Action, Rob Kabacoff, Manning

213IN	NT231	1		C	OMP	ONEN	T BA	SED				Т	P	X	C	H		
D	•••						GY		Larva	(2120	3	<u>v</u>	2	U	4	2		
Prere	equisit	e	Jbject	Orien	tea Pro	ogram	ming	using	Java	(2121)	NI 230)4)						
Cours	se	I	Profess	ional	Electiv	ves												
Categ	gory																	
Cour	se	I	ntegrat	ted Co	ourse v	with T	heory											
Туре																		
Obje	ctive(s	s)	• To	o deal	with	the fu	Indam	ental	proper	ties o	f com	npone	nts,	tech	nolc	ogy ar	ıd	
			ar	chitec	ture ar	nd mic	ldlewa	are.										
			• St	udents	s are g	iven e	xposu	re to j	ava b	ased c	ompo	nent	tech	nolo	gies	such	as	
			Ja	va Be	ans, E	JB and	a RMI	•		. 1	ı .		1	001			ъ	
			• 1(an	o impa id anni	irt kno licatio	wledg	ge on	comp	onent	techno	ologie	s suc	h as	CO	RBA	A, OR	В	
			• To	and application server. To introduce COM, DCOM and .NET technologies. To identify the component frameworks and its development														
			• To	To introduce COM, DCOM and .NET technologies. To identify the component frameworks and its development														
Cour	se Ou	tcon	ne(s)	To introduce COM, DCOM and .NET technologies. To identify the component frameworks and its development)														
C	01	Ι	Demon	strate	how	compo	onents	can 1	be the	key	to suc	cessf	ful so	oftw	are	desig	n.	
		C	constru	ction of	& deli	very o	of soft	ware	solutic	ons th	rough	reuse	e			0	,	
C	202	I	Familia	rity w	ith th	e Java	a real	izatio	n of c	compo	onents	incl	udin	g Ja	va	Beans	;,	
		I	EJB, ar	nd Java	a RMI													
C	:03	I	Experti	se wit	h the	CORE	BA rea	lizatio	on of c	compo	onents							
C	204	0	Gaining	g exter	nsive i	inform	nation	about	distri	buted	objec	t sys	tems	and	ma	sterin	g	
	05	t	$\frac{he}{NE}$	T real	lizatio	n of c	ompoi	nents	(.NET	asser	nblies)	. 1	1				
<u> </u>	:05		rovide	e in de	pth kr	nowled	dge in	comp	onent	frame	ework	s & 1	ts de	evelo	pme	ent	Т	
Mapp	ing of	COS	s with	Pos														
COs	PO's	5	-1		1	1	1	1	1	1			PS	SO's		1		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	4	2	3		
CO1			3				3						2					
CO2		1										3		1				
CO3		1		3												2		
CO4		2			3									3				
CO5					3						3	1	2				1	
Cour	se To	pic(s)	1									1			1		

UNIT 1 : INTRODUCTION

Software Components – objects – fundamental properties of Component technology – modules – interfaces – callbacks – directory services – component architecture – components and middleware. Practical: Development of simple com components in VB and use them in applications.

UNIT 2 : JAVA BASED COMPONENT TECHNOLOGIES

Threads – Java Beans – Events and connections – properties – introspection – JAR files – reflection – object serialization – Enterprise Java Beans – Distributed Object models – RMI and RMI-IIOP. Practical: Deploying EJB for simple arithmetic operator.

UNIT 3 : CORBA COMPONENT TECHNOLOGIES

Java and CORBA – Interface Definition language – Object Request Broker – system object model – portable object adapter – CORBA services – CORBA component model –

containers – application server – model driven architecture. Practical: SIMPLE APPLICATION USING CORBA

. UNIT 4: NET BASED COMPONENT TECHNOLOGIES

COM – Distributed COM – object reuse – interfaces and versioning – dispatch interfaces – connectable objects – OLE containers and servers – Active X controls – .NET components - assemblies – appdomains – contexts – reflection – remoting. Practical: Sample applications.

UNIT 5 : COMPONENT FRAMEWORKS AND DEVELOPMENT

Connectors – contexts – EJB containers – CLR contexts and channels – Component Frameworks- Object-Oriented Frameworks (OOFW) - Black Box component framework – directory objects – cross-development environment – component-oriented programming – Component design and implementation tools – testing tools - assembly tools. Practical: Distributed objects deployment-EJB and CORBA

TEXT BOOK

1. Clemens Szyperski, "Component Software: Beyond Object-Oriented Programming", Pearson Education publishers, 2003.

- 1. Ed Roman, "Mastering Enterprise Java Beans", John Wiley & Sons Inc., 2002.
- 2. Mowbray, "Inside CORBA", Pearson Education, 2003.
- 3. Freeze, "Visual Basic Development Guide for COM & COM+", BPB Publication, 2001.

A 4 4 T 1 T A 4 4 A			-						L	Т	Р	X	C	Η	
2131N12302	PRIN	CIPL	LES O	F CC	OMPI	LER	DESIG	GN	2	1	2	0	4	5	
Prerequisite	Python	for Pr	ogran	nming	and F	Produc	t Dev	elopm	ent (2	211CS	SE14	01)			
Course Category	Professi	ional 1	Electiv	/es											
Course Type	Integrat	ed Co	ourse v	vith T	heory										
Objective(s)	 To To To To 	o unde o unde o unde o unde	erstand erstand erstand erstand	the b the p the c the o	asics rocess ompu ptimiz	of con s in co ter's v zation	nputat mpila vay of techn	ion tion of gener iques	f a pro ating in cod	ogran code le gei	ns nerat	ion			
Course Outco	me(s)														
CO1	Underst	and th	ne bas	ics of	comp	ilatior	n(com	puting)						
CO2	Underst	and g	ramm	ar of o	compi	lers									
CO3	Underst	and th	ne inte	rmedi	ate fo	rm of	codes	s in co	mpile	rs					
CO4	Underst	and th	ne cod	e gen	eratio	n tech	nique(Mach	ine co	de)					
CO5	Underst	erstand the code generation technique(Machine code) erstand the optimization of code in compilers th Pos PSO's													
Mapping of CO	Os with H	Pos													
COs PO's		derstand the optimization of code in compilers vith Pos PSO's 3 4 5 6 7 8 9 10 11 12 1 2 3													
CO 1 2	3	4	5	6	7	8	9	10	11	12	1	2	2	3	1
CO1 1 3		stand the code generation technique(Machine code) stand the optimization of code in compilers Pos PSO's 4 5 6 7 8 9 10 11 12 1 2 1 2 1 2 1 2 1													
CO2 1 3			1	2								1			
CO3 1 3			1	2						1				2	1
CO4 1 3	2		1							1		3			
CO5 1 3	2		1							1	2				1
Course Topic	(s)														
UNIT 1: INT Compilers – An – Grouping of H – Input Bufferi UNIT 2: SYI Role of the p Recursive Desc Operator Prece UNIT 3: IN Intermediate la Statements – B UNIT 4: CO Issues in the d – Basic Blocks representation of UNIT 5: COI Introduction–	RODUC nalysis of Phases – 0 ing – Spe NTAX A parser –V cent Pars cent Pars dent Par TERME nguages fack patch DE GEN lesign of s and Flo of Basic DE OPT Principa	TIO f the s Comp ecifica NAL Writin sing - sing - DIAT – Dec hing – DEC NERA code ow Gr Block TMIZ I So	N TO ource iler co tion o YSIS g Gra Predic LR F TE CO claratic Proce ATION gener aphs - ts – Pe ZATIC urces	COM progra onstruct f Toke mmar ctive I Parsers DE C Dns – A cons	IPILI am – H ction to ens - H s – Co Parsing s - SL SENE Assign calls. The to to ptimes ND R	NG Phases pols -] Recogn ontext- g - Bo R Par RATI iment target Inform imizat UN T ization	of a c Lexica nition Free ottom- ser - C ON Staten mach- nation ion. IME 1 n -	compil al Anal of tok Gram Canoni nents - ine – 1 – A s ENVI Optim	er – (lysis - ens. mars rsing cal Ll - Boc Runtin isple RON I izatio	Cousi Role - To - Shi R Par olean me Si cod MEN n of	ins of L op D ft Re rser - Exp torag le ge TTS f ba	of thexic Down educ - LA ress ge m nera	e Co al A i pa e Pa LR ions anag tor	ompilo nalyze rsing Parse –Cas gemer – DA	er er - xr. se ff G

issues – Storage Organization – Storage Allocation strategies – Access to non-local names – Parameter Passing.

TEXT BOOK

1. Alfred Aho, Ravi Sethi, Jeffrey D Ullman, "Compilers Principles, Techniques and Tools", Pearson Education Asia, 2011.

- 1. Allen I. Holub "Compiler Design in C", Prentice Hall of India, 2003.
- 2. C. N. Fischer and R. J. LeBlanc, "Crafting a compiler with C", Benjamin Cummings, 2003.
- 3. J.P. Bennet, "Introduction to Compiler Techniques", Second Edition, Tata McGraw-Hill, 2003.

213INT3301	GAME PROGRAMMING		T	P	X	C	H									
D		3		2		4	5									
Prerequisite	Python for Programming and Product Developm	ent (21	ICS	E14	01)											
Course	Professional Electives															
Category																
Course Type	Integrated Course with Theory															
Objective (s)	• To know the mechanics and logic of Game	To know the mechanics and logic of Game design														
	• To train the students to acquire knowledge i	To know the mechanics and logic of Game design To train the students to acquire knowledge in game modelingtechniques														
	• To acquire knowledge about the issues in g	ame de	sign													
	• To gain skill in game engine development		÷													
Comme Orate or																
Course Outcon	ne(s)		~													
COl	Have knowledge on the concepts and techniques	used in	ı Ga	me o	desi	gn										
CO2	Design and model interactive game.															
CO3	Design and implement algorithms and technique	s applie	d to	Gai	me o	desig	n									
CO4	Analyze the various Gaming platforms and Netw	vorks														
CO5	Develop some gaming applications															

Mapp	ing of	COs	with I	Pos									
COs	PO's	5									PSO	's	
CO	1	2	3	12	1	2	3						
CO1						2							
CO2				3			3					1	
CO3	3												2
CO4					3							3	
CO5				3		2	3	3	2		2		

Course Topic(s)

UNIT 1: 3D GRAPHICS FOR GAME PROGRAMMING

Coordinate Systems, Ray Tracing, Modeling in Game Production, Vertex Processing Rasterization, Fragment Processing and Output Merging, Illumination and Shaders, Parametric Curves and Surfaces, Shader Models, Image Texturing, Bump Mapping, Advanced Texturing, Character Animation, Physics-based Simulation

UNIT 2 : GAME DESIGN PRINCIPLES

Character development, Story Telling, Narration, Game Balancing, Core mechanics, Principles of level design, Genres of Games, Collision Detection, Game Logic, Game AI, Path Finding **UNIT 3 : GAMING ENGINE DESIGN**

Renderers, Software Rendering, Hardware Rendering, and Controller based animation, Spatial Sorting, Level of detail, collision detection, standard objects, and physics

UNIT 4: GAMING PLATFORMS AND FRAMEWORKS

Flash, DirectX, OpenGL, Java, Python, XNA with Visual Studio, Mobile Gaming for the

Android, iOS, Game engines - Adventure Game Studio, DX Studio, Unity UNIT 5: GAME DEVELOPMENT

Developing 2D and 3D interactive games using OpenGL, DirectX – Isometric and Tile Based Games, Puzzle games, Single Player games, Multi Player games.

TEXT BOOK

- 1. David H. Eberly, "3D Game Engine Design, Second Edition: A Practical Approach to Real-Time Computer Graphics" Morgan Kaufmann, 2 Edition, 2006.
- 2. Jung Hyun Han, "3D Graphics for Game Programming", Chapman and Hall/CRC,1st edition, 2011.

- 1. Mike Mc Shaffrfy, "Game Coding Complete", Third Edition, Charles River Media, 2009.
- 2. Jonathan S. Harbour, "Beginning Game Programming", Course Technology PTR, 3 edition, 2009.
- 3. Ernest Adams and Andrew Rollings, "Fundamentals of Game Design", Prentice Hall 1st edition, 2006.

213I	NT23	03	PRO	GRA	MMI	NG V	VITH WAR	OPE F	N SO	OURO	CEL 3]	Г Р) 2	X	C 4 5	Η		
Prere	quisit	e	Pytho	n for	Progra	ammin	ig and	Produ	ct De	evelop	ment	(2110	SE14	.01)	- J			
0	-		D f	•	-		-											
Cours	se gory		Profes	ssiona	Elec	tives												
Cours	se Ty	pe	Integr	ated C	Course	with	Theor	y										
Obje	ctive(s	5)	•]	Fo lea	rn abo	out the	vario	ous Lin	ux di	stribut	tions.							
				10 lease	rn the	progr	ammi	ng pra	vices	in FC	122							
			• 1		mire f	he kn	owled	ge of a	nen	source	nrog	ramm	ino 119	singer	nhed	ded		
			I	Linux	device	e.	owied		pen	source	prog	lamm	ing u	Jinger	nocu	ucu		
Cours	se Ou	tcon	ne(s)															
(201		Work	in the	linux	envir	onme	nt and	contr	ibute	to free	e and	open	source	e			
			softwa	are														
	$\frac{202}{202}$		Imple	ment	conter	nt man	agem	ent sys	tems	am di	atuihaa	tion in	amb	addad	1			
Ċ	.05		device	es that	supp	ort lin	iux of lix	berating	g sysi	em u	suibu			euueu	L			
(CO4		Build	simpl	e hard	lware	projec	cts usir	ig em	bedde	d linu	x dev	ices					
(CO5		Create	te web programming using embedded linux devices Pos PSO's														
Mapp	ing of	CO	s with]	e web programming using embedded linux device Pos PSO's														
COs	PO's	5		te web programming using embedded linux device Pos PSO's PSO's														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO1	3			Pos PSO's 4 5 6 7 8 9 10 11 12 1 2 3 1 1 1 2 1 1 1 2 1														
CO2								3						1				
CO3		1		3	2		1			2					2			
CO4											3			3				
CO5				1									2					
Cours	se Toj	pic(s	5)															
UNIT	1:	INT	RODU	CTIC	DN TO) LIN	UX B	BASED	DIS	TRIB	UTIC	NS		1 T		1		
Philo filo sy	sophy	- 11 Do	censes	- D1S	tributi	ONS - Install	Deski	top en ftworo	vironi	ments	- Bas	h con	nmano	ds - F	files			
2 : PI	ROGE	-ra RAN	IMING	- F1ac	'HNI	DUES	AND		- C CTIC	ES:	auon	, Das		man	15 01	11		
Progr	ammii	ng us	sing pyt	hon -	GUI d	evelop	oment	- Men	and 1	toolba	ır - La	yout n	nanag	ement	- eve	ent-		
dialog	g - wio	lget	- Progr	ammi	ng pr	actices	s - Do	cumen	tatior	ı - us	e of v	ersior	on con	trol s	ystem	ı in		
FOSS	. Prac	tical	: GUI d	levelo	pmen	t				DEL								
UNI1 Peripl	3:		ERVIE hoice (W O	f' AN	EMB	EDD d inst	ED LI			ICE nds	files	and	filo er	retom	10		
config	puratic	- C m - 9	game n	rogran	nming	. Prac	tical:	File sv	stems	S	nus -	mes	anu	the sy	sten	15 -		
UNIT	: 4:	WE	B PR	OGRA	MM	ING U	JSIN	G EM	BEDI	DED 1	LINU	X DE	VICE	C				
Web	serve	r - L	inux -	Apach	ne - M	lysql -	Php	- Cont	ent m	anage	ment	systen	ns - a	dding	cont	ent		
- text	- imag	ges -	compoi	nents,	modu	les and	d plug	in- dev	elopr	nent o	f a sar	nple c	onten	t man	agem	ent		
site. F	ractic	al: N	'iysql EDE ▲	се ч	/]/]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	ОТИ	гр и	יתתא		Г								
Basic	. 5: 2 Innu	ts a	EKFA nd outr	UE N	Sche	UIH. Juling	COMT	I AKD (nands	with	E Cron	- inct	alling	and	testin	σGP	OI		
with 1	bythor	1- Ez	xpansio	n boa	rds - l	Prototy	yping	boards	. Pra	ctical:	Schee	luling	comi	nands	5 01	10		
I			1				1 -0					8						

TEXT BOOK

1. Roderick W Smith, "Linux Essentials", Wiley Publications, 2012.

- 1. Simon Monk, "Programming the Raspberrypi: Getting started with python", McGraw Hill, 2013
- 2. Stephen Burge, Joomla! 3 Explained: Your step-by-step guide, Pearson education, 2014.

213IN	NT33(2	Μ	ULT	MEI	DIA	ANI)	COM	PUTE	RL	Т	P	X	C	H
						GRAP	HICS				3	0	2	0	4	5
Prere	equisit	te	Data St	tructur	es an	d Alg	orithm	s (21	INT23	03)						
Cour	se]	Profess	ional	Electi	ives										
Categ	gory															
Cour	se]	Integra	ted Co	ourse	with 7	Theory									
Туре																
Obje	ctive(s	5)	• To	o unde	erstan	d com	putatio	onal c	levelop	oment	of gra	aphics	with	mat	hem	atics
			• To	o prov	ide ir	n-depth	1 know	ledg	e of di	splay	systen	ns, ima	ge sy	nthe	esis,	shape
			m	odelin	g of :	3D app	olicatio	on.								
			• Te	Unc	dersta	nd ba	sic co	oncep	ts rela	ated t	o Mu	ltimed	ia ii	ncluo	ling	data
			st	andarc	is, alg	gorithn	ns and	softv	vare	1.	C,	1				• ,•
			• T(o Exp	erienc	e dev	elopm	ent of	t multi	media	i softv	vare by	y util	1Z1Ng	g ex	ıstıng
Cour	se Ou	tcon	ne(s)	Jianes	anu	uescri	buons	or alg	gorium	18						
Cour	<u>30 0u</u> 301		Unders	tand t	he pro	oficien	cv in	3D co	ompute	er grar	phics /	API pro	ograr	nmiı	۱ø	
CO1 Understand the proficiency in 3D computer graphics API programming CO2 Analyze the perspective of modern computer system with modeling analyse														alvsis		
CO2 Analyze the perspective of modern computer system with modeling, analy and interpretation of 2D and 3D visual information													119515			
C	203	1	Unders	tand d	liffere	ent rea	lizatio	ns of	multir	nedia	tools					
C	CO4]	Develo	p inter	ractiv	e anin	nations	usin	g mult	imedi	a tool	5				
C	205	١	Unders	tand	the	knowl	edge	of of	differe	nt m	edia	stream	s in	m	ultir	nedia
		1	transmi	ssion			-									
Mapp	oing of	CO	s with	Pos												
COs	PO's	5											PSC)'s		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2		3
CO1	1	2	3										2			
CO2		3	2				3							1		
CO3		2	3					3							2	
CO4			3		3				3					3		
CO5		2	3				3						2			
Cour	se To	pic(s	3)													
UNIT	Г1:	MU	LTIMI	EDIA	SYS	ГЕMS	DES	IGN								
An In	ntrodu	ctior	ı – Mu	ultime	dia aj	pplicat	ions -	- Mu	ltimedi	ia Sys	tem A	Archite	cture	– I	Evol	ving
techn	ologie	s for	Multir	nedia	– obje	ects us	ed in N	Aultir	nedia s	system	s - M	ultimed	tia E	Data	inter	face
standa	ards –	Mul	timedia	a Data	bases											
UNIT	UNIT 2 : MULTIMEDIA FILE HANDLING															
Comp	pressio	on &	Deco	mpres	sion .	Algori	thms-	Data	1 & Fi	le Fo	rmat :	standar	ds –	Mu	ıltim	nedia
I/O te	echnol	ogie	s - Dig	ital vo	oice a	nd auc	lio – v	ideo	image	and a	nimati	ion – F	Full n	notio	on v	ideo
- Stor	rage a	nd re	etrieval	Tech	nolog	ies.										

UNIT 3: HYPERMEDIA

Multimedia Authoring & User Interface – Multimedia Messaging - Hypermedia messaging – Hypermedia message component – creating Hypermedia message – Integrated multimedia message standards – Integrated Document management – Distributed Multimedia Systems. **UNIT 4: OUTPUT PRIMITIVES**

Introduction - Line - Curve and Ellipse Algorithms - Attributes -Two-Dimensional

Geometric Transformations - Two-Dimensional Viewing.

UNIT V : THREE-DIMENSIONAL CONCEPTS

Three-Dimensional Object Representations – Three-Dimensional Geometric and Modeling Transformations – Three-Dimensional Viewing – Color models – Animation

TEXT BOOKS

- 1. Prabat K Andleigh and Kiran Thakrar, "Multimedia Systems and Design", PHI, 2013.
- 2. Donald Hearn and M.Pauline Baker, "Computer Graphics C Version", Pearson Education, 2009.

REFERENCES

- 1. Judith Jeffcoate, Multimedia in practice technology and Applications, PHI, 2007.
- 2. Foley, Vandam, Feiner, Huges, 'Computer Graphics:Principles & Practice', Pearson Education, second edition 2003.

PRACTICAL EXPERIMENTS

- 1. To implement Bresenham's algorithms for line, circle and ellipse drawing
- 2. To perform 2D Transformations such as translation, rotation, scaling, reflection and sharing.
- 3. To implement Cohen-Sutherland 2D clipping and window-view port mapping
- 4. To perform 3D Transformations such as translation, rotation and scaling.
- 5. To visualize projections of 3D images.
- 6. To convert between color models.
- 7. To implement RLE compression algorithm
- 8. To implement image compression algorithm
- 9. To perform animation using any Animation software.
- 10. To perform basic operations on image using any image editing software

213IN	NT231	12	(C# Al	ND .N	ET P	ROG	RAM	MIN	J	L 3	0	T P) 2	X 0	С 4	<u>Н</u> 5
Prere	equisi	te O	bject	Orien	ted Pr	ogran	nming	using	g Java	(212I	NT23(04)	•			
Cours Categ	se gory	Pr	ofessi	onal I	Electiv	/es										
Cours Type	se	Ir	ntegrat	ed Co	ourse	with 7	Theory	7								
Obje	ctive(s	5)	• • •	To lea To co basics To u ADO. To int WPF To int	arn the ver all s, follo pdate .NET troduc with (npleme	e tech l segn bwed l and and A e adva C# and ent m	nolog nents o by the enha SP .N anced d .NET obile a	ies of of prog objec nce ET. topics Γ 4.5. applic	the .N gramm t orie skills name ations	NET fr hing in nted 1 in w ly data using	amewo C# st progra vriting a conn ; .Net o	ork. arting mmin Win ectivi comp	g from g con- idows ty, W act fra	the facepts. appl PF, V	lang licati WCF ork	uage ions, 7 and
Cour	se Ou	tcom	ne(s)													
C	01		nderst	tand the	he C#	prog	rammi	ng m	odel							
	202		Inderst	and C	Jbject	orien	ted co	ncept	s of C	$\frac{\#}{n\alpha C^{\#}}$	Ļ					
C	:03 :04		Inderst	and so	nd De	sign v	web b	ased o	lesign	ng C#						
C	05	U	Inderst	and th	he .NI	ET wo	orkflov	w in c	letail							
Mapp	ing of	f COs	with 1	Pos												
COs	PO's	S											PSC)'s		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1	3			2								2			
CO2	1	3														
CO3	1	3														
CO4		3	3 3 2 1 2 3 3													
CO5		3	3	2	2					2			2			
Cours	se To	pic(s)														

UNIT I C# LANGUAGE BASICS

.Net Architecture – Core C# – Variables – Data Types – Flow control – Objects and TypesClasses and Structs – Inheritance- Generics – Arrays and *Tuples – Operators and Casts – Indexers-Assemblies – Shared Assemblies – CLR Hosting – Appdomains*.

UNIT II C# ADVANCED FEATURES

Delegates – Lambdas – Lambda Expressions – Events – Event Publisher – Event Listener – Strings and Regular Expressions – Generics – Collections – Memory Management and Pointers – Errors and Exceptions – Reflection.

UNIT III BASE CLASS LIBRARIES AND DATA MANIPULATION

Diagnostics Tasks – Threads and Synchronization – Manipulating XML – SAX and DOM – Manipulating files and the Registry – Transactions – Data access with ADO.NET: Introduction, LINQ to Entities and the ADO.NET Entity Framework, *Querying a Database with LINQ* – Creating the ADO.NET Entity Data Model Class Library, Creating a Windows Forms Project – Data Bindings Between Controls and the Entity Data Model – Dynamically Binding *Query Results*.

UNIT IV WINDOW AND WEB BASED APPLICATIONS

Window Based Applications – Core ASP.NET – ASP.NET Web Forms – Server Controls, Data Binding – *ASP.NET State Management, Tracing, Caching, Error Handling, Security, Deployment, User and Custom Controls* – Windows Communication Foundation (WCF) – Introduction to Web Services.

UNIT V .NET COMPACT FRAMEWORK

Reflection – .Net Remoting-.Net Security – *Localization – Peer-to-Peer Networking – Building P2P Applications –* .Net Compact Framework – Compact Edition DataStores –*Testing and Debugging – Optimizing performance – Packaging and Deployment.*

TEXT BOOKS:

- 1. Christian Nagel, Bill Evjen, Jay Glynn, Karli Watson, Morgan Skinner, "Professional C# and .NET 4.5", Wiley, 2012.
- 2. Andrew Troelsen, "Pro C# 5.0 and the .NET 4.5 Framework", Apress publication, 2012.

REFERENCES:

- 1. Ian Gariffiths, Mathew Adams, Jesse Liberty, "Programming C# 4.0", Sixth Edition, O'Reilly, 2010.
- 2. Andy Wigley, Daniel Moth, Peter Foot, "Mobile Development Handbook", Microsoft Press, 2011.
- 3. Herbert Schildt, "C# The Complete Reference", Tata McGraw Hill, 2004.

PRACTICAL COMPONENTS

- 1. To write a C# program using Branching and Looping statements
- 2. To write a C# program using Arrays and Strings methods.
- 3. To write a C# program using Structures and enumerations
- 4. To write a C# program using inheritance concepts.
- 5. To write a C# program using Polymorphism.
- 6. To write a C# program using interfaces.
- 7. To write a C# program by using operator overloading
- 8. To write a C# program using delegates, events, errors and exceptions.
- 9. To write a C# program using Errors and Exceptions.
- 10. To build a calculator widget in windows application using C#.

213IN	NT13()7		FUI		FACK	SOF	TWA	RE		L 2	T 0	P 2	X		H
Prere	anisit	e N	Jil	DE	ELC						4	V	4		,	
Cour	se	F	rofess	ional	Electi	ves										
Categ	gory															
Cour	se	I	ntegra	ted Co	ourse	with 7	Theory	7								
Туре																
Obje	ctive(s	s)	То	get a	n ove	rview	of the	full	stack s	oftwa	re and	web	dev	elop	ment	
			To pro To	unde gramr gain k	erstan ning t xnowl	d the hroug edge o	e obj h Pyth of web	ject ion. o deve	oriente	ed st ent usin	ructur ng Fla	e a usk F	nd ram	use ewoi	r in 'k.	terface
			To learn the web application deployment in real time scenarios. To learn to deploy the software in Linux and Windows platforms.													
Cour	se Ou	tcom	pme(s)													
C	201	U	Understand the object oriented approach in Python.													
C	202	Ι	Develo	p GU	l appl	ication	ns wit	h Pyt	non.							
C	203	Ι	Develo	p GU	[appl	ication	ns wit	h Pytl	hon.							
C	CO4	F	Packag	e the	devel	oped c	ode in	1 Linu	ix and	Wind	ows e	enviro	onm	ent.		
C	205	Ι	Deploy	the d	evelo	ped w	eb ap	plicat	ion usi	ng Fla	ask in	real	time	e sce	nario	s such
		a	s AW	S.												
Mapp	ing of	COs	with 1	Pos												
COs	PO's	5											P	SO's	5	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1		2	3
CO1	1	3			1	2							2			
CO2	1	3			1	2						1]	l	
CO3	1	3														
CO4	1	3	2		1							1			3	
CO5	CO5 1 3 2 1															
Cour	Course Topic(s)															
UNIT	ΓΙΟΙ	BJEC	T OR	IENT	ED A	PPR	DACE	H IN	РҮТН	ION						

Classes – Class Coding Basics: Instances – Behavior Methods – Operator Overloading – Customizing Behavior Methods – Constructors – Polymorphism – Inheritance.

UNIT II USER INTERFACE APPLICATIONS IN PYTHON AND VERSIONCONTROL SYSTEM

Wxpython installation – Menus and Toolbars – Layout Management – Wxpython Events – Wxpython Dialogs – Widgets – Graphics – Collaborative Version Control Systems – Git Commands – Real Time Usage of Git Commands.

UNIT III FLASK FRAMEWORK FOR WEB DEVELOPMENT

Flask Basics – Routes – Templates – Control Flow – Inheritance – Forms – Modules –Connection with Databases – Relational Database versus NoSQL – Modeling – MappingClasses to Mongodb – Building Data Layer with Mongo Engine.

UNIT IV REAL TIME DEPLOYMENT OF WEB APPLICATION

Deploy Web Applications with Flask and MongoDB – Example Applications – Blogs – Forums – Auto Evaluation of Student Assignments – Deployment Using AWS or Google Cloud or Heroku.

UNIT V DEPLOYMENT OF SOFTWARE IN LINUX AND WINDOWS PLATFORM

Deployment in Ubuntu Distribution – Creation of .Deb Executable File – Deployment in Windows – Creation of Standalone Executable – Test Cases.

TEXT BOOKS:

- 1. Mark Lutz, "Learning Python", Fifth Edition, O' Reilly 2013.
- 2. <u>http://zetcode.com/wxpython/</u>
- 3. Scott Chacon and Ben Straub, "Pro Git", Free e-book under Creative commons, Second Edition, Apress, 2016.
- 4. Miguel Grinberg, "Flask Web Development Developing Web Applications with Python", OReilly, 2014.

- 1. Karl Seguin, "The Little Mongo DB Book", https://github.com/karlseguin/the-littlemongodb-book.
- 2. Gareth Dwyer, "Flask by Example", Packt Publishers, 2016.
- 3. https://aws.amazon.com/education/awseducate/
- 4. http://packaging.ubuntu.com/html/packaging-new-software.html
- 5. http://www.pyinstaller.org/
- 6. <u>https://pypi.org/project/py2exe/0.9.2.0/</u>

213INT1316	POROTIC PROCRAMMING	L	Т	Р	X	C	Η
2131111310	KODOTIC I KOGRAMIMING	3	0	2	0	4	5
Prerequisite	Nil						
Course	Professional Electives						
Category							
Course	Integrated Course with Theory						
Туре							
Objective(s)	To understand the basic concepts associated with and applications of Robots To study about the Robots To learn about analyzing robot kinemat robot programming	n the de drives ics and	esigr anc l	and sen	l Fur sors	nctio useo	ning 1 in
Course Outco	ome(s)						
CO1	Upon completion of this course, the students ca	n able	to	appl	y th	e ba	asic
	engineering						
CO2	To learn about knowledge for the design of robotic	S					
CO3	Will understand robot kinematics and robot program	mming					
CO4	Will understand application of Robots						
CO5	To understand the Sensors ti use in robotics						

Mapp	Mapping of COs with Pos														
COs	Ds PO's PSO's														
CO	1	2	12	1	2	3									
C01	1	3			1	2							2		
CO2	1	3			1	2								1	
CO3	1	3			1	2						1			2
CO4	1	3	2		1							1		3	
CO5	1	3	2		1							1	2		

Course Topic(s)

UNIT I-Introduction to Robot Programming

Robot programming-Introduction-Types- Flex Pendant- Lead through programming,Coordinate systems of Robot, Robot controller- major components, functions-Wrist Mechanism-Interpolation-Interlock commands Operating mode of robot, Jogging-Types, Robot specifications- Motion commands, end effectors and sensors commands.

UNIT II-VAL Language

Robot Languages-Classifications, Structures- VAL language commands motion control, hand control, program control, pick and place applications, palletizing applications using VAL, Robot welding application using VAL program-WAIT, SIGNAL and DELAY command for communications using simple applications. VAL-II programming-basic commands, applications-Simple problem using conditional statements-Simple pick and place applications-Production rate calculations using robot.

UNIT III- RAPID Language and AML

RAPID language basic commands- Motion Instructions-Pick and place operation using Industrial robot- manual mode, automatic mode, subroutine command based programming. Move master command language-Introduction, syntax, simple problems. AML Language- General description, elements and functions, Statements, constants and variables-Program control statements-Operating systems, Motion, Sensor commands-Data processing.

UNIT IV- Virtual Robot

Robot cycle time analysis-Multiple robot and machine Interference-Process chart-Simple problems-Virtual robotics, Robot studio online software- Introduction, Jogging, components, work planning, program modules, input and output signals-Singularities-Collision detection-Repeatability measurement of robot-Robot economics.

UNIT V - AML Language

General description, elements and functions, Statements, constants and variables-Program control statements-Operating systems, Motion, Sensor commands-Data processing.

Text Books:

[T1] S. R.Deb, "Robotics technology and flexible automation", Tata McGraw Hill publishing company limited, 1994.

[T2] Mikell. P. Groover, "Industrial Robotics Technology", Programming and Applications, McGraw Hill Co, 1995.

Reference Books:

[R1] Klafter. R.D, Chmielewski.T.A. and Noggin's., "Robot Engineering : An Integrated Approach", Prentice Hall of India Pvt. Ltd., 1994.

[R2] Fu. K. S., Gonzalez. R. C. & Lee C.S.G., "Robotics control, sensing, vision and intelligence", McGraw Hill Book co, 1987.

[R3] Craig. J. J. "Introduction to Robotics mechanics and control", Addison-Wesley, 1999

Software Management

213INT1305		D	ATA		WAR	EHO	USING	J	L 3		T O	P 2	X 0	C 4	Н 5
Prerequisite	Nil		A			0			5		U	4	U	-	5
Course	Profess	ional	Electi	ves											
Category															
Course	Integrat	ed Co	ourse	with 7	Theory	/									
Туре	-				-										
Objective(s)	•	 To know the concepts and techniques of data mining and data warehousing To understand the systems for data warehousing and/or data mining 													data
	•	To un	dersta	and th	e syst	ems f	or data	a ware	housii	ng a	nd/o	or da	ata r	niniı	ıg
Course Outco	me(s)	(s)													
CO1	Learn c	earn concepts in Data Warehouses and implementation of architectures													
CO2	Learn d	lata pi	reproc	essing	g, lang	guage,	archit	tecture	es, cor	ncep	t de	scrij	ptio	n	
CO3	Learn to	o use	Assoc	ciatior	n Rule	Mini	ng								
CO4	Learn C	Classif	icatio	n And	d Clus	stering	g Tech	niques							
CO5	Learn F	Recent	t Tren	ds .in	Data	Minir	ng								r
Mapping of Co	Os with I	Pos													
COs PO's												PSC)'s		
CO 1 2	3	4	5	6	7	8	9	10	11	12	2	1	2	-	3
CO1 1 3	2		3	3							2				
CO2 1 3															
CO3 1 3	2		3							1				2	
CO4 1 3													3		
CO5 1 3				3	3					2	2				

Course Topic(s)

UNIT 1: INTRODUCTION TO DATA WAREHOUSING

Introduction - Data Warehouse - Multidimensional Data Model - Data Warehouse Architecture – Implementation - Further Development - Data Warehousing to Data Mining. Practical: Data Model

UNIT 2: DATA PREPROCESSING, LANGUAGE, ARCHITECTURES, CONCEPT DESCRIPTION

Why Pre processing - Cleaning, Integration – Transformation – Reduction – Discretization - Concept Hierarchy Generation, Data Mining Primitives, Query Language, Graphical User Interfaces – Architectures - Concept Description - Data Generalization - Characterizations - Class Comparisons - Descriptive Statistical Measures. Practical: Query Language

UNIT 3: ASSOCIATION RULES

Association Rule Mining - Single-Dimensional Boolean Association Rules from Transactional Databases - Multi-Level Association Rules from Transaction Databases. Practical: Association Rules

UNIT 4: CLASSIFICATION AND CLUSTERING

Classification and Prediction – Issues - Decision Tree Induction - Bayesian Classification - Association Rule Based - Other Classification Methods – Prediction - Classifier Accuracy -

Cluster Analysis - Types of data - Categorization of methods - Partitioning methods - Outlier Analysis. Practical: Categorization of methods

UNIT 5 : RECENT TRENDS

Multidimensional Analysis and Descriptive Mining of Complex Data Objects -Spatial Databases - Multimedia Databases - Time Series and Sequence Data - Text Databases - relationless databases- World Wide Web -Applications and Trends in Data Mining. Practical: Spatial Databases - Multimedia Databases

TEXT BOOK

1. J. Han, M. Kamber, "Data Mining: Concepts and Techniques", Harcourt India Morgan Kauffman, 2011.

- 1. Margaret H.Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education 2006.
- 2. Sam Anahory, Dennis Murry, "Data Warehousing in the real world", Pearson Education 2009.
- 3. David Hand, Heikki Manila, Padhraic Symth, "Principles of Data Mining", PHI 2004.

Benchmark Database Updates - Performance Evaluation. Practical: SQL

UNIT 4 : COMPLEX QUERIES AND REASONING

Logic of Query Languages – Relational Calculi – Recursive rules – Syntax and semantics of Data log – Fix point semantics – Implementation Rules and Recursion – Rule rewriting methods – Compilation and Optimization – Recursive Queries in SQL – Open issues. Practical: SQL

UNIT 5: SPATIAL, TEXT AND MULTIMEDIA DATABASES

Traditional Indexing Methods (Secondary Keys, Spatial Access Methods) – Text Retrieval – Multimedia Indexing – 1D Time Series – 2d Color images – Sub pattern Matching – Open Issues – Uncertainties. Practical: SQL Programs

TEXT BOOK:

1. Raghu Ramakrishnan "Database Management System", Mc Graw Hill Publications, McgrawHillPublications, 2014 reprint.

- 1. Carlo Zaniolo, Stefano Ceri "Advanced Database Systems", Morgan Kauffmann Publishers. 2007
- 2. Abraham Silberschatz, Henry F. Korth and S. Sudharshan, "Database System Concepts", Sixth Edition, Tata McGraw Hill, 2011

2131	NT33()6		INF	ORM	ATIC)N		STC	RAG	EL	Т	P	Χ	С	H	
21311	11550				MA	NAG	EME	NT			3	0	2	0	4	5	
Prere	equisit	te	Inform	nation	Storag	ge, Mo	odellir	ig and	l Retri	eval (212IN	T2306	5)				
Cour	se		Profe	ssional	Electi	ives											
Categ	gory																
Cour	se		Integr	ated C	ourse	with [Theory	/									
Туре																	
Obje	ctive(s	s)	• 1	Unders	tand S	storage	e Area	1 Netv	vorks (charac	teristi	es and	l con	nponer	nts.		
			•]	Describ	be the o	challe	nges as	ssocia	ted wit	th data	a cente	r netw	orkii	ng and	the n	eed	
			1	for swit	tch ne	twork	conve	rgenc	e.								
			•	Storage	Area	Netwo	orks in	cludi	ng stor	age ar	chitect	tures,	logic	al and	phys	ical	
			(compor	ients o	of a sto	orage 1	nfrast	ructur	e, ma	naging	g and	mon	itoring	the c	lata	
			(center.		1			•		• • • • •			•			
			• 1	Descrit	be the	busi	ness	contin	iuity a	ina a	isaster	reco	very	in a	stor	age	
				Describe the different backup and recovery topologies and their role in													
			• 1	providing disaster recovery and business continuity capabilities.													
			ر ا	 Identify key areas to monitor in a data center for different components in 													
				a storag	ge	ureus			ii u uu		101 101	unit	10110	compo		,	
Cour	se Ou	tco	a storage come(s)														
C	201		Identi	fy and	descr	ibe th	e func	tions	to buil	ld dat	a cente	er net	work	ing for	r swi	tch	
			netwo	ork													
C	202		Discu	ss diffe	erent	types	of lo	ogical	and	physic	cal co	mpon	ents	of a	stora	ge	
			1ntras	tructure	e			01	CI	1		1.1					
C	:03		Under	rstand t	the im	portar	ice of	fiber	Chann	el pro	tocols	and h	low t	ocomr	nunic	ate	
			with	each (oner for	and u r diffo	ne ront a	nnliga	tion of	bene	monts	the c	inter	ent ne	lwor	Ĺ	
	<u>'04</u>		Identi	tv sing	le noi	nts of	failur	e in a	storag	e infr	astruct	ure a	nd lis	st solut	ions		
	:0 1 :05		Identi	fv and	analy	zes th	e com	$\frac{1}{2}$ mon t	hreats	in ead	ch don	nain	nu ne	5t 501u	.10115		
Mapp	ing of	f CO	Ds with	Pos	unury	205 11	0 00111		means	iii ou	<u>uon</u>	luiii					
COs	PO's	5											PS	O's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3		3										2				
CO2	1	3				3					3			1			
CO3	1			3			3			2		1			2		
CO4	1	3	2	3					3					3			
CO5	1	3	2								3		2				
Cour	se To	pic((s)					•			•	•					

UNIT 1: INTRODUCTION TO STORAGE TECHNOLOGY

Review data creation and the amount of data being created and understand the value of data to a business - challenges in data storage and data management - Solutions available or data storage - Core elements of a data center infrastructure - role of each element in supporting business activities.

UNIT 2 : STORAGE SYSTEMS ARCHITECTURE

Hardware and software components of the host environment - Key protocols and concepts

used by each component - Physical and logical components of a connectivity environment Major physical disk - access characteristics - and performance implications - Concept of RAID and its components - Different Raid levels and their suitability for different application environments: RAID 0 RAID 1, RAID 3, RAID 4, RAID 5, RAID 0+1, RAID 1+0, RAID 6

- Compare and contrast integrated and modular storage systems - High-level architecture and working of an intelligent storage system.

UNIT 3 : INTRODUCTION TO NETWORKED STORAGE

Evolution of networked storage – Architecture – Components - and topologies of FC-SAN, NAS, and IP-SA Benefits of the different networked storage options -Understand the need for long-term archiving solutions and describe how CAS fulfills the need - Understand the appropriateness of the different networked storage options for different application environments.

UNIT 4: INFORMATION AVAILABILITY & MONITORING & MANAGING DATA CENTER

List reasons for planned/unplanned outages and the impact of downtime - impact of downtime - Differentiate between business continuity (BC) and disaster recovery (DR) - RTO and RPO - Identify single points of failure in a storage infrastructure and list solutionsto mitigate these failures - Architecture of backup/recovery and the different backup/recovery topologies - replication technologies and their role in ensuring information availability and business continuity - Remote replication technologies and their role in providing disaster recovery and business continuity capabilities - Identify key areas to monitor in a data center - Industry standards for data center monitoring and management - key metrics to monitor for different components in a storage infrastructure - key management tasks in a data center.

UNIT 5: SECURING STORAGE AND STORAGE VIRTUALIZATION

Information security - Critical security attributes for information systems - Storage security domains - List and analyzes the common threats in each domain - Virtualization technologies - block-level and file-level virtualization technologies and Processes

TEXT BOOK

1. EMC, EMC Education Services, Lastemc, "Information Storage and Management: Storing, Managing, and Protecting Digital Information", John Wiley and Sons, 2nd edition, 2012.

- 1. Robert Spalding, "Storage Networks: The Complete Reference". Tata McGraw Hill, Osborne, 2003
- Marc Farley, "Building Storage Networks", 2nd Edition, Tata McGraw Hill, Osborne, 2001.
- 3. Meeta Gupta, "Storage Area Network Fundamentals", Pearson Education Limited, 2002.

213INT1306		BIG	G DAT	ra ai	NALY	TICS	5	I		T	P 2	X	C	5	H	
Prerequisite	Nil							-	,	U	4	U	-	P	,	
Course	Professi	ional	Electi	ve												
Category																
Course	Integrat	ted Co	ourse	with [Гheory	/										
Туре																
Objective (s)	• To	o prov	vide th	e stud	lents v	with a	funda	menta	l Of I	Big I	Dat	a An	alytic	s		
	• To	o acqu	iire sk	tills va	arious	Data	Analy	tics.								
	• To	o intro	oduce	Data	Minin	g Stre	am co	ncepts	s.							
	• To	• To familiarize the students with Clustering and Framework concepts e(s)														
Course Outco	ome(s)	(s) Inderstand the Big Data Platform and Modern data analytic Tools														
CO1	Underst	Understand the Big Data Platform and Modern data analytic Tools														
CO2	Learn n	eural	netwo	orks, l	Fuzzy	logic	and da	ata an	alytic	con	cep	ts				
CO3	Learn I	Data N	Aining	g rules	s to in	pleme	ent and	l Ana	lysis							
CO4	Underst	tand t	ypes o	of clus	stering	5										
CO5	Underst	tand a	and in	plem	ent the	e data	analyt	ic too	ols-Ma	ip re	duo	ce an	id Ha	doop)	
Mapping of C	Os with F	Pos														
COs PO's												PSO)'s			
CO 1 2	3	4	5	6	7	8	9	10	11	12		1	2	3		
CO1 1 3																
CO2 1 3													1			
CO3 1 2				3						1				2		
CO4 1 2													3			
CO5 2	3		3	2							2	2				

Course Topic(s)

UNIT 1: INTRODUCTION TO BIG DATA

Introduction to Big Data Platform – Challenges of conventional systems - Web data – Evolution of Analytic scalability, analytic processes and tools, Analysis vs reporting - Modern data analytic tools, Stastical concepts: Sampling distributions, resampling, statistical inference, prediction error. Practical: Hadoop Map Reduce job flow

UNIT 2 : DATA ANALYSIS

Regression modeling, Multivariate analysis, Bayesian modeling, inference and Bayesian networks, Support vector and kernel methods, Analysis of time series: linear systems analysis, nonlinear dynamics - Rule induction - Neural networks: learning and generalization, competitive learning, principal component analysis and neural networks; Fuzzy logic: extracting fuzzy models from data, fuzzy decision trees, Stochastic search methods. Practical: Creating and customizing applications to analyze data

UNIT 3 : MINING DATA STREAMS

Introduction to Streams Concepts – Stream data model and architecture - Stream Computing, Sampling data in a stream – Filtering streams – Counting distinct elements in a stream – Estimating moments – Counting oneness in a window – Decaying window - Realtime Analytics Platform(RTAP) applications - case studies - real time sentiment analysis, stock market predictions. Practical: Implementing a targeted Big Data strategy

UNIT 4 : FREQUENT ITEMSETS AND CLUSTERING

Mining Frequent itemsets - Market based model - Apriori Algorithm - Handling large data

sets in Main memory – Limited Pass algorithm – Counting frequent itemsets in a stream – Clustering Techniques – Hierarchical – K- Means – Clustering high dimensional data – CLIQUE and PROCLUS – Frequent pattern based clustering methods – Clustering in non- euclidean space – Clustering for streams and Parallelism. Practical: Apply different classification techniques to classify the given data set

UNIT 5 : FRAMEWORKS AND VISUALIZATION

MapReduce – Hadoop, Hive, MapR – Sharding – NoSQL Databases - S3 - Hadoop Distributed file systems – Visualizations - Visual data analysis techniques, interaction techniques; Systems and applications. Practical: Apply various association rule mining algorithms

TEXT BOOKS

- 1. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.
- 2. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets",
- Cambridge University Press, 2nd edition, 2012.

- 1. Bill Franks, T"aming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with advanced analystics", John Wiley & sons, 2012.
- 2. Glenn J. Myatt, "Making Sense of Data", John Wiley & Sons, 2007 Pete Warden, Big Data Glossary, O"Reilly, 2011.
- 3. Jiawei Han, Micheline Kamber "Data Mining Concepts and Techniques", Second Edition, Elsevier, Reprinted 2008.

]	Ĺ	Т	Р	X		С	Н
213IN	NT231	4	SOF	[WA]	RE Q	UAL	ITY A	ASSUI	RANC	E	2	0	2	0	3		4
Prere	equisit	e	Softwa	re Co	nstruc	ction a	nd M	anagei	nent (212IN	T230	7)					
Cours	se		Profess	ional	Elect	ive											
Categ	gory																
Cours	se		Integra	ted Co	ourse	with 7	Theory	у									
Type		``		1	1		1.										
Objec	ctive(s	5)	• U: • D:	nderst isting	and t uish 1	he qua	ality n en the	nanage vario	ement ous ac	proces tivitie	ss. s of	qual	ity	plan	ning,	qu	uality
			as	suran	ce and	d quali	ity cor	ntrol.									
			• U	nderst	and	the in	nporta	ince c	of star	ndards	s in	the	qua	lity	mana	age	ment
			pr	ocess	and t	neir in	npact	on fina	al proc	uct.	aatuia	for	~	1:+	0.001		aa in
			• 10	o pies ftwar	e deve	elonm	ent	techn	iques	and n	lieurics	5 101	qua	anty	assu	lan	te m
			• To	b dev	elop	a goo	d und	lerstar	ding	of iss	ues.	techr	niau	ies a	nd to	ool	s for
			SO	oftware	e testi	ing							1				
Cours	se Ou	tco	me(s)														
C	201		Unders	tand t	he ne	ed of	softw	are qu	ality a	and le	arn so	oftwa	are	proje	ect lif	fe c	ycle
	components																
CO2 Analyze software development methodologies and testing implementations.													ıs.				
C	203		Develo	p the	capa	bility	to cre	eate g	ood s	oftwa	re qua	ality	inf	rastr	uctur	e v	with
			effectiv	ve mai	nagen	nent st	trategi	es.									
C	CO4		Evaluat	te the	perf	formar	nce o	f soft	ware	proje	ct an	d d	eve	lop	mode	els	for
			softwar	e qua	lity n	nanage	ement.										
C	205		Obtain	the k	nowle	edge al	bout v	various	quali	ty ma	nagen	nent	stai	ndarc	ls.		
Mapp	ing of	CC	Os with l	Pos													
COs	PO's			1								1		PSO	's		
CO	1	2	3	4	5	6	7	8	9	10	11	12		1	2	3	
CO1		3			2						3		2				
CO2		2	3		3										1		
CO3		2	2						3		3	1				2	
CO4			3		2		3								3		
CO5		3	1						2			3	2				
Cour	Course Topic(s)																
UNI'I	1:	IN'			ON T	O SO	FTW.	ARE	QUAI	JTY avalit	& Al	RCH	ITI a (S	ECT	URE	fin	ition
and c	101 SU objecti	itw ves	= Soft	ity – Ç ware	uanı quali	y chan tv fac	tors-	-501 McCa	lware i	quant	y assu	ranco lel –	e (S - S	QA) NA	- De	em	and
archit	ecture	-	Softwar	e Pro	ject 1	ife cy	cle C	ompor	ients -	– Pre	proje	ct q	uali	ty co	ompo	onei	nts –
Devel	lopme	nt a	nd quali	ty pla	, ns.	5		1			1 5	1		5	I		
UNIT	UNIT 2 : SQA COMPONENTS AND PROJECT LIFE CYCLE																
Softw	vare De	evel	opment	metho	odolog	gies –	Qualit	y assu	rance	activit	ties in	the o	deve	elopr	nent j	pro	cess-
Verifi	cation	& tion	Valida	ation	- Re	eviews	– S	oftwar	e Te	sting	– So	ttwa	re	Testi	ing	~	01:+
imple	menta	uon	is – Qu	anty (JI SOI	uware	main	tenanc	e - F	re-Ma	unten	ance	OI	sort	ware	qu	anty

components – Quality assurance tools – CASE tools for software quality – Software maintenance quality – Project Management.

UNIT3:SOFTWAREQUALITYINFRASTRUCTUREProcedures and work instructions - Templates - Checklists – 3S development - Staff training and certification Corrective and preventive actions – Configuration management – Software change control – Configuration management audit -Documentation control – Storage and retrieval.

UNIT 4: SOFTWARE QUALITY MANAGEMENT & METRICS

Project process control – Computerized tools - Software quality metrics – Objectives of quality measurement – Process metrics – Product metrics – Implementation – Limitations of software metrics – Cost of software quality – Classical quality cost model – Extended model – Application of Cost model.

UNIT 5: STANDARDS, CERTIFICATIONS & ASSESSMENTS

Quality manangement standards – ISO 9001 and ISO 9000-3 – capability Maturity Models – CMM and CMMI assessment methodologies - Bootstrap methodology – SPICE Project – SQA project process standards – IEEE 1012 & 1028 – Organization of Quality Assurance – Department management responsibilities – Project management responsibilities – SQA units and other actors in SQA systems.

TEXT BOOK

1. Daniel Galin, "Software Quality Assurance", Pearson Publication, 2009.

- 1. Alan C. Gillies, "Software Quality: Theory and Management", International Thomson Computer Press, 1997.
- 2. Mordechai Ben-Menachem "Software Quality: Producing Practical Consistent Software", International Thompson Computer Press, 1997.
| 213II | NT231 | 3 | | MO | BILI
DEV | E AP | PLIC.
PMEI | ATIO
NT | N | | L
3 | T
0 | P
2 | X
0 | 4 | С | Н
5 |
|----------------|---------------|------------|-----------------------------|---|-----------------|-----------------|----------------|------------|------------|---------|---------|--------|--------|--------|-------|------|--------|
| Prere | equisit | e | Object | Orier | nted F | rogra | mming | g usin | g Java | ı (212] | INT23 | 304) | - | U | | | 0 |
| Cour
Cates | se
gory | | Profess | sional | Elect | tives | | | | | | | | | | | |
| Cour | se Ty | pe | Integra | ted C | ourse | with | Theor | У | | | | | | | | | |
| Obje | ctive(s | ;) | To intr
applica | oduce
tion c | the j
levelo | progra
opmen | mmin
t. | g tech | inique | s and o | desigr | n patt | ern | of n | nobil | e | |
| Cour | se Ou | tco | me(s) | | | | | | | | | | | | | | |
| C | CO1 | | Study
mobile | about
devic | the
ces | mobil | e app | licatio | on ma | rket a | ind w | eb s | ervi | ces | for | var | ious |
| C | CO2 | | Unders
Platfor | stand a
ms | and d | levelo | p the | vario | is Mo | bile Ir | nform | ation | De | sign | and | M | obile |
| C | CO3 | | Design
display | the
ing pi | User
icture | inter
s, mei | face
nu etc | with | variou | ıs fea | tures | of A | And | roid | SD | K | like |
| C | CO4 | | Utilize
applica | Julize the messaging, networking and location based service in Android pplication | | | | | | | | | | | | | |
| 0 | 205 | | Create | , Debi | ig and | d build | the a | apps f | or the | latest | Wind | ows a | and | IOS | | | |
| Mapp | oing of | CC | Os with | Pos | | | | | | | | | | | | | |
| COs | PO's | 5 | | | | | | | | | | | I | PSO | 's | | |
| CO | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | l | 2 | 3 | |
| CO1 | 3 | | | | | | | | | | | | 2 | | | | |
| CO2 | | 3 | | | | | | | | | | | | | 1 | | |
| CO3 | | | | | 3 | | | | | | 3 | 3 | | | | 2 | |
| CO4 | 3 | | | | | | | | | | | | | | 3 | | |
| CO5 | | | | | | 3 | | | | | 3 | 3 | 2 | | | | |
| Cour | se To | pic | (s) | | | | | | | | | | | | | | |
| UNIT | [1: I | NT | RODU | CTIO | N | | _ | | | _ | | | _ | | | | |
| Prelin | ninary | C | onsidera | tions | -Cc | ost of | Deve | lopm | ent – | Impor | tance | of 1 | Mob | oile | Strat | egi | es in |
| Busin
for M | less W | orl
Dor | a – Mot | oile W | eb Pr | esence | e – M
Wob | obile | | cations | -Ma | arketi | ng - | - W | eb | Ser | vices |
| | Г 2. М | | $\mathbf{RII} = \mathbf{I}$ | ISFR | IS EX | ERFA | CE D | ESIC | .c_D
:N | eougg | ing w | 003 | | | | | |
| Effec | tive U | se c | of Screen | Real | Estat | e - Un | dersta | inding | Mobi | le Apr | olicati | on Us | sers | – U | nder | star | nding |
| Mobi | le Info | orm | ation De | esign - | – Uno | lersta | nding | Mobi | le Plat | forms | – Us | sing t | he ' | Tool | s for | ·M | obile |

Mobile Information Design – Understanding Mobile Platforms – Using the Tools for Mobile Interface Design – Choosing a Mobile Web Option – Adaptive Mobile Website – Mobile Web Applications with HTML 5

UNIT 3: ANDROID APPLICATION DEVELOPMENT

Getting to know the Android User Interfaces – Designing Your User interface using Views – Displaying Pictures and Menus with Views – Using Image views to Display pictures – Using menus with views – Data Persistence – Saving and loading user performances - Persisting data to files – Creating and using Data bases – Content Providers.

UNIT 4 : ANDROID MESSAGING, NETWORKING, LOCATION BASEDSERVICES SMS Messaging, Sending E-mail – Networking – Downloading Binary Data, Text FilesAccessing Web Services – Performing Asynchronous Calls – Location Based Services – Displaying Maps – Getting Location Data – Creating your own services – Communicating between a service and an activity – Binding activities to Services

UNIT 5: IOS AND WINDOWS PHONE

Getting started with iOS – iOS Project – Debugging iOS Apps – Objective C Basics – Hello Word App – Building the derby app in iOS – Windows Phone 7 Project – Building Derby App in Windows Phone 7.

TEXT BOOK

1. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development," Wrox 2012.

REFERENCES

 Wei – Meng Lee, "Beginning Android Application Development", Wiley 2011
 Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", Dream

Tech.2012

3. James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012

4. David Mark, Jack Nutting, Jeff LaMouche, and Fredric Olsson, "Beginning iOS6 Development: Exploring the iOS SDK", Apress, 2013

2131	NT11	03		ENT	rerp	RISE	RES	OUR	CE		L	Т	Р	X	С	H	
2151			X 711		P	PLAN	NING				3	0	0	0	3	3	
Prere	equisit	te	Nil	• 1	T1												
Cour	se		Profes	sional	Elect	ıve											
Cate	gory	no	Theor	7													
Ohio	$\frac{5C + I y}{ctivo(i)}$	e)		y To kno	w tha	hasio	ofF	DD									
Obje		5)	• T	'o und	erstan	d the	kev ir	nnlem	entati	on icci	ies of	EBD					
			• T	'o kno	w the	husin	ess m	npien ndules	s of EI	2P	105 01	LIXI					
			• T	o he a	ware	of sor	ne noi	oular i	produc	ets in t	he are	a of	ERI	Р			
			• T	o app	reciate	e the c	current	and	future	trends	in EF	RP					
Cour	se Ou	itcoi	me(s)	· · · r r													
(201		Under	stand l	oasics	and k	ey im	pleme	entatio	n issu	es of l	ERP					
(CO2		Identif	y vari	ous ro	oles of	huma	n res	ources	in an	Enter	prise					
(203		Aware	of EF	RP ma	rkets						-					
(CO4		Learn	function	onal r	nodule	es in a	n ER	P pack	age							
(205		Study	curren	t tren	ds and	l pred	ct fut	ure tre	ends ir	ERP						
Manr	ing of	f CC)s with	Pos			- prod										
COs		s		105									P	SO's	2		
CO	1	2	3	PSO's 4 5 6 7 8 9 10 11 12 1 2 3													
CO1	1	3		4 5 6 7 8 9 10 11 12 1 2 3 1 2 3													
CO2		3	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
CO3		3	3	2	2		1				2				2	2	
CO4		1	2				2				2	1		3			
CO5		2	3		3						2	1	2				
Cour	se To	pic(s)					l				1					
UNI	Γ1:	INT	RODU	CTIO	N												
ERP:	An O	verv	iew, En	terpris	e-A	n Ove	rview,	Bene	fits of	ERP-	ERP a	nd Re	elate	ed Te	chnol	logies-	
Busin	ness Pr	oce	ss Reen	gineer	ing (E	3PR)-	Data V	Nareh	ousing	g- Data	a Mini	ing -	OL	AP -	SCM		
UNI	[2:]	ERF	P IMPL	EME	NTA	ΓΙΟΝ						~		-			
ERP	Implei	men	tation I	lifecyc	cle - Ir	nplem	entati	on Me	ethodo.	logy -	Hidde	en Co	sts -	- Org	anızır	ig the	
and F	Inenta	uloi.	- Ven	uors - ct Mar	COIIS	untants	s and nd Mo	Users nitorii	- COII	tracts	with	ven	uor	s - C	Jonsu	nams	
UNI	прю <u>э</u> Г 3: Т	'HE	BUSIN	JESS	MOD			mom	iig								
Busin	ness n	nodu	les in	an EF	RP Pa	ckage	- Fir	nance	– Ma	nufac	turing	(Pro	duc	ction)	- H	uman	
Reso	urces	- Pla	ant Mai	ntenar	nce -	Mater	ials M	lanage	ement	- Qua	ılity N	lanag	gem	ent -	Sale	s and	
Distri	ibutior	1															
UNI	Г 4: Т	HE	ERP N	IARK	ET	-		~ .		-		0 -				-	
ERP	Marke	et Pl	ace and	Mark	etplac	ce Dyr	namics	s - SA	AP AG	- Peo	ple so	oft – 1	Baa	n - J	D Edv	wards-	
	e corp	orat	וסמ – U נ חמ מ	AD –	SSA TAN	UIODA	I - Lav	vson s	sonwa	re							
Turb	L J: A Char	CK 	r – r k l he FRF	DJUN Svete	I AN m -1	JTU FIA -	IUKI FRP «	י nd F-	Busin	ess _ F	RP I	ntern	et a	nd V	vww	- FRP	
II - F	uture l	Dire	ctions a	nd Tre	ends i	n ERP		ing L'	Jusin	- 665 - 1	, 1			uiu v			
TEX	T BO	OK															

1. Alexis Leon, "ERP Demystified", Tata McGraw Hill, New Delhi, 3rd edition 2014.

- 1. Joseph A Brady, Ellen F Monk, Bret Wagner, "Concepts in Enterprise Resource Planning", Thompson Course Technology, USA, 2001.
- 2. Vinod Kumar Garg and Venkitakrishnan N K, "Enterprise Resource Planning Concepts and Practice", PHI, New Delhi, 2003.

2131	NT73	08	SFR	VICE		FNTE		рсні	тест	TIRF	L	Т	Р	X	CI	E	
2131		00									2	0	2	0	3 4	101	
Prere	equisit	te	Comp	uter (Organi	zation	and	Assem	ibly La	anguag	ge Pro	ogram	ming	(212	INTI	.101)	
Cours	se		Profes	ssiona	l Elec	tives											
Categ	gory																
Cours	se Ty	ре	Integr	ated (Course	e with	Theor	ry									
Obie	ctive(s	5)	•	To	earn t	he cor	icepts	of di	stribute	ed ann	licatio	on de	velon	ment			
o »Je		-)	•	То	liffere	entiate	XML	based	d web	service	es fro	m oth	er sta	andar	d mo	odels	
			•	To s	study	the im	portai	nce of	servic	e com	positi	on					
Cour		teon															
Cours (<u>50 0 u</u> 201		Under	rstand	cruci	al con	cepts	of SO	A								
(CO2		Know	the i	ntegra	tion o	f SOA	A tech	nologi	cal poi	nts w	ith W	eb S	ervic	es.		
(CO3		Imple	ment	of SO	A in c	levelo	pmen	t cycle	of W	eb Se	rvices					
0	CO4		Build	SOA	base	ed app	licatio	ons fo	or We	b serv	ices,	some	e of	the j	preva	uiling	
			standa	ards an	nd as of V	Wob S	orvio	20									
(705		Imple	aplement the applications based on Java Web Services													
Mapp	ing of	⁻ CO	s with	iplement the applications based on Java Web Services													
COs	PO's	5		vith Pos PSO's													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	;	
CO1	2				3							1	2				
CO2	3	3	1		3									1			
CO3	3		2	3			2					3			2		
CO4	2	3	3					3				3		3			
CO5	3	2					3					1	2				
Cours	se To	pic(s	3)														
UNIT	1:	SOA	FUN	DAM	ENTA	LS _							01				
SOA Busin	- Ser	vices	s - Loo	ose C	ouplin	$\log - T$	he Er	orgoni	se serv	vice bi	$\frac{18}{18} - \frac{8}{18}$	servic	e Cla	assifi zotio	catio	n - 0	
in cor	itess pr ntext -	- Me	s mana ssage e	exchar	nge na	OA all	-SO	A life	cvcle	-30 -Vers	A and	$\sigma = W$	lgain Zeb se	ervic	u - ə esUN	JIT	
2:	noni	SER	VICE	-ORI	ENTE	ED AN	ALY	SIS A	ND D	ESIG	N	5	00 5		0.501		
SOA	Tern	ninol	ogy an	d Co	ncepts	- RE	ST D	esign	Const	raints	and (Goals	- RF	ESTfi	ıl Se	rvice-	
Orien	tation	- Se	ervice	Contra	acts w	ith R	EST -	Serv	ice-Or	ientati	on an	d RE	ST S	ervic	e-Or	iented	
Analy	vsis ai	nd D	Design	with	REST	M	ainstr	eam S	SOA N	Method	lology	/ - A	nalys	sis a	nd S	ervice	
script	sing v	vith	RESI	- Ser	vice-C	riente	a Des	sign w	ith Ki	EST H	INIL	- Co	okies	5 - 51	mple	PHP	
UNIT	。 `3:§	SER	VICE	сом	POSI	TION											
Servio	ce Co	mpo	sition v	with F	REST	- Fund	damer	ntal Se	ervice	Comp	ositio	n wit	h RE	ST -	Adv	anced	
Servio	ce Coi	npos	ition w	ith R	EST -	Servic	e Cor	nposit	ion wi	th RES	ST Ca	se Stu	ıdy -	Desi	gn Pa	atterns	
for SO	DA wi	ith R	EST -	Servi	e Vei	sionin	g wit	h RES	T - Ui	niform	Cont	ract F	Profile	es			
UNIT	4: R	EST	FULS	SERV	ICES	AND	THE	E RES	OUR	CE-OI	RIEN	TED	ARC	HI'I']	ECT	UKE	

Introducing the Simple Storage Service - Object-Oriented Design of S3 - URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface - Resource Design - Turning Requirements into Read-Only Resources - Service Implementation - Web service case studies - Connect Resources to Each Other - ControllerCode - Model Code **UNIT 5 : SOA TRANSACTION AND SECURITY**

SOA and performance - SOA and security – Service Management - Model driven service deployment – Establishing SOA and SOA governance

TEXT BOOK

- 1. Nicolai M.Josuttis, "SOA in design The art of distributed system design", O'REILLY publication, 2007.
- 2. 2. Raj Balasubramanian, Benjamin Carlyle, Thomas Erl, Cesare Pautasso, "SOA with REST Principles, Patterns & Constraints for building Enterprise solutions with REST", Prentice Hall/PearsonPTR, 2012.
- 3. 3. Leonard Richardson and Sam Ruby, "RESTful Web Services", O'REILLY publication, 2007.

REFERENCES

1. Thomas Erl, "Service Oriented Architecture: Concepts, Technology, and Design", Pearson education, 2005.

2131	NT11	03	SOF	TWA	RE F	PROJ	ECT]	MAN	AGEN	AENT	L	Γ]	P	X	С	H
						1100					3	0) (0	0	3	3
Prere	quisit	te	Nil														
Cours	se		Profe	ssiona	1 Elec	ctive											
Categ	gory																
Cours	se Ty	ре	Theor	y													
Objeo	ctive(s	5)	• To manag	develo gemer	op an it.	aware	ness c	of the	need f	or pro	ject pl	lannin	g ai	nd			
			• To]	know	about	softw	are ef	fort e	stimati	ion and	d activ	vity pl	ann	in	g.		
			• To (explor	e risk	and p	people	mana	igemei	nt.							
			• To I	learn a	about	proje	et mor	itorin	g and	contro	l mec	hanisr	ns.				
			• To]	know	about	softw	are qu	ıality	manag	gement	t						
							1	2									
Cours	Course Ozutcome(s)																
(CO1		me(s) Differentiate between various software process models.														
(CO2		Prepa	re pro	ject p	lannir	ng doc	umen	ts.								
(CO3		Estim	ate th	e soft	ware o	cost fo	r proj									
(CO4		Perfo	rm eff	ective	e activ	vity pla	anning	z .								
(205		Prepa	re effe	ective	proje	ct sch	edulin	ig wor	k prod	luct.						
Mapp	ing of	f CO	s with	Pos													
COs	PO's	5											P	SO)'s		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1		2	3	
CO1	2				3							1	2				
CO2	3	3	1		3										1		
CO3	3		2	3			2					3				2	
CO4	2	3	3	1	1			3				3	\square		3		
CO5	3	2		1	1		3	1			1	1	2				
Cour	se To	pic(s	s)	1	1	1	1	1	1	1	1	1	1		1		
UNIT	I IN	TRO	DUC	ΓΙΟΝ													
Projec	ct - Sc	oftwa	are Proj	ects v	ersus	Other	Types	s of Pr	oject -	- Conti	ract M	lanage	me	nt a	and T	Techn	ical
Projec	et Ma	inage	ement	– Ac	tivitie	es – 1	Plans,	Metl	nods a	and M	lethod	lologie	s	_	Req	uirem	ient

Project – Software Projects Versus Other Types of Project – Contract Management and Technical Project Management – Activities – Plans, Methods and Methodologies – Requirement Specification – Management Control – Overview of Project Planning – Introduction to Step Wise Project Planning – Programme Management and Project Evaluation.

UNIT II SOFTWARE EFFORT ESTIMATION AND ACTIVITY PLANNING

Software Effort Estimation: Problems with Over and Under Estimates – Basis of Software Estimating – Techniques – Expert Judgment – Cosmic Full Function Points – A Procedural Code Oriented Approach – COCOMO: A Parametric Model – Activity Planning: Objectives – Project Schedules – Projects and Activities – Sequencing and Scheduling Activities – Network Planning Models – Formulating A Network Model – Identifying Critical Path – Shortening the Project Duration – Identifying Critical Activities – Activity-on-arrowNetworks.

UNIT III SOFTWARE RISK AND PEOPLE MANAGEMENT

Categories of Risk – Framework for Dealing with Risk – Risk Identification – Risk Assessment – Risk Planning – Risk Management – Evaluating Risks to the Schedule – Applying the PERT Technique – Monte Carlo Simulation – Critical Chain Concepts – Resource Allocation: Nature of Resources – Identifying Resource Requirements – Scheduling Resources – Creating Critical Paths – Counting the Cost – Cost Schedules – SchedulingSequence.

UNIT IV SOFTWARE PROJECT MONITORING AND CONTROL

Creating the Framework – Collecting the Data: Partial Completion Reporting – Risk Reporting – Visualizing Progress: Gantt chart – Slip chart – Ball Charts – The Timeline –Cost Monitoring – Earned Value Analysis – Prioritizing Monitoring – Getting the Project Back to Target – Change Control.

UNIT V SOFTWARE QUALITY MANAGEMENT

Managing Contracts: The ISO 12207 Approach, Supply Process, Types, Stages, Contract Management Managing People and Organizing Teams: Understanding Behaviour, Organizational Behaviour, Motivation, The Oldham– Hackman Job Characteristics Model, Decision Making, Leadership, Dispersed And Virtual Teams, Software Quality – Importance, Defining Software Quality, ISO 9126, Software Quality Measures, Product Versus Process Quality Management, External Standards, Quality Plans.

TEXT BOOKS:

1. Bob Hughes, Mike Cotterell, "Software Project Management", Fourth Edition, Tata McGraw-Hill, 2011.

2. Walker Royce, "Software Project Management: A Unified Framework", Pearson Education, 2004.

REFERENCES:

1. S. A. Kelkar, "Software Project Management: A Concise Study Paperback", Prentice Hall of India, 2013.

2. Ramesh Gopalaswamy, "Managing Global Software Projects", Tata McGraw Hill, 2001.

3. Humphrey Watts, "Managing the software process", Addison Wesley, 1989.

4. Ashfaque Ahmed, "Software Project Management Process Driven Approach", Auerbach Publications, 2011.

											L		Т	P	Χ	С	Η
21	3INT:	1317		STA	FISTI I	ICAL DATA	F(SCII	DUNE ENCE	ATIO	N	OF <mark>3</mark>		0	2	0	4	5
Prere	quisit	e	Nil												1		
Cours Categ	se orv		Pro	ofessio	nal E	lective	es										
Cours	se Ty	pe	Inte	egrate	d Cou	rse w	ith Th	eory									
Objec	ctive(s	s)	•	Prej usin as a	pare tl ng Hao Hado	he stu loop l oop De	idents Ecosys evelop	to un stem a er, Ha	idersta and pro adoop	nd and epare 1 Admin	d pra them nistra	for a tor, I	Big a Ca Data	g Da reer Sci	ata in z enti	Ana Ana st.	lytics lytics
Cours	se Ou	tcom	e(s)														
	CO1		Un the cor	dersta asso nputin	nd the ociated g.	e key 1 ap	issue: plicati	s on l ons	oig dat in in	ta, cha tellige	aracte	eristio busir	cs, o ness	lata an	sou d	rces sciei	and ntific
	CO2		Ac dat	Acquire fundamental enabling techniques and scalable algorithms in big data analytics. Interpret business models and scientific computing paradigms, and apply													
	CO3		Inte sof	data analytics. Interpret business models and scientific computing paradigms, and apply software tools for Big data analytics.													
	CO4		Acl ser exp	hieve vices, plorati	adequ health on, an	ate pe 1 serv d env	rspect rices, s rironm	ives o social ental	f big d netwo sensor	lata ar orking, applic	nalyti astr catioi	cs ir ophy ns, et	n ma sics c.	arke	ting	,fina	ncial
	CO5		Sel stat	ect vi tistical	sualiz l mode	ation els an	techn d unde	iques erstan	and to d how	ools to to har	o ana ndle l	lyze arge	big amo	dat ount	a ar s of	nd c data	reate 1.
Mapp	ing of	COs	with 1	Pos													
COs	PO's	5											I	PSO	's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	L	2	3	
CO1	3	2										1	2				
CO2		2	2	3								1			1		
CO3		2	2			3						1				2	
CO4		2	2				3					1			3	Τ	
CO5		2	2								3	1	2				
Cours	se To	pic(s)															
UNIT	1: II	NTRO	DUC	TION	N TO	BIG	DATA										

Introduction to Big Data Platform – Challenges of conventional systems – Web data – Evolution of Analytic scalability, analytic processes and tools, Analysis vs reporting – Modern data analytic tools, Stastical concepts: Sampling distributions, resampling, statistical inference, prediction error.

UNIT 2: MINING DATA STREAMS

Introduction to Streams Concepts – Stream data model and architecture – Stream Computing, Sampling data in a stream – Filtering streams – Counting distinct elements in a stream – Estimating moments – Counting oneness in a window – Decaying window – Realtime Analytics Platform(RTAP) applications – case studies – real time sentiment analysis, stock market predictions.

UNIT 3: HADOOP

History of Hadoop- The Hadoop Distributed File System -Components of Hadoop -

Analyzing

The Data with Hadoop-Scaling Out-Hadoop Streaming-Design of HDFS-Java interfaces to HDFS-Basics-Developing a Map Reduce Application-How Map Reduce Works-Anatomy of a Map Reduce Job run-Failures-Job Scheduling-Shuffle and Sort–Task execution-Map Reduce Types and Formats

UNIT 4: HADOOP ENVIRONMENT

Setting up a Hadoop Cluster -Cluster specification -Cluster Setup and Installation -HadoopConfiguration-Security in Hadoop -Administering Hadoop –HDFS -Monitoring-Maintenance-Hadoop benchmarks-Hadoop in the cloud

UNIT 5: FRAMEWORKS

Applications on Big Data Using Pig and Hive –Data processing operators in Pig –Hive services –HiveQL –Querying Data in Hive -fundamentals of HBase and ZooKeeper -IBM InfoSphere-. Visualizations -Visual data analysis techniques, interaction techniques.

TEXT BOOKS:

1. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007. 2. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.

REFERENCES:

 Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with advanced analystics", John Wiley & sons, 2012.
 Glenn J. Myatt, "Making Sense of Data", John Wiley & Sons, 2007 Pete Warden, Big Data Glossary, O'Reilly, 2011.

213IN	NT1	105			Digit	al Ma	arketi	ng			L	T	P	X	C	H
Prere	qui	site	Nil		-			-		1	5	V	U	V	5	<u>p</u>
Cour	se		Profe	ssional	Elect	ives										
Categ	gory															
Cours	se		Theo	ry												
1 ype	otiva	a (e)		Toit	trodu	oo tha	studo	nto w	ith tha	foun	dation	e of D	igital	Mor	leatin	a
Objec		.(3)		Ton	nake t	he stu	dents	unde	rstand	the c	oncep	t of SI	EO. F	Pav t	ber C	5 lick.
				Goog	gle An	alytic	S				r		,_	j - r		,
Cours	se C)utco	ome(s)													
C	01		Unde	rstand	Digita	1 Mar	keting	and	Keywo	ords,]	Hostin	g				
<u> </u>	202		Able	to gene	rate S	EO a	nd des	ign e	mail m	arket	ing an	d Mail	Chir	np		
	$\frac{203}{104}$		Able	to build	d ema	il sign	up to	$\frac{ms}{fic}$	Adword	ls, Se	earch a	and De	sign (Cam	paign	S
	04 05		Anal	yse the m	arketi	ng tea	hniau	$\frac{110}{100}$ p	Social	Med ¹	ia Can	u maion	cetting	5		
Марр	ing	of C	Os with	n Pos	urketi	115 100	innqu	c 5 m	boeiui	ivicu.		ipuigii				
COs	PC)'s											PSC)'s		
СО	1	2	3	3 4 5 6 7 8 9 10 11 12 1 2 3												
CO1	3	2		3 4 5 6 7 8 9 10 11 12 1 2 3												
CO2		2	2	3										1		
CO3		2	2			3									2	
CO4		2	2				3							3		
CO5		2	2										2			
Cours	se T	opic	x(s)													
Unit	T	Intr	oductic	n to D	inital	Mark	ating	nd it	Signi	fican		adition	al M	arko	ting '	Ve
Omt	. 1	Dig	ital Ma	rketing	- Dig	ital M	arketi	ng Pro	cess -	Webs	ite Pla	nning	and D)evel	opme	v s ent
		: T	ypes of	of web	sites	- We	ebsite	Plan	ning a	and	Develo	opment	t : F	Keyw	ords/	-
		Une	derstand	ling D	omain	and	Webł	nostin	g - B	uildiı	ng We	ebsite/l	Blog	usin	g CN	1S
		Wo	rdPress	- Usin	g Wor	dPres	s Plug	-ins								
Unit	II	Intr	oductio	on to Se	arch H	Engine	e Optii	nizati	on - K	eywo	rd Pla	nner T	ools ·	- On	Page	SEO
		Tec	hnique	s-Index	ing ar	id Key	y Wor	d Pla	cement	t - Oı	1 Page	SEO	Tech	niqu	es-Co	ntent
		Opt	imizati ail Ma	on - O rketing	n Pag Intr	e SEC	$\mathbf{J}:\mathbf{Y}\mathbf{C}$	ast S	EO PI	ug-in	- Off	-Page) Te	chniq mark	ues -
		can	an maigns	using l	- mu Mail C	Chimp	ion a		ignine	ance	- De	Signing	3 C-11	lan	main	eting
Unit	ш	R 11	Iding E	_mail I	ist an	r d Sian	un Fo	rme	Email	Marl	reting	Strator	W and	-Mo	nitori	na
		Em	ail –Ai	tomiza	tion -	Pav 1	Per Cl	ick A	dverti	sing:	Introd	luction	y and - Pa	μνιο: ν Ρε	r Cli	ng ck
		Adv	vertisin	g: Goo	gle A	dwor	d - T	ype s	of B	iddin	g strat	egies	- De	signi	ng a	nd
		Mo	nitoring	g search	n camp	paigns	- Des	signin	g and	Mon	itoring	g Displ	lay ca	impa	igns	

Unit IV	Designing and Monitoring Video campaigns - Designin g and Monitoring
	Universal App Campaigns - Google Analytics : Introduction and Significance -
	Google Analytics Interface and Setup - Understanding Goals and Conversions -
	Monitoring Traffic Behavior and preparing Reports - Social Media Marketing :
	Introduction and Significance - Facebook Marketing : Introduction Types of
	Various Ad Formats
Unit V	Setting up Facebook Advertising Account - Under standing Facebook Audience
	and its Types - Designing Facebook Advertising Campaigns - Working with
	Facebook Pixel
	Twitter Marketing: Basics - Designing Twitter Advertising Campaigns -
	Introduction to LinkedIn Marketing - Developing digital marketing strategy in
	Integration form

TEXT BOOKS

1. Google Ad words for Beginners: A Do-It-Yourself Guide to PPC Advertising, By Cory Rabazinsky, 2015

- 2. Digital Marketing for Dummies : By Ryan Deiss and Russ Hennesberry, 2017
- 3. Email Persuasion: Captivate and Engage Your Audience, Build Authority and Generate More Sales With Email Marketing By Ian Brodie, 2013

4. Social Media Marketing All-In-One for DummiesBy Jan Zimmerman and Deborah Ng, 2017

REFERENCE BOOKS

- 1. The Art of SEO, Eric Enge, Stephan Spencer, Jessie Stricchiola, 3rdEdition,O'Reilly Media Inc
- 2. Digital Marketing 2020, Catch your business with Digital Marketing, Danny Star

213I	NT13	14			WE	B SE	RVIC	ES			L 2	T O	P X 2 0	K .	C 3	H	
Prere	eanisit	e	Nil								-	v	20	ľ	5	<u> </u>	
Cour	se		Profe	ssiona	l Elec	tives											
Cates	zorv		11010														
Cour	se Ty	pe	Integr	ated (Course	e with	Theo	ry									
Obje	ctive(s	5)	• ′	To lea	rn the	theor	retical	and r	oractica	l con	cepts	of we	b pro	gram	ming	<u>z</u> .	
			•	To in applic To ma	troduc ations ake st	the the . udent	prog s to u	ammi nders	ing lan tand al	iguage	es for	deve chitec	elopin cture	g sin of we	nple eb so	web erver	
			• *	To tea applic To eff progra	ach me ations ficient	ethodo ly des ig lang	ologies sign ar guages	s usef nd imj	ul for t	the in t web	nplem appl	entati icatio	on of ns usi	dyna ing se	amic erver	web side	
Cour	se Ou	tcom	e(s)														
(CO1		Understand the theoretical and practical concepts (internet basics) to design, implement and maintain a typical web page, to understand different protocols used over the internet, to obtain good knowledge in web programming in JavaScript Develop and incorporate dynamic capabilities in Web pages using DHTML and JavaScript.														
(CO2 Develop and incorporate dynamic capabilities in Web pages using DHTML and JavaScript																
			Develop and incorporate dynamic capabilities in Web pages using DHTML and JavaScript.														
(CO3		and JavaScript. Understand the basic concepts of client-server architecture, features, web applications, web servers to deploy web site, to include multimedia contents														
(CO4		Under and A	rstand Apply	datab XML	ase t for de	oasics esignii	relate	ed to d b page	levelo s.	op dy	namic	web	appl	licati	ons	
(CO5		Apply server the da design	/ adva r-side atabas n and	anced softwa e, test imple	web are tha t and ment	develo at inter debug interao	opmen cacts v the solution	nt prog with a d softwar web pa	gramn lataba re, dej ges	ning t se for ploy t	o des the pr the so	ign a urpos ftwar	nd in es of e, to	nplei quer	nent ying	
Mapp	ing of	COs	with l	Pos													
COs	PO's	5											PSC	D's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1		2	3		3							1	2			\neg	
CO2		2	3	1	3	1	1	1					1	1			
CO3		3													2		
CO4		3	1		3							3		3			
CO5		2	3	1	3							3	2				
Cour	se To	pic(s))														
UNIT	[1 :]	INTI	RODU	CTIO	N												
Histor Table	ry and s, Ima	l basi ges, l lel - V	c idea Forms, Web p	of In Fram	ternet; es, XN	; Inter /IL- D Desig	met se locum	rvices ent ty web p	s: telne pe def	t, e-n initio ith H	nail, f n, XN TMI '	tp, W ML So 5 – N	WW- chema	- HTN as,* E ment	ML- Docu s ado	List, ment led -	
semar	ntic el	lemer	its -at	tribute	es of	form	-grap	hic e	lement	s- m	ultime	edia e	leme	nts-A	PIs-0	CSS-	
	т			7			3 - P										

javascript-Jquery-AJAX UNIT 2: DYNAMIC HTML Introduction – Object refers, Dynamic style, Dynamic position, frames, navigator, Event Model – On check – On load – On error – Mouse related – Form process – Event Bubblers – Filters – Transport with the Filter – Creating Images – Adding shadows – Creating Gradients

- Creating Motion with Blur – Data Binding – Simple Data Binding – Moving with a record set – Sorting table data – Binding of an Image and table.

UNIT 3: MULTIMEDIA

Audio and video speech synthesis and recognition – Electronic Commerce – E-Business Model – E- Marketing – Online Payments and Security – Web Servers – HTTP request types

- System Architecture - Client Side Scripting and Server side Scripting - Accessing Web servers - IIS - Apache web server.

UNIT 4 :ASP

ASP – Working of ASP – Objects –File System Objects – Session tracking and cookies – ADO – Access a Database from ASP –Server side Active-X Components – Web Resources – XML – Structure in Data – Name spaces– DTD – Vocabularies – DOM methods

UNIT 5 : DATABASE CONNECTIVITY

Database Connectivity - ADO.NET- SqlConnection- SqlCommand- Reading Data with the SqlDataReader - Working with Disconnected Data - Adding Parameters to Commands - Using Stored Procedures

TEXT BOOK

2. Deitel&Deitel, Goldberg, "Internet and World Wide Web 5th Edition – How toProgram", Pearson Education Asia, 2012.

- 4. Eric Ladd, Jim O' Donnel, "Using HTML 4, XML and JAVA1.2", Prentice Hall of India, QUE, 1999.
- 5. Aferganatel, "Web Programming: Desktop Management", PHI, 2004.
- 6. Rajkamal, "Web Technology", Tata McGraw-Hill, 2001.

213	INT1.	315		M	ANA(GING	THE	CLC	OUD		L 2	Т 0	P 2 2 (X) (С 3	Н 4		
Prere	equisit	te	Nil								•							
Cour	se		Prof	ession	nal El	ective	S											
Categ	gory																	
Cours	se Ty	pe	Integ	grated	Cou	rse wi	th The	eory										
Obje	ctive(s	5)	•	To in	mpart	funda	amenta	al con	cepts i	n the	area c	of clou	id co	mputi	ng.			
			•	To com	imp puting	oart g	knov	vledge	e ir	n dev	elopin	g apj	olicat	tions	of c	loud		
Cours	se Ou	tcome	e(s)															
	CO1		Und com	Understanding the systems, protocols and mechanisms to support cloud computing Develop applications for cloud computing														
	CO2		Dev	Develop applications for cloud computing														
	CO3		Und	erstan	ding	the ha	ardwar	e nec	essary	for cl	oud c	ompu	ting					
	CO4		Desi	ign an	d imp	olemei	nt a no	ovel c	loud c	ompu	ting a	pplica	tion					
	CO5		Kno	wledg	ge in v	variou	s Cloi	id ver	dors a	and the	eir pro	oducts						
Mapp	ing of	COs	with I	Pos														
COs	PO's	5											PS	O's				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO1	1	3			3				3				2					
CO2		3	2		1							1		1				
CO3	1	3			2						3				2			
CO4		2	3		3			3				3		3				
CO5	1	3										3	2					

UNIT 1: INTRODUCTION

Overview – applications - intranet and cloud - examples: Amazon, Google, Microsoft, IBM – Benefits and Limitations of cloud computing - Google app engine – EMC - NETAPP - Microsoft Azure - Amazon(EC2, S3,SQS) - open stack -cloud computing services

UNIT 2: HARDWARE AND ARCHITECTURE

Clients-Security-Network-Services. Accessing the cloud: Platforms-web applications-web APIsweb browsers. Cloud storage: overview-providers. Standards: application-client- infrastructureservice.

UNIT 3: SOFTWARE AS SERVICE

Overview- Driving forces-company offerings-industries. Software plus services: Overviewmobile device integration-providers-Microsoft Online.

UNIT 4: DEVELOPING APPLICATIONS

Google – Microsoft – IntuitQuickBase - Cast Iron Cloud - Bungee Connect –Development (App engine, Azure, open stack etc.) - trouble shooting and application management.

UNIT 5: LOCAL CLOUDS AND THIN CLIENTS

Virtualization-server solutions-thin clients. Cloud Migration: cloud services for individualsenterprise cloud- methods for migration-analyzing cloud services.

TEXT BOOKS

- 1. Anthony T.Velte, Toby Velte, "Cloud Computing a practical approach", Mcgraw Hill, 2010.
- 2. M.S.V.Janakiram, "Demystifying the Cloud An introduction to Cloud Computing",

version 1.1, 2010.

REFERENCE BOOKS

- 1. Mark C. Chu-Carroll, "Code in the Cloud- Programming Google App Engine", The Pragmatic Bookshelf Raleigh, North Carolina Dallas, Texas, 2011.
- 2. Breslin "Cloud Computing: Principles and Paradigms", Wiley Press, New York, USA, 2008.

EMBEDDED AND SIGNAL PROCESSING

212IN	JT221	6	MO)BIL	E CC	OMM	UNIC	ATIC	DN AN	ND	L	Т	Р	X	С	Η	
21511	1331	.0			C	OMP	UTIN	G			3	0	2	0	4	5	
Prere	equisit	te D	ata Co	ommu	nicati	ions a	nd Co	mpute	er Net	works	(212)	INT33	301))			
Cour	se	P	rofess	ional	Electi	ves											
Calleg	gory	T.	toonot	ad Co			Theory										
Туре	se	п	negrai		burse	witti .	rneor	/									
Obje	ctive(s	\$)	 Tc co Tc co Tc co Tc su su Tc in Tc 	 learr mputi anal mputi mputi mak ch as learr volved desi 	n the ng. yze al ng. e stu GSM n the l in it ign a	funda bout i dents ,GPR basic nd in	menta nterne to ur S etc., c conc nplem	l cond t prot dersta epts d ent n	cepts of cocols, and ab cof adh nobile	of mob its iss pout va loc net applio	vile co sues v arious twork catior	ommu vhile s com s and ns in	inica dea imu 1 an dit	atio ling nica aly:	n and g with ation ze th ent k	l mobile 1 mobile systems e issues tinds of	e e s f
Cour		tcom	• To design and implement mobile applications in different kinds of operating systems ne(s)														
Cour	<u>50 Ou</u>		nderst	tand t	he ha	sic co	ncents	of m	obile (romnui	ting						
	<u>'02</u>		nalvze	anu u	it inte	ernet r	rotoc	of ind	Mohi	le inte	rnet r	rotoc					
	02	I	earn a	bout t	he di	fferen	$\frac{10000}{1000}$	$\frac{51 \text{ and}}{5 \text{ of } n}$	nohile	teleco	mmiii	nicati	$\frac{1}{2}$	vst	em		
C	03	A	nalyze ihoc r	e the inetwor	issues ks.	invol	lved in	n adh	oc net	works	and 1	earn t	the	vari	ious l	cinds of	
C	05	Ic	lentify	, desi	gn an	d imp	lemer	it mol	oile ap	plicati	ons ir	n vari	ous	pla	tform	IS.	
Mapp	ing of	COs	with 1	Pos													
COs	PO's	5											F	PSO	's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1		2	3	
CO1	1	3	1										2				
CO2		3	3			1									1		
CO3	1	3	2		3											2	
CO4		3	3	1			3					1			3		
CO5		2	3	3	2							1	2				
Cour	se To	pic(s)				·	•		•								
UNIT	11:	INTR	ODU	CTIO	N												
Male				Mala	$1 \circ C$		1	1		Mater			٦.	1. 11	0		

Mobile Computing – Mobile Computing Vs wireless Networking – Mobile Computing Applications – Characteristics of Mobile computing – Structure of Mobile Computing Application. MAC Protocols – Wireless MAC Issues – Fixed Assignment Schemes – Reservation Based Schemes. Practical: MAC Protocols UNIT 2: MOBILE INTERNET PROTOCOL AND TRANSPORT LAYER

Overview of Mobile IP – Features of Mobile IP – Key Mechanism in Mobile IP – route Optimization. Overview of TCP/IP – Architecture of TCP/IP- Adaptation of TCP Window –

Improvement in TCP Performance. Practical: Key Distribution mechanisms

UNIT 3 : MOBILE TELECOMMUNICATION SYSTEM

Global System for Mobile Communication (GSM) – General Packet Radio Service (GPRS) – Universal Mobile Telecommunication System (UMTS). Practical: GSM Technique

UNIT 4 : MOBILE AD-HOC NETWORKS

Ad-Hoc Basic Concepts – Characteristics – Applications – Design Issues – Routing – Essential of Traditional Routing Protocols – Popular Routing Protocols – Vehicular Ad Hoc networks (VANET) – MANET Vs VANET – Security. Practical: Routing Protocols

UNIT 5: MOBILE PLATFORMS AND APPLICATIONS

Mobile Device Operating Systems – Special Constrains & Requirements – Commercial Mobile Operating Systems – Software Development Kit: iOS, Android, BlackBerry, Windows Phone – M-Commerce – Structure – Pros & Cons – Mobile Payment System – Security Issues. Practical: Security Mechnisms

TEXT BOOK

1. Prasant Kumar Pattnaik, Rajib Mall, "Fundamentals of Mobile Computing", PHI Learning Pvt. Ltd, New Delhi – 2012.

- 1. Jochen H. Schller, "Mobile Communications", Second Edition, Pearson Education, New Delhi, 2007.
- 2. Dharma Prakash Agarval, Qing and An Zeng, "Introduction to Wireless and Mobile systems", Thomson Asia Pvt Ltd, 2005.
- 3. Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, "Principles of Mobile Computing", Springer, 2003.

213IN	NT130	1		INF TE	FORM CHNI	IATI OUE	ON C S	ODI	NG		L 3	T 0	P 2	X 0	C 4	H 4	
Prere	equisit	e N	Jil			QUL	0				U	v		v	1-		
Cour	se	P	rofess	ional	Electi	ves											
Categ	gory																
Cour	se	I	ntegrat	ed Co	ourse v	with T	Theory	/									
Туре																	
Obje	ctive(s)	• To	o exp	ose to	stud	lents	some	conce	epts ir	info	rmat	ion	the	eory,	and	the
			pe	rform	ance c	charac	teristi	cs of	an ide	al com	munio	catio	ns s	yste	em.		
			• To	o expo	se to	stude	nts fu	ndame	entals i	in cod	ing an	d its	apj	plica	ation	s.	
Cour	se Ou	tcom	e(s)														
C	01	E	Explain	basic	infor	matio	n and	chan	nel cap	pacity.							
C	202	U	Inderst	derstand different types of data and voice coding techniques plain and analyse source coding compression, decoding and error control													
C	03	E	Explain	plain and analyse source coding compression, decoding and error control													
		n	nethod	s as aj	pplied	in co	mmu	nicatio	on syst	tem.							
C	204	A	Analysi	s of v	arious	s text	and in	nage	compr	ession	techn	ique	s				
C	205	A	nalysi	s of a	udio a	and vi	deo c	oding	techni	iques							
Mapp	ing of	COs	with	Pos													
COs	PO's]	PSO)'s		
CO	1	2	3	4	5	6	7	8	9	10	11	12		1	2	3	
CO1	3	3					3					3	2				
CO2	2	3	1												1		
CO3	3	3	1			1	3	1				1				2	
CO4		3	1				2				3	1			3		
CO5		3	1				2				3	1	2				
Cour	se Toi	pic(s)															

UNIT 1 : INFORMATION ENTROPY FUNDAMENTALS

Uncertainty- Information and Entropy – Source coding Theorem – Huffman coding – Shannon Fano coding – Discrete Memory less channels – channel capacity – channel coding Theorem – Channel capacity Theorem.

UNIT 2 : DATA AND VOICE CODING

Differential Pulse code Modulation – Adaptive Differential Pulse Code Modulation – Adaptive sub band coding – Delta Modulation – Adaptive Delta Modulation – Coding of speech signal at low bit rates (Vocoder, LPC).

UNIT 3: ERROR CONTROL CODING

Linear Block codes – Syndrome Decoding – Minimum distance consideration – cyclic codes – Generator Polynomial – Parity check polynomial – Encoder for cyclic codes – calculation of syndrome – Convolutional codes.

UNIT 4: COMPRESSION TECHNIQUES

Principles – Text compression – Static Huffman Coding – Dynamic Huffman coding – Arithmetic coding – Image Compression – Graphics Interchange format – Tagged Image File Format – Digitized documents – Introduction to JPEG standards.

UNIT 5: AUDIO AND VIDEO CODING

Linear Predictive coding – code excited LPC – Perceptual coding, MPEG audio coders – Dolby audio coders – Video compression – Principles – Introduction to H.261 & MPEG

Video standards.

TEXTBOOKS

- 1. Simon Haykin&Michael Moher, "Communication Systems", John Wiley and Sons, 5th Edition, 2009.
- 2. Fred Halsall, "Multimedia Communications, Applications Networks Protocols and Standards", Pearson Education, Asia 2002.

- 1. Mark Nelson, "Data Compression Book", BPB Publication 2nd edition 1996.
- 2. Watkinson J, "Compression in Video and Audio", Focal Press, London, 1995.

											т	Т	D	V	C	п	
213IN	T3307		I	BLUE	тоо	ТН Т	ГЕСН	NOL	OGY		L 3	0	P 2	<u>л</u> 0	4	п 5	
Prere	equisite	Da	ta Co	ommu	nicati	ons ar	nd Cor	mpute	r Netv	vorks	(2121)	VT330	1)		1		
Cour Categ	se gory	Pro	ofessi	onal l	Electiv	ves											
Cour	se	Int	egrat	ed Co	urse v	with T	heory										
Туре			U				•										
Obje	ctive(s)	•	To To Blu To and To To sol	Unde Und uetoot Conf d Acc Insta Conf	erstan erstan h. Tigure ess Pc Il and Tigure s usin	d Blue nd the Bluet pints. confi LAN g Blue	etooth APIs tooth-c igure l acces etooth	's star s, rad enable Blueto s, ren	idards, io inte ed devi ooth ha note ac	archi erface ices in urdwar ecess a	tecture and ncludir re and and FA	e and oprotocong molessoftwa AX gat	opera ol la oile p ure. eway	tion. yers ohon y acc	use es,] cess	ed by PDAs point	
Cour	se Out	come	me(s)														
C	201	De opt	me(s) Demonstrate the students about how Bluetooth devices pair set up and the options concerning discoverability														
C	202	An	alyze	the v	ariou	s kind	ls of d	ata tra	ansfer	betwe	en Blu	ietootł	n dev	ices			
C	03	Cre	eate t	rust a	nd see	curity	relate	d poli	cies w	hich a	re han	dled b	y Bl	ueto	oth.		
C	204	Im cor	plem npati	ent pr ble to	ofiles speci	like ified a	the Happlica	leadse ations.	t prof	ïle, L	AN, (OBEX	, and	l Se	rial	port	
Mapp	oing of	COs v	vith I	Pos													
COs	PO's												PSC)'s			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2		3	
CO1	3		3	2									2				
CO2	3		3	2		1								1			
CO3			3	3		2									2		
CO4	3		2	3							3			3			
CO5													2				
Cour	se Top	ic(s)															
UNII	ſ1: E	BASIC	C CO	NCE	PTS												
Com	onents	-netwo	orks-'	Topol	ogies	-Proto	cols a	nd Sta	ndards	s–ISO	OSI 1	model	Orig	in- 1	olue	tooth	

SIG - Protocol stack - Security applications and profiles – management - test and qualification technology basics - RF and IR wireless communication.

UNIT 2: BLUETOOTH MODULE

Antennas patterns - gain and losses- types of antennas- on chip antennas radio interference - FH, modulation, symbol timing, power emission and control, performance parameters - RF architecture - Blur RF - Base band - Blue tooth device address system timing - Physical links - packet structuring types and construction - channel coding and time base synchronization.

UNIT 3 : LINK CONTROLLER AND MANAGEMENT

LCP- controller states - Pico net and scattered operations - Master / slave role switching LC Architectural overview – LMC - Link set up - Quality of service - LMP version - Name represent - Test mode.

UNIT 4 : BLUETOOTH HOST

LLC and adaptation protocol L2 cap signaling – connections- Blue tooth profiles- Version 1.0-Generic profiles-serial and object exchange.

UNIT 5: SECURITY

Encryption and security Key generation - security Modes and architecture - Low power operation and QOS management.

TEXT BOOK

1. Jennifer, Sturman, "Bluetooth Connect without cables", 2nd Edition, Pearson education 2005.

- Brent A.Miller and Bisdikian C, "Bluetooth reveeled", 2nd Edition, Pearson Education 2002.
- 2. Muller J, "Blue tooth Demystified", Nathan Tata Mc Graw Hill 2001.

21211172209	WIDELESS SENSOD NETWODKS	L	Т	Р	Х	С	Η								
2131N 13308	WIRELESS SENSOR NET WORKS	3	0	2	0	4	5								
Prerequisite	Data Communications and Computer Networks (212IN	JT33	01)											
Course Category	Professional Electives														
Course Type	Integrated Course with Theory														
Objective(s)	To teach the general principles of wireless sensor networks, and the state of the														
	art in information processing in wireless sensor networks.														
Course Outco	me(s)														
CO1	Demonstrate familiarity with common wireless s	ensor	node	e arc	hitec	tures									
CO2	Illustrate knowledge of MAC and routing protoc	ols de	velop	ped f	for V	VSN									
CO3	Emphasize the importance of time synchronization	on and	lloca	aliza	tion	of WS	SN								
CO4	Interpret the operating system developed for WS	N													
CO5	Identify the suitable topology for WSN														

Mappi	Mapping of COs with Pos														
COs	PO's	5											PSO	's	
CO	1 2 3 4 5 6 7 8 9 10 11 12										12	1	2	3	
CO1	3		3	3	2		1					1	2		
CO2	3	3					1							1	
CO3	3		3												2
CO4	3	1												3	
CO5		1		2									2		

UNIT 1: INTRODUCTION AND OVERVIEW OF WIRELESS SENSOR NETWORKS

Introduction - Basic overview of the technology - Range of applications - Examples of category 1 and 2 WSN application - Sensor node technology - Sensor taxonomy - WN node operating environment – WN Trends - Wireless Transmission Technology and Systems – Applications of Wireless Sensor Network

UNIT 2: POWER MANAGEMENT AND ROUTING IN WSN

Distributed Power – Aware micro sensor networks - Dynamic voltage scaling techniques – Operating system for energy Scalable in WSN - Dynamic power management -Energy aware routing - Altruists or Friendly neighbors in the Pico radio sensor network - Aggregate queries -Bluetooth in the distributed sensor network - Mobile networking for smart dust

UNIT 3 : CLUSTERING AND SECURITY PROTOCOLS IN WSN

Topology discovery and clusters in sensor networks - Adaptive clustering with deterministic Cluster – Head selection -Sensor cluster's performance - Power – aware functions -Efficient flooding with passive Clustering -Security protocols in sensor networks - Communication security **UNIT 4: NETWORK MANAGEMENT AND OPERATING SYSTEM**

Network management requirements - Traditional network management models - Network

management design issues – MANNA - other issues related to network management - Operating system design issues – TinyOS – Mate – MagnetOS – MANTIS – OSPM - EYES OS – SenOS – EMERALDS – PicsOS - WSN design issues -Performance modeling - Case study: Simple computation of the System Life Span. WSN Network architecture: typical network architectures-data relaying and aggregation strategies

UNIT 5: TOPOLOGY CONTROL

Issues in WSN routing – OLSR- Localization – Indoor and Sensor Network Localization-absolute and relative localization, triangulation-QOS in WSN.Topology Control - Distributed Topology Control- Design Guidelines -Ideal Features of a Topology Control Protocol .The Quality of Information - Logical and Physical Node Degrees ; Location-based Topology Control, Localization- Absolute and relative localization. Neighbor-based Topology Control - The Number of Neighbors for Connectivity - The KNeigh Protocol - The XTC Protocol; Dealing with Node Mobility

TEXT BOOKS

- 1. KazemSohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks Technology -Protocols and Applications", John Wiley & Sons, Ltd, 2007.
- 2. Anna Hac, "Wireless Sensor Network Designs", John Wiley & Sons, Ltd, 2003.
- 3. Paolo Santi, "Topology Control in Wireless Ad Hoc and Sensor Networks", John Wiley & Sons, Ltd, 2005.

- 1. Andreas Willing, "Protocols and Architecture for Wireless Sensor Networks", , John Wiley & Sons Ltd., 2005.
- 2. Ian F. Akyildiz and Mehmet Can, "Wireless Sensor Networks", John Wiley & Sons Ltd., 2010.
- 3. Mohammad Ilyas and ImadMahgoub, "Handbook of sensor networks : Compact wireless and wired sensing systems", CRC Press LLC, 2005.

213IN	JT130	2	Г	DIGIT	AT. IN	ЛАСЕ		CESS	ING		L	Τ	P	X	С	Η
21311	11150	4	L	1011		AUL		CLOD	III U		2	0	2	0	3	4
Prere	quisit	e N	Jil													
Cours	se	F	rofessi	onal E	lective	es										
Categ	ory															
Cours	se Typ	e I	ntegrate	ed Cou	irse w	ith The	eory									
Objec	ctive(s	Γ ('o intro	oduce	the b	asic c	concep	ts and	l meth	nodolo	gies f	for an	alys	is,	mod	leling,
_		s	vnthesi	s and	codin	ig of	speecl	n and	music	and	to pro	ovide	a fo	oun	datic	on for
		d	evelon	ing an	olicati	ons an	d for f	urther	study	in the	field o	f digit	al ai	idic	o star	udards
		2	nd its t	echnia	1165				stady							
		1	na no t	connig	ues											
Course Outcome(s)																
CO1		E	Explain the basic concepts like sampling, image representation													
CO2		(Carry va	arious	transfo	ormati	ons on	image	es and	restor	e them	1				
CO3		E	Enhance	e the ir	nages	using	variou	s filter	ring te	chniqu	les for	the re	gior	n of	inte	rest
CO4		A	Apply v	arious	segme	entatio	n tech	niques	s on di	gital ir	nages					
CO5		Ι	Describe	e vario	us rep	resent	ations	of dig	ital im	nages						
Mappi	ing of	COs	with Po	OS												
COs	PO's												PS	50's	5	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1		2	3
CO1	3	2										3	2			
CO2		3	2 1													
CO3	3	3					2					3				2
CO4		3	3											3	3	
CO5		3	3				2						2			

Unit 1 : Image Processing Fundamentals

Advantages, Applications, Limitations of DIP; Components of an image processing system, Digital image representation, light, hue, saturation and intensity, grey scale and colour images, colour models; Basic relationship between pixels, image sampling and quantization

Unit 2: Image Transforms, Image Restoration

Two dimensional orthogonal transforms - DFT, FFT, Walsh, Slant, Hadamard, Haar transform, KLT, DCT, wavelets; Image degradation: Spatial domain, frequency domain; Degradation model for continuous function, continuous impulse function, restoration approaches: unconstrained restoration, constrained restoration, Lagrange multiplier, minimum mean square error filtering, constrained least square filtering, inverse filtering, removal of blur caused by uniform linear motion, Wiener filter, Geometric mean filter, Geometrical transformations

Unit 3: Image Enhancement

Image enhancement in the Spatial Domain, background, basic grey level transformations, histogram processing, enhancement using arithmetic/logic operations, basic of spatial filtering, smoothing spatial filters, sharpening spatial filters, combining spatial enhancement methods,

image enhancement in the frequency domain -background, introduction to Fourier transform and frequency domain, smoothing frequency domain filters, sharpening frequency domain filters, homomorphic filters, implementation

Unit 4 : Image Segmentation

Detection of discontinuities, edge linking and boundary detection, threshold, region-based segmentation, segmentation by morphological watersheds, use of motion in segmentation

Unit 5: Image Representation

Image representation, Boundary representation using chain codes, Polygonal approximation, signatures, skeleton, patters, recognition based on decision theoretic methods

Text Book(s):

1. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, Pearson, 3rd Edition, 2013 **Reference(s):**

1. Anil. K. Jain, Fundamentals of Digital Image Processing, PHI, 2001

2. William K. Pratt, Digital image processing: PIKS Scientific Inside, Wiley, 4th Edition, 2012

213INT2309	REAL TIME SYSTEMSLTPXCH202034												
Prerequisite	Operating Systems Concepts (212INT2302)												
Course Category	Professional Electives												
Course Type	Integrated Course with Theory												
Objective(s)	 Explain and apply the fundamental concepts and terminology of real-time systems. Explain and address the fundamental problems of real-time systems. Analyze real-time systems designs. Design a real-time system. Identify and assess the relevant literature and research trends of real-time systems 												
Course Outco	me(s)												
CO1	Understand the basics and importance of real-time systems												
CO2	Implement a high-level analysis document based on requirements specifications												
CO3	Implement a high-level design document based on analysis documentation												
CO4	Implement a test plan based on requirements specification												
CO5	Implement a validation plan based on all documentation												

Mappi	Mapping of COs with Pos														
COs	PO's	5											PSC	D's	
CO	<u>1</u> <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u> <u>11</u> <u>12</u>											12	1	2	3
CO1	3	2											2		
CO2	1	3	3	2	2									1	
CO3	1	3	3	2	2						1	1			2
CO4		3	2								1			3	
CO5		3	2		2					1	1		2		

UNIT 1: INTRODUCTION

Introduction-Issues in real time computing-Architecture of Real time Systems and Embedded Systems – Operating Systems issues – Performance Measures – Estimating Program runtimes.

UNIT 2: TASK ASSIGNMENT AND SCHEDULING

Classical uniprocessor Scheduling algorithms - uniprocessor Scheduling of IRIS Tasks – Tasks Assignment -Mode charges -Fault tolerant scheduling.

UNIT 3: PROGRAMMING LANGUAGES AND TOOLS

Desired language characteristics based on ADA – Data typs – Control Structures – Packages – Exception Handling – Overloading – Multitasking – Timing specification – Task Scheduling – Just-intime Compilation – Runtime support.

UNIT 4: REAL TIME DATA BASES

Basic networking principles – Real time databases –Real time Vs general purpose data base-Transaction processing – Concurrency control – Disk scheduling algorithms – Serialization and Consistency-Data base for hard real time systems.

UNIT 5: FAULT TOLERANCE, RELIABILITY AND SYNCHRONIZATION

Fault types – Fault detection and containment – Redundancy – Data diversity – Reversal checks – Obtaining parameter values – Reliability models for hardware redundancy – Software error models – Clocks – Fault tolerant synchronization – Synchronization in software.

TEXT BOOK

1. Krishna C.M., Kang G.Shin, "Real -Time Systems", McGraw-Hill, International Editions, 2010.

- 2. Raymond J.A. Buhr, Donald L. Bailey, "An Introduction To Real Time Systems", Prentice Hall International, 1999.
- 3. Stuart Bennett, "Real Time computer control-An Introduction", PHI, 2004.

213INT3309	INDUSTRIAL IoT	L 3	T 0	P 2	X 0	C 4	H 5							
Prerequisite	Data Communications and Computer Networks (2121)	NT33	01)		U	-	<u> </u>							
Course Category	Professional Electives													
Course Type	ntegrated Course with Theory													
Objective(s)	 To learn about the fundamentals of Internet of Things To build a small low cost embedded system using Arduino/ Raspberry Pi or equivalent boards To apply the concept of Internet of Things in real world scenario 													
Course Outco	me(s)													
CO1	Design a portable IoT using Arduino/Equivalent board	ls and	relev	ant	prote	ocols	S							
CO2	Develop web services to access/control IoT devices													
CO3	Analyze the various components of IoT													
CO4	Analyze applications of IoT in real time scenario													
CO5	Deploy an IoT application and connect to the cloud													

Mapp	Mapping of COs with Pos														
COs	PO's	5											PSO	's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	3		3	3								2		
CO2	1	3	2	2			3			3				1	
CO3	1	3				3									2
CO4	1	3	2	3							3			3	
CO5	1	3	2	1			3						2		

Unit I Introduction

IIoT-Introduction, Industrial IoT: Business Model and RefereceArchiterture: IIoT-Business Models, Industrial IoT- Layers: IIoT Sensing, IIoT Processing, IIoT Communication, IIoT Networking.

Unit II IIoT Analytics

Big Data Analytics and Software Defined Networks, Machine Learning and Data Science, Julia Programming, Data Management with Hadoop.

Unit III IIoT Security

Industrial IoT: Security and Fog Computing - Cloud Computing in IIoT, Fog Computing in IIoT,

Security in IIoT.

Unit IV Robotics

Sensor Categories, Binary Sensor, Analog versus Digital Sensors, Shaft Encoder; A/D Converter, Position Sensitive Device; Compass, Gyroscope, Accelerometer, Inclinometer, Digital Camera.

Unit V Case Study

Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Real case studies : Milk Processing and Packaging Industries, Manufacturing Industries.

Text Books

- 1. Industry 4.0: The Industrial Internet of Things", by Alasdair Gilchrist (Apress), 2017.
- 2. AnisKoubaa, "Robot Operating System (ROS) The Complete Reference", First Volume, Springer, 2016

Reference Books

- 1. "Industrial Internet of Things: CybermanufacturingSystems" by Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat (Springer), 2017
- 2. Hands-On Industrial Internet of Things: Create a powerful Industrial IoT by Giacomo Veneri, Antonio Capasso, Packt, 2018.

213IN	NT1106			SI	GNAI	SAN	JD SY	STEN	15		L	'	T	P	X	С	H
				51	01111						3		0	0	0	3	3
Prere	equisite	Ni	1														
Cours	se	Pr	ofessi	onal E	lectiv	es											
Categ	gory																
Cours	se Type	Th	neory														
C	201	Ide	entify	differ	ent typ	bes of	contin	uous t	ime ar	nd disc	rete ti	me si	gr	nals.			
C	202	Ide	entify	differ	ent typ	bes of	contin	uous t	ime aı	nd disc	rete ti	me sy	yst	ems	5.		
C	203	A	nalyze	signa	ls usir	ıg Z T	ransfo	rm and	1 FT.								
C	204	A	nalyze signals using DFT and FFT														
C	205	A	opreci	ate dif	ferent	Digita	al Filte	er struc	ctures								
Mapp	ing of C	COs v	vith Po	DS													
COs	PO's													PS	O's		
CO	1	2	3	4	5	6	7	8	9	10	11	12		1	2)	3
CO1	3 3													2			
CO2	1 2		3												1		
CO3	1 2		3														2
CO4	2 2																
CO5	3 2		1				1	2				2		2			
Cour	a Tani	o(a)				•	•	•				•		•			

UNIT 1: BASICS OF SIGNALS

Basic operations on signals, continuous time and discrete time signals: step, impulse, ramp, exponential and sinusoidal functions

UNIT 2: BASICS OF SYSTEMS

Continuous time and discrete time systems, properties of systems: linearity, causality, time invariance, memory, stability, invertibility. Linear time invariant systems, convolution

UNIT 3 : Z-TRANSFORM

Z-transform, region of convergence, properties of Z-transform, inverse Z-transform.

UNIT 4: FOURIER TRANSFORM

Fourier transform (FT) of discrete time signals, properties of FT, relation between Z-transform and FT.

Unit 5: DFT

Discrete Fourier transform (DFT), Properties of DFT, inverse DFT, Fast Fourier transform (FFT), Radix-2 FFT algorithms, butterfly structure

Text Book(s):

1. Tarun Kumar Rawat, "Signals and Systems", Oxford University Press, 2010.

2. V. Krishnaveni, A. Rajeswari, "Signals and Systems", Wiley, 2012

Reference(s):

1. Michael J Roberts and Govind Sharma, "Signals and Systems", McGraw Hill, 2010

2. M. N. Bandyopadhyaya, "Introduction to Signals and Systems and Digital Signal Processing", PHI, 2008

213INT1308	PRINCIPLES OF DIGITAL SIGNAL	L	T	P	X	C	H					
	PROCESSING	3	U	2	0	4	5					
Prerequisite	Nil											
Course	Professional Electives											
Category												
Course Type	Integrated Course with Theory											
Objective(s)	 The basic concepts and techniques for processing Signals, systems, time and frequency domain constraints with the mathematical tools (i.e.) fundamental tools (i.e.) fundamental tools a thorough understanding and we complementation, analysis and comparison of discrete time signals. To study various sampling techniques and different also understand Basic principles of Estimation The most important methods in DSP, inclutransform-domain processing and importance or processing and pr	ng sigr oncept to all I orking igital f erent t Theor luding of Sign	nals o ts wh DSP t knov ilters ypes y. dig al Pr	on a	com are a niqu ge o pro ilter filte	asso es. of d cess rs an er d	er. ciated lesign, ing of d will lesign,					
Course Outco	me(s)											
CO1	Analyze and process signals in the discrete domain											
CO2	Analyze signals using fast fourier transform											
CO3	Design IIR Filters to suit specific requirements for s	pecific	app	licati	ons							
CO4	Design FIR Filters to suit specific requirements for specific applications											
CO5	Design and develop applications of signal processin needs	g algo	rithn	ns to	sui	te sp	pecific					

Mappi	Mapping of COs with Pos														
COs	PO's	5											PSO	's	
CO	1 2 3 4 5 6 7 8 9 10 11 12											12	1	2	3
CO1	3	3											2		
CO2	1	2	3											1	
CO3	1	2	3												2
CO4	2	2										1		3	
CO5	3	2	1				1	2				2	2		

UNIT 1: SIGNALS AND SYSTEMS

Basic elements of digital signal Processing – Concept of frequency in continuous time and discrete time signals – Sampling theorem – Discrete time signals, Discrete time systems – Analysis of Linear time invariant systems – Z transform –Convolution and correlation - MATLAB programs for signals and systems.

UNIT 2 : FAST FOURIER TRANSFORMS

Introduction to DFT – Efficient computation of DFT Properties of DFT – FFT algorithms – Radix-2 and Radix-4 FFT algorithms – Decimation in Time – Decimation in Frequency

algorithms –Use of FFT algorithms in Linear Filtering.

UNIT 3: IIR FILTER DESIGN

Structure of IIR – Analog filter design - Discrete time IIR filter from analog filter – IIR filter design by Impulse Invariance, Bilinear transformation, Approximation of derivatives – Design of IIR filter in the Frequency domain.

UNIT 4 : FIR FILTER DESIGN

Structure for FIR systems - Symmetric & Anti-symmetric FIR filters – Linear phase FIR filter – Filter design using windowing techniques (Rectangular Window, Kaiser Window), Frequency sampling techniques - Finite word length effects in digital Filters: Errors, Limit Cycle, Noise Power Spectrum.

UNIT 5: APPLICATION OF DSP

Multirate signal processing: Decimation, Interpolation, Sampling rate conversion by a rational factor –Application of DSP: Model of speech wave form – Vocoder – Musical sound processing, Digital music synthesis.

TEXT BOOK

1. John G. Proakis& Dimitris G.Manolakis, "Digital Signal Processing – Principles, Algorithms & Applications", Fourth Edition, Pearson Education / Prentice Hall, 2007.

REFERENCES

- 1. Alan V Oppenheim, Ronald W Schafer and John R Buck, "Discrete Time Signal Processing", PHI/Pearson Education, 2010.
- 2. Sanjit K. Mitra, "Digital Signal Processing A Computer Based Approach", Tata Mc Graw Hill, 2007.
- 3. Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.

PRACTICAL EXPERIMENTS

- 1. Generation of input Signals.
- 2. Analysis of linear system [with convolution and de-convolution operation]
- 3. FIR filters design by Rectangular window using MATLAB Programming.
- 4. FIR filters design by Kaiser Window using MATLAB Programming.
- 5. IIR Butterworth filters design using MATLAB Programming.
- 6. IIR Chebyshev filters design using MATLAB Programming.
- 7. Implementation of FFT
- 8. Implementation of Interpolation and decimation
- 9. Estimation of power spectral density using MATLAB Programming
- 10. Spectral analysis using MATLAB Programming
- 11. Verification of linear phase characteristics of FIR filters .

NETWORK MANAGEMENT

213INT3310	NETWORK DESIGN SECURITYAND		T	P	X	C	H								
	MANAGEMENT	3	U	2	U	4	5								
Prerequisite	Data Communications and Computer Networks (212	2INT3	301)											
Course	Professional Electives														
Category															
Course	Integrated Course with Theory	Integrated Course with Theory													
Туре															
Objective(s)	 To know about System Level Security, Vulnerabilities & threats To understand the concepts of Encryption Algorithms & Techniques, Authentication functions, Protocols & Tools, To analyze the Security principles based on OSI Architecture, Wireless Security, Network design including LAN and WAN & Network Management 														
Course Outco	ome(s)														
CO1	Understand the basic concepts of network design														
CO2	Illustrate the process of network design														
CO3	Apply authentication techniques to provide secure co	ommu	inica	ntion	1										
CO4	Analyze public cryptosystems for the quality of secu	irity													
CO5	Understand the concepts of various Network Manag	ement	t Ser	vice	s										

Mappi	Mapping of COs with Pos														
COs	os PO's													's	
CO	1 2 3 4 5 6 7 8 9 10 11 12										12	1	2	3	
CO1	3 1												2		
CO2		2	2		3					3		1		1	
CO3				3	3										2
CO4		3	1			3						1		3	
CO5		3	2					3					2		

Course Topic(s)

UNIT 1: INTRODUCTION

Overview of Design process - Process Components, System description, Service Description, Service, Performance Characteristics, Network Supportability. Requirement Analysis – User requirement, Application requirement, Device requirement, Network requirement.

UNIT 2: DESIGN CONCEPTS

Design Concepts – Objectives, process, Service provider Evaluation, Network Layout, Trace Traceability, Design Metrics.

UNIT 3: SECURITY PROBLEM AND CRYPTOGRAPHY

Security attacks – services – and mechanism – Conventional encryption model – Steganography – classical encryption techniques – simplified DES – block Cipher principles – The DES standards – Principles of Public key cryptosystems – RSA algorithm – Key management –

Hellman key exchange – Authentication requirements and functions – Authentication codes Hash functions Kerberos. Practical: DES, RSA, Hellman algorithms

UNIT 4: NETWORK SECURITY

Transport level Security- Web Security, SSL, TLS, HTTPS, SSH- Wireless network security-E Mail security-PGP, S/ MIME, DKIM, IP Security, Intrusion detection – password management. Malicious software– Viruses and related Threats – Virus Counter measures , worms, DDoS attacks– Firewall Design Principles – Trusted Systems. Practical: PGP, S/ MIME, DKIM

UNIT 5: NETWORK MANAGEMENT

Network management – requirements and systems – Network monitoring architecture – Performance monitoring – Fault monitoring – Account monitoring – Configuration control – Security control – SNMP background and concepts – structure of management information – SNMP protocol – Basic concepts – specifications – Transport level support Groups. Practical: Network Monitoring

TEXT BOOKS

- 1. "Network Analysis, Architecture, and Design" (3rd Edition), James McCabe, Morgan Kaufmann Publishers, 3rd edition, 2011
- 2. William Stallings, "Cryptography and Network Security", 6th Edition, PearsonEducation, March 2013.
- 3. William Stallings, "SNMP, SNMPv2, SNMPv3 and RMON 1 and 2", Pearson education Asia, 2009.

- 1. Charles P. Pfleeger, "Security in Computing", Prentice Hall, 3rd Edition 2003.
- 2. Bruce Schneier, "Applied Cryptography", JohnWiley& Sons Inc, 2nd edition, 2007.
- 3. Mani Subramanian, "Network management Principle and practice", Pearson education India, 2010.

213INT1300	ΙΝΕΩΡΜΑΤΙΩΝ SECUDITY	L	Т	Р	Х	С	Η					
21311(1150)	INFORMATION SECORITI	3	0	2	0	4	4					
Prerequisite	Nil											
Course	Professional Electives											
Category												
Course	Integrated Course with Theory											
Туре												
Objective (s)	• Apply the basic security algorithms and policies required by computing											
	system.											
	• Predict the vulnerabilities across any computing system and hence be able											
	to design a security solution for any computing system.											
Course Outcome(s)												
CO1	To introduce the concepts and models of security in computing.											
CO2	To design and implement symmetric and asymmetric cryptosystems.											
CO3	To explain the security standards followed at the network level and at theapplication											
	level.											
CO4	To estimate the level of security risk faced by	an orga	aniza	atior	n an	d th	e counter					
	measures to handle the risk.											
CO5	To know about the software security development	model.	•									

Mapping of COs with Pos															
COs	s PO's												PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	3									1	2		
CO2		3		3			3					1		1	
CO3		3		3		3	3								2
CO4			3									1		3	
CO5		3	2			3						1	2		

UNIT 1: SECURITY - AN OVERVIEW

Basics of Security - CIA Triad - Threats, Attacks and Controls - Security Models- Bell-LaPadula model - Biba Integrity model - Chinese Wall model - Malicious Logic - Viruses, Worms, Logic Bombs - Basics of Cryptography - Mathematics for Cryptography - Modulo Arithmetic -Euclidean and extended Euclidean Theorem - Chinese Remainder Theorem - Euler and Fermat theorem - Classical Cryptosystems - Substitution and Transposition.

UNIT 2: ADVANCED CRYPTOGRAPHY

DES and AES - Public Key Cryptography - RSA and ElGamal algorithms - Authentication and Key Exchange - Biometric authentication - Diffie Hellman and Needem Schroeder algorithms -Elliptic Curve Cryptosystems - Digital Signatures - Message Digest - Certificates - Directories and Revocation of keys and certificates.
UNIT 3: SECURITY STANDARDS

Public Key Infrastructure - Kerberos - X.509 - IPSec - Virtual Private Networks - E-Mail Security - PGP and PEM - Web Security - Secured DNS - SSL, TLS and SET - CoBITFramework - Compliances - Credit Card Applications - GLBA.

UNIT 4: SECURITY PRACTICES

Vulnerability Analysis - Flaw Hypothesis Methodology, NRL taxonomy and Aslam's model - Auditing - Anatomy of an Auditing System - Design of Auditing Systems - Posteriori Design - Auditing mechanisms - Risk Analysis and Management - Disaster Recovery Planning/Incident Response Planning.

UNIT 5: SECURE DEVELOPMENT

Secure Coding - OWASP/SANS Top Vulnerabilities - Buffer Overflows - Incomplete mediation - XSS - Anti Cross Site Scripting Libraries - Canonical Data Format - Command Injection - Redirection - Inference – Application Controls - Secured Software Development Life Cycle - Evaluation of Security Systems- Case Studies-Legal and Ethical Issues- Cybercrime and computer crime - Intellectual property-Copyright, patent, trade secret - Hacking and Intrusion privacy-Identity theft.

TEXT BOOKS:

1. Charles Pfleeger, Shari Lawrence Pfleeger, Devin N Paul, —Security in Computing I, Pearson, 2007.

2. William Stallings, —Cryptography and Network Security – Principles and Practices^{II}, Pearson Education, Sixth Edition, 2013.

REFERENCES:

1. Wade Trappe, Lawrence C Washington, —Introduction to Cryptography with Coding and Theoryl, Second Edition, Pearson, 2007.

2. Wenbo Mao, —Modern Cryptography Theory and Practicel, Pearson, 2004.

4. Behrouz A Forouzan and DebdeepMukhopadhyay, "Cryptography and Network Security", Tata Mc Graw Hill Ltd. 2014.

213INT3311	MOBILE NETWORKS	L	Т	P	Х	С	Η								
21311113311	WOBILE NETWORKS	3	0	2	0	4	5								
Prerequisite	Data Communications and Computer Networks (2	12INT	3301)											
Course	Professional Electives														
Category	Integrated Course with Theory														
Course	Integrated Course with Theory														
Туре															
Objective (s)	This Course Describes about routing mechanism	ns for	both	Ad	hoc	and	Sensor								
	Networks														
Course Outco	ome(s)														
CO1	Understand the basics of radio access and network	S													
CO2	Learn to simulate wireless networks and analyze t	he simu	ulatio	on re	sult	5									
CO3	Describe the concepts of ad hoc networks, desi	gn and	imp	lem	enta	tion	issues,								
	and available solutions														
CO4	Apply knowledge of wireless sensor networks to v	various	appl	icati	on a	reas									
CO5	Demonstrate advanced knowledge of networking	and wi	reless	s net	wor	king									

Mappi	Mapping of COs with Pos																
COs	PO's														PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	1	3	3										2				
CO2	3					2								1			
CO3		3													2		
CO4		3			1									3			
CO5							3			3	3	1	2				

UNIT 1: MULTIPLE RADIO ACCESS

Medium Access Alternatives: Fixed-Assignment for Voice Oriented Networks Random Access for Data Oriented Networks, Handoff and Roaming Support, Security and Privacy. UNIT 2: WIRELESS BROADBAND NETWORKS TECHNOLOGY & PLATFORMS

Wireless broadband fundamentals and Fixed Wireless Broadband Systems - Platforms- Enhanced Copper- Fibre Optic and HFC - 3G Cellular- Satellites - ATM and Relay Technologies**UNIT 3: AD HOC NETWORKS**

Characteristics and Applications of Ad hoc Networks - Routing – Need for routing and routing classifications - Table Driven Routing Protocols - Source Initiated On-Demand Routing Protocols - Hybrid Protocols – Zone Routing - Fisheye Routing - LANMAR for MANET with group mobility - Location Added Routing, Distance Routing Effects - Micro discovery and

Power Aware Routing. Practical : Routing Protocols

UNIT 4: SENSOR NETWORKS

Wireless Sensor Networks - DARPA Efforts –Classification - Fundamentals of MAC - Flat routing – Directed Diffusion-SPIN - COGUR - Hierarchical Routing - Cluster base routing - Scalable Coordination – LEACH – TEEN - APTEEN and Adapting to the dynamic nature of Wireless Sensor Networks. Practical : MAC protocols

UNIT 5: ADVANCED WIRELESS NETWORKS

Key Management in Sensor Network, Intrusion detection in sensor Networks, Security in RFID devices, Security in Adhoc Networks, Human – centered cyber security

TEXT BOOK

1. John R. Vacca, "Wireless Broadband Networks Handbook 3G, LMDS and Wireless Internet", Tata McGraw-Hill, 2001.

- 1. Agrawal D.P., and Qing-Anzeng, "Introduction to Wireless and Mobile Systems", Thomson Learning, 3rd Edition, 2010.
- 2. Martyn Mallick, "Mobile and Wireless Design Essentials, Wiley publication, 2003.
- 3. KaveshPahlavan and Prashant Krishnamurty, "Principles of Wireless Networks A unified Approach", Prentice Hall PTR, 2002

213INT3101	WIRELESS APPLICATIONLTPXCH
21311113101	PROTOCOL 2 0 2 0 3 4
Prerequisite	Data Communications and Computer Networks (212INT3301)
Course	Professional Electives
Category	
Course	Theory
Туре	
Objective (s)	• To learn the basic concepts of mobile internet
	• To introduce the web technologies for developing simple web applications.
	• To make students to understand about services of WAP and to learn WAP
	programming languages used for WAP service implementation.
	• To teach the concepts for deploying WAP services
	• To understand about wireless telephony applications and its enhancements
Course Outco	ome(s)
CO1	Understand the basic concepts of mobile internet, services and service providers
	of mobile internet.
CO2	Learn about the web technologies used for developing web applications and
	components.
CO3	Analyze about the WAP services and to learn programming language used for
	developing WAP services.
CO4	Analyzing how WAP services are linked with internet and about internet
	protocols.
CO5	Learn about wireless telephony applications, design considerations for
	applications.

Mappi	apping of COs with Pos														
COs	PO's	5	PSO's												
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2										2		
CO2		3	3		3							1		1	
CO3		2	1		3										2
CO4		2	1				3							3	
CO5		2	3									1	2		

UNIT 1: MOBILE INTERNET

Introduction, Mobile Data – connectivity – Key services for mobile internet – Mobile Internet access and application service provides - Content providers and Developer.

UNIT 2: MOBILE INTERNET STANDARD

Current Web technologies for wireless application - origin and overview of WAP components of wap standard - Network Infrastructure services supporting Wap clients Design Principles Tools

and software editors and emulators.

UNIT 3: IMPLEMENTING WAP SERVICES

WML Basic and Document model - content generation - Binary WML - enhanced WML - WML script - rules of script standard libraries - user interface design guidelines.

UNIT 4: ADVANCED WAP

Tailoring content to client - Techniques using HTTP 1.1 - WAP Push - Push Access Protocol -Push Technology - MIME media types for push messages - Proxy gateway; Data base driven WAP - ASP and WAP - Object model - Activex data objects (ADO) - End-to-End WAP services

- Security domains - linking WAP and internet.

UNIT 5: WIRELESS TELEPHONY APPLICATIONS

WTA architecture - client Framework - Server and security - Design considerations Application creation Toolbox - WTA enhancements - Technology - Bluetooth and voice XML - Telematics inter connectivity.

TEXT BOOK

1. Sandeep Signal et al, "Writing Applications for Mobile Internet", Pearson Education, 2001.

REFERENCE

1. "Wireless Protocols - A beginner's Guide" BulBrook, Tata McGraw Hill PCL, 2001.

213INT3312	HIGH PERFORMANCE	L	Т	Р	X	С	H								
21311(13312	NETWORKS	3	0	2	0	4	5								
Prerequisite	Data Communications and Computer Networks (2)	12INT3	301)											
Course Category	Professional Electives														
Course Type	ntegrated Course with Theory														
Objective(s)	 To facilitate the students on the basis of ATM explain the various types of LAN's and to known. To learn about network security in many layer. To study the types of VPN and tunneling prot. To develop a comprehensive understanding of the study of the study. 	and Fra ow abo rs and 1 ocols fo f multin	ame ut th netw or se medi	rela eir a ork curi a ne	y con appli man ty. etwor	ncer cati agei rkin	ots and ons. nent g.								
Course Outcor	ne(s)														
CO1	Implement different operations in communication r	networl	KS												
CO2	Understand the flow control and congestion control	l during	g pao	cket	tran	smis	ssion								
CO3	Understand switching in ATM and Frame Relay ne	etworks	5												
CO4	Study about the differnet queuing methods														
CO5	Know the different protocols towards Quality of Se	ervice													

Mappi	ing of	COs	with P	os											
COs	PO's	PO's													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	3		3	3								2		
CO2	1	3	2	2			3			3				1	
CO3	1	3				3									2
CO4	1	3	2	3							3			3	
CO5	1	3	2	1			3						2		

UNIT 1: HIGH SPEED NETWORKS

Frame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATM logical Connection, ATM Cell – ATM Service Categories – AAL. High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless LANs: applications, requirements – Architecture of 802.11

UNIT 2: CONGESTION AND TRAFFIC MANAGEMENT

Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion – Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks – Frame Relay Congestion Control.

UNIT 3: TCP AND ATM CONGESTION CONTROL

TCP Flow control – TCP Congestion Control – Retransmission – Timer Management – Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TCP over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic Management Frame work, Traffic Control – ABR traffic Management – ABR rate control, RM cell formats, ABR Capacity allocations – GFR traffic management. **UNIT 4: INTEGRATED AND DIFFERENTIATED SERVICES**

Integrated Services Architecture – Approach, Components, Services- Queuing Discipline, FQ, PS, BRFQ, GPS, WFQ – Random Early Detection, Differentiated Services

UNIT 5: PROTOCOLS FOR QOS SUPPORT

RSVP – Goals & Characteristics, Data Flow, RSVP operations, Protocol Mechanisms – Multiprotocol Label Switching – Operations, Label Stacking, Protocol details – RTP – Protocol Architecture, Data Transfer Protocol, RTCP.

TEXT BOOK

1. William Stallings, "High Speed Networks And Internet", Pearson Education, Second Edition, 2010.

- 1. Warland&PravinVaraiya, "High Performance Communication Networks", Jean Harcourt Asia Pvt. Ltd., II Edition, 2001.
- 2. IrvanPepelnjk, Jim Guichard and Jeff Apcar, "MPLS and VPN Architecture", Cisco Press, Volume 1 and 2, 2003.

213INT3313	CRYPTOGRAPHY AND NETWORK L T P X C H
21311(13313	SECURITY 3 0 2 0 4 5
Prerequisite	Data Communications and Computer Networks (212INT3301)
Course	Professional Electives
Category	
Course	Integrated Course with Theory
Туре	
Objective (s)	To develop a fundamental understanding of Cryptography and network security
	proper practices, policies, technologies and standards.
Course Outco	ome(s)
CO1	Explain the foundations of cryptography and network security.
CO2	Identify common security vulnerability attacks in different networking environment
CO3	Evaluate the risks and threats to digital communication system
CO4	Demonstrate the detailed knowledge of the role of encryption to protect the data
CO5	Explain the fundamental concepts of different digital signature schemes
CO6	Identify the appropriate cryptographic scheme and security mechanism for
	different computing environment and information systems

Mapp	apping of COs with Pos														
COs	PO's	5		PSO's											
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1			1								2		
CO2	3	3			1	3								1	
CO3	3	3		1	1										2
CO4	3	1					3							3	
CO5	3	3											2		

UNIT 1: INTRODUCTION

Introduction-OSI Security Architecture - Classical Encryption techniques - Block Cipher Principles -

Data Encryption Standard- Basic concepts in number theory and finite fields – Block Cipher Design Principles and Modes of Operation - Evaluation criteria for AES – AES Cipher – Triple DES. Practical: DES

UNIT 2: PUBLIC KEY CRYPTOGRAPHY

Number Theory- Public Key Cryptography and RSA-Key Management - Diffie-Hellman key Exchange – Elliptic Curve Architecture and Cryptography –Public Key Cryptosystem-Confidentiality using Symmetric Encryption and Asymmetric Encryption. Practical: RSA, Diffie Hellman

UNIT 3: CRYPTOGRAPHIC AND DATA INTEGRITY ALGORITHMS

Applications of cryptographic hash functions- Simple Hash Functions- Requirements and security-Secured Hash Algorithm- Message Authentication requirements and functions – Message Authentication Codes – Security of MACs – HMAC- Digital Signatures – ElGamal Digital signature scheme- Schnorr Digital signature scheme - Digital Signature Standard. Practical: Secured Hash Algorithm- Cryptography and Authentication

UNIT 4: NETWORK AND INTERNET SECURITY

Transport level Security- Web Security, SSL, TLS, HTTPS, SSH- System Implementation-Wireless network security-E Mail security-PGP, S/ MIME, DKIM, IP Security. Practical: PGP

UNIT 5: SYSTEM LEVEL SECURITY

Intrusion detection – password management. Malicious software– Viruses and related Threats – Virus Counter measures , worms, DDoS attacks– Firewall Design Principles – Network Security

- Trusted Systems. Practical: password management

TEXT BOOK

1. William Stallings, "Cryptography and Network Security", 6th Edition, Pearson Education, March 2013.

- 1. Bruce Schneier, "Applied Cryptography", second edition, John Wiley & Sons, New York, 2007.
- 2. Chris Brenton, "Mastering Network Security", BPB Publication, New Delhi, 2002.
- 3. Behrouz A Forouzan, "Cryptography and Network Security", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2014.

213INT1107	CYBER PHYSICAL SYSTEMLTPXCH300033
Prerequisite	Nil
Course	Professional Electives
Category	
Course	Theory
Туре	
Objective(s)	• To understand the fundamentals of Computer Forensics and computing Investigations.
	• To recognize the legal underpinnings and critical laws affecting forensics.
	• To apply the tools and methods to uncover hidden information in digital
	systems.
	• To learn about current licensing and certification requirements to build
	the career in digital forensic.
Course Outco	ome(s)
CO1	Understand of the role of computer forensics
CO2	Identify some of the current techniques and tools
CO3	Describe and identify basic principles of good professional practice for a forensic
	computing practitioner
CO4	Demonstrate an understanding of issues related to privacy and determine how to
	address them technically and ethically.
CO5	Apply some forensic tools in different situations.

Mappi	Mapping of COs with Pos														
COs	s PO's PSO's														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	3			3				1			1	2		
CO2		2			3				3					1	
CO3	1	3		3			2				3				2
CO4				2	3			3				2		3	
CO5		3				3					3		2		

UNIT 1: NTRODUCTION

The Scope of Computer Forensics - Windows Operating and File Systems –Handling Computer Hardware – Anatomy of Digital Investigation.

UNIT 2: INVESTIGATIVE SMART PRACTICES

Forensics Investigative Smart Practices – Time and Forensics – Incident closure

UNIT 3: LAWS AND PRIVACY CONCERNS

Laws Affecting Forensic Investigations – Search Warrants and Subpoenas – Legislated Privacy Concerns – The admissibility of Evidence – First Response and Digital Investigator **UNIT 4: DATA ACQUISITION AND REPORT WRITING** Data Acquisition – Finding Lost Files – Document Analysis – Case Management and Report Writing – Building a Forensics Workstation

UNIT 5: TOOLS AND CASE STUDIES

Tools of the Digital Investigator - Licensing and Certification - Case Studies: E-mail Forensics

- Web Forensics Searching the Network Excavating a Cloud Mobile device Forensics. **TEXTBOOKS:**
- 1. Michael Graves, "Digital Archaeology: The Art and Science of Digital Forensics", Addison-Wesley Professional, 2014.
- 2. Darren R. Hayes, "Practical Guide to Computer Forensics Investigation", Pearson, 2015.
- 3. Albert J. Marcella and Frederic Guillossou, "Cyber Forensics: From Data to Digital Evidence "Wiley, 2015.

REFERENCE:

1. Bill Nelson, Amelia Phillips and Christopher Steuart, "Guide to Computer Forensics and Investigations", Fourth Edition, Cengage Learning, 2013.

212IN/T1210	Plaskahain Taabnalagu	L	Т	Р	X	С	Н
2151111510	Blockcham Technology	3	0	2	0	4	4
Prerequisite	Nil			•			
Course Category	Professional Electives						
Course Type	Integrated Course with Theory						
			-				
Objective(s)	By the end of the course, students w	ill be ab	le to				
	 Understand how blockchain syster 	ns (maiı	nly Bitcoi	n and E	Ethereu	ım) v	vork,
	• To securely interact with them,						
	• Design, build, and deploy smart co	ntracts	and distri	buted a	pplicat	tions	,
	• Integrate ideas from blockchain te	chnolog	y into the	ir own	project	ts.	
Course Outcome(s	s)						
CO1	Explain design principles of Bitcoin	and Eth	ereum.				
CO2	Explain the Simplified Payment Ver	ificatior	n protocol				
CO3	Interact with a blockchain system by	sendin	g and read	ling tra	nsactio	ons.	
CO4	Design, build, and deploy a distribut	ed appli	cation.				
CO5	Evaluate security, privacy, and effic	iency of	a given b	lockch	ain sys	stem	

Mapp	Mapping of COs with Pos																
COs	PO's													PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	1	3		3	3								2				
CO2	1	3	2	2			3			3				1			
CO3	1	3				3									2		
CO4	1	3	2	3							3			3			
CO5	1	3	2	1			3						2				

Unit I Introduction

Distributed Database, Two General Problem, Byzantine General problem and Fault Tolerance, Hadoop Distributed File System, Distributed Hash Table, ASIC resistance, Turing Complete.

Unit II Cryptography

Hash function, Digital Signature - ECDSA, Memory Hard Algorithm, Zero Knowledge Proof. Blockchain: Introduction, Advantage over conventional distributed database, Blockchain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of Blockchain application, Soft & Hard Fork, Private and Public blockchain.

Unit III Distributed Consensus

Nakamoto consensus, Proof of Work, Proof of Stake, Proof of Burn, Difficulty Level, Sybil

Attack, Energy utilization and alternate. Cryptocurrency- History, Distributed Ledger, Bitcoin protocols - Mining strategy and rewards, Ethereum - Construction, DAO, Smart Contract, GHOST, Vulnerability, Attacks, Sidechain, Namecoin

Unit IV Cryptocurrency Regulations

Stakeholders, Roots of Bitcoin, Legal Aspects - Cryptocurrency Exchange, Black Market and Global Economy.

Unit V Blockchain Applications

Internet of Things, Medical Record Management System, Domain Name Service and future of Blockchain

Text Books

1. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction, Princeton University Press.

Reference Books

- 1. Antonopoulos, Mastering Bitcoin: Unlocking Digital Cryptocurrencies
- 2. Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System
- 3. Dr. Gavin Wood, "ETHEREUM: A Secure Decentralized Transaction Ledger,"Yellow paper.2014.

5G Networks	L	Т	Р	X	С	Η
	3	0	0	0	3	3
Nil						
Professional Electives						
Theory						
(i) The enabling technologies of the 5G-EVE	ICT-1	7 plat	form,			
(ii) The fundamental enablers of the Phase-2 5	GPPP	proje	cts 50	G-Mol	NArc	ch
and 5G-Xcast, and						
(iii) Novel machine learning functionalities dev	velope	d with	in 5G	-TOU	JRS	for
the operation of large-scale networks; the	ne arc	hitect	ure w	ill ta	ke ii	nto
account security and privacy by design req	uirem	ents.				
ome(s)						
Understand the basic principles of wirele	ess c	ommı	inicati	ion,	netv	vork
configuration and virtualization beyond the 5G int	ernet					
Understand the small cells technology and co-	operat	ion fo	or nex	kt gei	nerat	ion
networks.						
Understand the basic architecture, deployment a	nd the	eir con	mmun	icatio	n of	5G
networks						
Compare and explain various radio access technol	ogies t	for 50	b netw	orks		
Describe and explain the evolution of 5G, sy	vstem	conce	epts a	and s	pecti	um
challenges			-		-	
	5G Networks Nil Professional Electives Theory (i) The enabling technologies of the 5G-EVE (ii) The fundamental enablers of the Phase-2 5 and 5G-Xcast, and (iii) Novel machine learning functionalities dev the operation of large-scale networks; th account security and privacy by design requestion ome(s) Understand the basic principles of wirele configuration and virtualization beyond the 5G int Understand the small cells technology and co-onetworks. Understand the basic architecture, deployment a networks Compare and explain various radio access technology compares and explain the evolution of 5G, sy challenges	5G Networks L 3 Nil Professional Electives Theory (i) The enabling technologies of the 5G-EVE ICT-1 (ii) The fundamental enablers of the Phase-2 5GPPP and 5G-Xcast, and (iii) Novel machine learning functionalities develope the operation of large-scale networks; the arc account security and privacy by design requiremome(s) Understand the basic principles of wireless c configuration and virtualization beyond the 5G internet Understand the small cells technology and co-operat networks. Understand the basic architecture, deployment and the networks Compare and explain various radio access technologies in Describe and explain the evolution of 5G, system challenges	5G Networks L T 3 0 Nil Professional Electives Theory The enabling technologies of the 5G-EVE ICT-17 plat (i) The enabling technologies of the Phase-2 5GPPP proje and 5G-Xcast, and (iii) Novel machine learning functionalities developed with the operation of large-scale networks; the architect account security and privacy by design requirements. ome(s) Understand the basic principles of wireless communiconfiguration and virtualization beyond the 5G internet Understand the small cells technology and co-operation for networks. Understand the basic architecture, deployment and their con networks Compare and explain various radio access technologies for 5G Describe and explain the evolution of 5G, system concordination of the state	5G Networks L T P 3 0 0 Nil Professional Electives Theory (i) The enabling technologies of the 5G-EVE ICT-17 platform, (ii) The fundamental enablers of the Phase-2 5GPPP projects 5G and 5G-Xcast, and (iii) Novel machine learning functionalities developed within 5G the operation of large-scale networks; the architecture w account security and privacy by design requirements. ome(s) Understand the basic principles of wireless communication and virtualization beyond the 5G internet Understand the small cells technology and co-operation for networks. Understand the basic architecture, deployment and their communication and explain various radio access technologies for 5G networks Compare and explain the evolution of 5G, system concepts a challenges	SG Networks L T P X 3 0 0 0 0 Nil Professional Electives	5G Networks L T P X C 3 0 0 0 3 Nil Professional Electives

Mappi	ing of	COs v	with Po	os											
COs	PO's	5											PSO	's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	3			3				1			1	2		
CO2		2			3				3					1	
CO3	1	3		3			2				3				2
CO4				2	3			3				2		3	
CO5		3				3					3		2		

UNIT - I DRIVERS FOR 5G

Introduction – Historical trend of wireless communication – Evolution of LTE Technology to Beyond 4G.THE 5G INTERNET – Internet of Things and context – Awareness – Network Reconfiguration and Virtualization support – Mobility – quality of Service Control – Emerging approach for resource over provisioning

UNIT-II SMALL CELLS FOR 5G MOBILE NETWORKS

Introduction – Small Cells – Capacity limits and Achievable gains with densification – Mobile data demand – Demand vs Capacity – small cell challenges. CO-OPERATION FOR NEXT GENERATION WIRELESS NETWORKS – Introduction – cooperative diversity and relaying strategies – PHY Layer Impact – MAC protocol analysis.

UNIT – III 5G ARCHITECTURE

Introduction – High level requirements for 5G architecture – Fundamentals architecture and 5G flexibility – Physical Architecture and 5G deployment. DEVICE TO DEVICE D2D COMMUNICATION – D2D: from 4G to 5G – Radio resource management for mobile brand D2D – Multihop D2D communications for proximity and emergency services – Multi-operator D2D communications.

UNIT – IV THE 5G RADIO ACCESS METHODOLOGIES

Access design principles for multiuser communications – Multicarrier with filtering; a waveform – Non – orthogonal schemes for efficient multiple access – Radio access for dense deployments – Radio access for V2x communication – Radio access for massive machine type communications.

UNIT – V SPECTRUM

Introduction – 5G spectrum landscape and requirements – Spectrum access modes and sharing scenarios.5G spectrum technologies – value of spectrum for 5G : a techno – economic perspectives THE 5G WIRELESS PROPAGATION CHANNEL MODE – Introduction – Modeling requirements and scenarios – the METIS channel models.

- 1. Fundamentals of 5G mobile Networks, edited by Jonathan RodisQuez and Wiley
- 5G Mobile and Wireless Communications TechnologybyAfifOsseiran(ed.); Jose F. Monserrat(ed.); Patrick Marsch(ed.); Mischa Dohler(other); Takehiro Nakamura(other) june 2016.
- 3. William Stallings, "Wireless Communication and Networks", Pearson Education, 2003.
- 4. Singhal, "WAP-Wireless Application Protocol", Pearson Education, 2003.
- 5. LotherMerk, Martin.S.Nicklaus and Thomas Stober, "Principle of Mobile Computing", Second Edition, Springer, 2003.
- 6. William C.Y.Lee, "Mobile Communication Design Fundamentals", John Wiley, 1993
- 7. Roy Blake, "Wireless Communication Technology", India edition, Cengage learning. 2010.
- 8. UpenaDalal "Wireless Communication", Oxford Higher education, First Edition, 2009.
- 9. Raj Kamal, "Mobile Computing", Oxford Higher education, Second Edition, 2002.
- 10. J.Schiller, "Mobile Communication", Addison Wesley, 2000.

COMPUTING STREAM

213INT2307	DISTRIBUTED SYSTEMS	L 3	Т 0	P 2	X 0	C 4	Н 5							
Prerequisite	Computer Organization and Assembly Language Pro	gran	nmi	ng (2	2121	NT11	01)							
Course Category	Professional Electives													
Course Type	Integrated Course with Theory													
Objective(s)	 To expose students to both the abstraction and To introduce concepts related to distributed co To focus on performance and flexibility issue decisions. To expose students to current literature in dist 	l det omp s rel ribu	tails utin atec	of fi g sy: l to s syste	le sy stem yste ems.	/stem s. ms de	s. esign							
Course Outco	me(s)													
CO1	Understand various models of distributed systems													
CO2	Aware of distributed file systems													
CO3	Identify the needs of distributed systems implementat	tion												
CO4	Construct work flows as such in distributed systems	Construct work flows as such in distributed systems												
CO5	Design distributed systems													

Mappi	Mapping of COs with Pos														
COs	PO's	5											PSO	's	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		2	1		3			2	1		3		2		
CO2		2	3					2	3					1	
CO3		3	2		1			3	2		1				2
CO4			2	1					2	1				3	
CO5						1							2		

Course Topic(s)

UNIT 1: INTRODUCTION

Characterization of Distributed Systems- Examples of distributed systems - Challenges-System Models-Physical models-Architectural models - Fundamental models - Introduction to inter- process communications-External data representation and marshalling- Multicast communication- Network virtualization -Overlay networks – Practical : MPI and World Wide Web, Remote MethodInvocation program

UNIT 2: DISTRIBUTED OBJECTS AND FILE SYSTEM

Introduction - Distributed objects -From objects to components-Case studies: Enterprise JavaBeans and Fractal - Introduction to DFS - File service architecture - Sun network file system - The Andrew File System- Introduction to Name Services- Name services and DNS - Directory and directory services Practical : The Global Name Service, The X.500 Directory Service.

UNIT 3: DISTRIBUTED OPERATING SYSTEM SUPPORT

The operating system layer – Protection - Process and threads - Communication and invocation - Operating system architecture - Virtualization at the operating system level - Introduction to time and global states - Clocks, Events and Process states - Synchronizing physical clocks - Logical time and logical Clocks - Global states - Distributed debugging. Practical :CORBA using Java program, Java deadlock program

UNIT 4: TRANSACTION AND CONCURRENCY CONTROL – DISTRIBUTED TRANSACTIONS

Transactions – Nested transaction – Locks - Optimistic concurrency control - Timestamp ordering -Comparison of methods for concurrency control - Introduction to distributed transactions - Flat and nested distributed transactions - Atomic commit protocols - Concurrency control in distributed transactions - Distributed deadlocks - Transaction recovery. Practical: Concurrency control using DBMS

UNIT 5: DISTRIBUTED SYSTEM DESIGN AND DISTRIBUTED MULTIMEDIA SYSTEMS

Introducing the case study: Google- Overall architecture and design philosophy- Underlying communication paradigms- Data storage and coordination services- Distributed computation services- Introduction to distributed multimedia systems- Characteristics of multimedia data - Quality of service management - Resource management- Stream adaptation- Practical : Tiger, BitTorrent and End System Multicast.

TEXT BOOK

1. George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems Concepts and Design", Fifth Edition, Addison Wesley, May 2011.

- 1. A.S.Tanenbaum, M.Van Steen, "Distributed systems: principles and paradigms", PearsonPrentice Hall, 3rd Edition, 2007.
- 2. MukeshSinghal, "Advanced Concepts In Operating Systems", McGraw-Hill Series in Computer Science, Ohio State University, Columbus 2001.

213INT2304	FORMAL LANCHACE AND AUTOMATA	L	Т	P	X C	H
2131N 12304	FORMAL LANGUAGE AND AUTOMATA	3	0	2	04	5
Prerequisite	Python for Programming and Product Development ([211CS]	E14()1)		
Course Category	Professional Electives					
Course Type	Integrated Course with Theory					
Objective(s)	 To introduce students about the mathematical including automata theory, the theory of formal 1 notions of algorithm, decidability, complexity, and complexity and complexity	al found anguag omputa o unde	datio es a bility ersta	ns o nd g y, nd	f compu- grammation and co	utation rs, the onduct
Course Outco	me(s)					
CO1	Design the Finite Automata, Deterministic Finite Au Finite Automata	tomata	and	Non	Determ	inistic
CO2	Understand the Regular languages and expressions to	o given	a pro	obler	n	
CO3	Apply the context free grammar (CFG) to describe evaluate the equivalence of push down automata and	progra CFG.	mm	ing 1	language	es and
CO4	Design the Turing machine for different languages an	nd simp	le co	ompi	utations	
CO5	Analyze the Undecidable problem in regular expression	ion and	Turi	ing n	nachine	

Mappi	Mapping of COs with Pos														
COs	PO's	5											PSO	's	
CO	1 2 3 4 5 6 7 8 9 10 11 12											12	1	2	3
CO1	1	3		3			2						2		
CO2	1		3											1	
CO3	1			3											2
CO4	1				3		2				3			3	
CO5	1	3	3				2					2	2		

UNIT 1: AUTOMATA

Introduction to formal proof – Additional Forms of Proof – Inductive Proofs – Finite Automata (FA) – Deterministic Finite Automata (DFA) – Non-deterministic Finite Automata (NFA) – Finite Automata with Epsilon Transitions.

UNIT 2: REGULAR EXPRESSIONS AND LANGUAGES

Regular Expression –Finite Automata and Regular Expressions – Properties of Regular languages: Pumping Lemma for Regular Languages and Applications – Closure Properties of Regular Languages- Equivalence and Minimization of Automata

UNIT 3: CONTEXT-FREE GRAMMAR AND PUSH DOWN AUTOMATA

Context-Free Grammar (CFG) - Application- Parse Trees - Ambiguity in Grammars and

Languages – Pushdown Automata – Languages of a Pushdown Automata – Equivalence of Pushdown Automata and CFG - Deterministic Pushdown Automata

UNIT 4: PROPERTIES OF CFL AND TURING MACHINE

Normal Forms for CFG – Pumping Lemma for CFL –Applications Properties of CFL –Turing Machines – Programming Techniques for TM: Multiple Stacks, Subroutines-Extensions to the Basic Turing Machine

UNIT 5: UNDECIDABILITY

A language that is not Recursively Enumerable (RE) – An Undecidable problem that is RE – Undecidable Problems about Turing Machine – Post_s Correspondence Problem - The classes P and NP - NP complete-Complements of Languages in NP

PRACTICE COMPONENTS

. Create the Deterministic Finite Automata using JFLAP simulator

- 2. Create the Non-Deterministic Finite Automata using JFLAP simulator
- 3. Construct a regular expression using JFLAP. Use Convert→Convert FA to RE.
- 4. Construct a Grammar using JFLAP.

5. Convert regular expressions to FA

6. Create Regular Grammar and convert to Finite Automaton

7.Create a PDA that accepts strings that contains the language $L = \{axcb2x \mid where x \ge 0\}$ using the alphabet $\Sigma = \{a,b,c\}$.

8. Create each PDA with at least five test results with the following languages over alphabet: $\Box = \{a,b\}$

a) $L = \{anbn \mid where n > 0\}$

b) $L = \{anbncn \mid where n > 0\}$

9. Construct PDA for any given grammar.

TEXT BOOK

1 Hopcroft J.E,Motwani R and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Third Edition, 2006.

REFERENCE BOOKS

1. Martin J, "Introduction to Languages and the Theory of Computation", Third Edition, TMH, 2003

2. Lewis H. R and Papadimitriou C.H , "Elements of The theory of Computation", United States Edition, 1997.

213INT3314	CLOUD COMPLITING	L	Т	Р	X	С	Η
21311(13314	CEOUD COMI UTING	3	0	2	0	4	5
Prerequisite	Data Communications and Computer Networks (212)	NT	330	1)			
Course	Professional Electives						
Category							
Course Type	Integrated Course with Theory						
Objective (s)	• To impart fundamental concepts in the area of cl	ouc	l co	mpu	ting.		
	• To impart knowledge in developing appl	icat	ion	sof	cloud	d compu	ıting
Course Outco	me(s)						
CO1	Understanding the systems, protocols and mechanism	is to	suj	ppor	t clo	ud com	puting
CO2	Develop applications for cloud computing						
CO3	Understanding the hardware necessary for cloud com	puti	ng				
CO4	Design and implement a novel cloud computing appli	cati	on				
CO5	Knowledge in various Cloud vendors and their produ	cts					

Mapp	ing of	COs	with Po	os											
COs	PO's	8											PSO	's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	3			3				3				2		
CO2		3	2		1							1		1	
CO3	1	3			2						3				2
CO4		2	3		3			3				3		3	
CO5	1	3										3	2		

UNIT 1: INTRODUCTION

Overview – applications - intranet and cloud - examples: Amazon, Google, Microsoft, IBM – Benefits and Limitations of cloud computing - Google app engine – EMC - NETAPP - Microsoft Azure - Amazon(EC2, S3,SQS) - open stack -cloud computing services

UNIT 2: HARDWARE AND ARCHITECTURE

Clients-Security-Network-Services. Accessing the cloud: Platforms-web applications-web APIsweb browsers. Cloud storage: overview-providers. Standards: application-client-infrastructureservice.

UNIT 3: SOFTWARE AS SERVICE

Overview- Driving forces-company offerings-industries. Software plus services: Overviewmobile device integration-providers-Microsoft Online.

UNIT 4: DEVELOPING APPLICATIONS

Google – Microsoft – IntuitQuickBase - Cast Iron Cloud - Bungee Connect –Development (App engine, Azure, open stack etc.) - trouble shooting and application management.

UNIT 5: LOCAL CLOUDS AND THIN CLIENTS

Virtualization-server solutions-thin clients. Cloud Migration: cloud services for individualsenterprise cloud- methods for migration-analyzing cloud services.

TEXT BOOKS

- 3. Anthony T.Velte, Toby Velte, "Cloud Computing a practical approach", Mcgraw Hill, 2010.
- 4. M.S.V.Janakiram, "Demystifying the Cloud An introduction to Cloud Computing", version 1.1, 2010.

REFERENCE BOOKS

- 3. Mark C. Chu-Carroll, "Code in the Cloud- Programming Google App Engine", The Pragmatic Bookshelf Raleigh, North Carolina Dallas, Texas, 2011.
- 4. Breslin "Cloud Computing: Principles and Paradigms", Wiley Press, New York, USA,
 - 2008.

213INT3315	GREEN COMPUTING L T P X C H 2 0 2 0 3 4
Prerequisite	Data Communications and Computer Networks (212INT3301)
Course Category	Professional Elective
Course Type	Integrated Course with Theory
Objective(s)	This course covers fundamental principles of energy management faced by designers of hardware, operating systems, and data centers. We will explore basic energy management option in individual components such as CPUs, network interfaces, hard drives, memory. We will further present the energy management policies at the operating system level that consider performance vs. energy saving tradeoffs. Finally we will consider large scale data centers where energy management is done at multiple layers from individual components in the system to shutting down entries subset of machines. We will also discuss energy generation and delivery and well as cooling issues in large data centers
Course Outcon	me(s)
	Understand the concepts of technologies that conform to low-power computation
	computer, such as CPU, memory and disk, and appreciate cutting edge designs for these components including memory and Registers
CO3	Have a basic understanding of a variety of technologies applied in building a green
	system (especially green data centers), including networks, virtual Machine (VM) management and storage systems
CO4	Use a range of tools to help monitor and design green systems
CO5	Analyze the various tools to greening the organization

Mapp	ing of	COs	with P	OS											
COs	PO's	S											PSO	's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		3	2									1	2		
CO2		3					1				2	1		1	
CO3	1	2	2		2										2
CO4					3						3	2		3	
CO5		1		2			3						2		

UNIT 1:ION

Inroduction - Need for Green Computing – Green computing Background – Understanding the World of Green IT: Win-Win-Winning with Green IT – Making the Business Case of Green IT – Green Journeys in Action.

UNIT 2: GETTING A RUNNING START

Getting to know the Standards and Metrics – Assessing your current Energy use and Needs – Go Green in 12 months: Putting Together a plan – Techniques for managing Power consumption

UNIT 3: GREENING THE DATA CENTER

Laying the foundation for green data management – maximizing data center efficiency – Bottom up Electrical Efficiency Improvement - Racking up green servers – cooling your data center – Building a Green Storage System – Grooming the Network for green – Using Virtualization – computer power using Benchmarking – Evaluation of Power Benchmarks

UNIT 4: GREENING THE OFFICE

Moving to Green Screens and Computing Machines – Reducing Desktop Energy Waste – Pursuing the Less-Paper Office – Evaluation Green Gadgetry – Experimental methodology **UNIT 5: GREENING THE ORGANIZATION**

Greening the Facility – e-Waste Not, e-Want Not – Virtually There: Collobration Technologies for a Greener World - Ten Organizations that can help with Green IT objectives – Ten creative computer Recycling Tips – Ten tips for a Green Home Office.

TEXT BOOK

1. Carol Baroudi , Jeffery Hill , Arnold Reinhold , JhanaSenxian, "Green IT for dummies", Wiley Publishing Inc, 2009.

REFERENCE

1. MujtabaTalebi, "Computer Power Consumption benchmarking for green computing", ceangage learning, April 2008.

213INT3103	SOCIAL NETWORK ANALYSIS	L 2	T 0	P 2	X 0	C 3	H 4
Prerequisite	Information Storage, Modelling and Retrieval (212I)	NT2	306	5)			
Course Category	Professional Electives						
Course Type	Theory						
Objective(s)	 To gain knowledge about social networks, its network data sources To learn the analysis and mining techniques for To study about the semantic technologies for To gain knowledge on Visualization of Social applications 	s str for S soc al ne	uctu Soci ial tal	ire an ial ne netw orks a	nd soc etwork ork an and its	ial s alys	is
Course Outco	me(s)						
CO1	Learn current web developments in Social Web						
CO2	Understand various mining techniques for social net	wor	ks				
CO3	Model and represent knowledge for Semantic Web						
CO4	Design extraction and mining tools for Social networ	rks					
CO5	Develop personalized visualization for Social network	rks					

Mapp	ing of	COs	with P	os											
COs	PO's	S											PSO	's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	3	2		3	3							2		
CO2	1	3												1	
CO3	1	3	2		3							1			2
CO4	1	3												3	
CO5	1	3				3	3					2	2		
~															

UNIT 1: SOCIAL NETWORK ANALYSIS

Definition and Features - The Development of Social Network Analysis - Basic graph theoretical Concepts of Social Network Analysis – ties, density, path, length, distance, betweenness, centrality, clique - Electronic sources for network analysis - Electronic discussion networks, Blogs and online communities, Web-based networks.

UNIT 2: SOCIAL NETWORK PROFILES

Introduction – types of commercial social network profiles (CSNP) - Quantitative and Qualitative Analysis of CSNPs – Analysis of social networks extracted from log files - Data Mining Methods Related to SNA and Log Mining - Clustering Techniques – Case study.

UNIT 3: SEMANTIC TECHNOLOGY FOR SOCIAL NETWORK ANALYSIS

Introduction to ontology-based knowledge representation - - Ontology languages for the Semantic Web – RDF and OWL - Modeling Social network data - State-of-the-art in network data representation, Ontological representation of social individuals, Ontological representation of social relationships.

UNIT 4: SOCIAL NETWORK MINING

Detecting and discovering Communities in Social Networks - Definition of Community -Evaluating Communities - Methods for Community Detection – divisive, spectral and modularity optimization algorithms - Applications of Community Mining Algorithms - Overview of tools for Detecting Communities - Understanding and Predicting Human Behavior for Social Communities.

UNIT 5: VISUALIZATION AND APPLICATIONS OF SOCIAL NETWORKS

Visualization of Social Networks - Node-Edge Diagrams - Random Layout - Force-Directed Layout - Tree Layout - Matrix Representations - Hybrid Representations - Visualizing Online Social Networks - Applications - Covert Networks – Community Welfare - Collaboration Networks - Co-Citation Networks.

TEXT BOOKS

- 1. Peter Mika, "Social Networks and the Semantic Web", Springer, 1st edition 2007.
- 2. BorkoFurht, "Handbook of Social Network Technologies and Applications", Springer, 1st edition, 2010.

- 1. GuandongXu ,Yanchun Zhang and Lin Li, "Web Mining and Social Networking Techniques and applications", Springer, 1st edition, 2011.
- 2. Max Chevalier, Christine Julien and Chantal Soulé-Dupuy, "Collaborative and Social Information Retrieval and Access: Techniques for Improved User Modelling", IGI Global snippet, 2009.
- 3. John G. Breslin, Alexandre Passant and Stefan Decker, "The Social Semantic Web", Springer, 2009.

		L	Т	Р	X	С	Н
213INT3104	INFORMATION RETRIEVAL TECHNIQUES	2	0	2	0	3	4
Prerequisite	Information Storage, Modelling and Retrieval (2121)	NT2306	5)	1	1		
Course	Professional Electives						
Category							
Course Type	Theory						
Objective (s)	• To learn the concepts behind IR						
	• To understand the operation of web search						
	• To learn the algorithms related to text classi	fication	, in	dex	ing a	nd	
	searching				-		
Course Outcon	me(s)						
CO1	Learn use an open source search engine framework a	and exp	lore	e its	s capa	abilit	ies
CO2	Know the various modeling and evaluation techniqu	es					
CO3	Learn to represent documents in different ways and	discuss	its	effe	ect or	1	
	similarity						
CO4	Learn Calculations and on search						
CO5	Design and implement an innovative feature in a sea	rch eng	gine				

Mapp	ing of	COs	with P	OS											
COs	Os PO's PSO's														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3		3										2		
CO2	1	3				3					3			1	
CO3	1			3			3			2		1			2
CO4	1	3	2	3					3					3	
CO5	1	3	2								3		2		

UNIT 1: INTRODUCTION

Information Retrieval – Early Developments – The IR Problem – The User's Task – Information versus Data Retrieval - The IR System – The Software Architecture of the IR System – The Retrieval and Ranking Processes - The Web – The e-Publishing Era – How the web changed Search – Practical Issues on the Web – How People Search – Search Interfaces Today – Visualization in Search Interfaces.

UNIT 2: MODELING AND RETRIEVAL EVALUATION

IR models – Classic Information Retrieval – Alternative Set Theoretic Models – Alternative Algebraic Models – Alternative Probabilistic Models – Other Models – Hypertext Models – Web based Models – Retrieval Evaluation – Cranfield Paradigm – Retrieval Metrics – Reference Collections – User-based Evaluation – Relevance Feedback and Query Expansion – Explicit Relevance Feedback – Clicks – Implicit Feedback Through Local Analysis – Global

Analysis – Documents: Languages & Properties – Queries: Languages & Properties.

UNIT 3: TEXT CLASSIFICATION, INDEXING AND SEARCHING

A Characterization of Text Classification – Unsupervised Algorithms – Supervised Algorithms – Feature Selection or Dimensionality Reduction – Evaluation metrics – Organizing the classes – Indexing and Searching – Inverted Indexes –Signature Files – Suffix Trees & Suffix Arrays – Sequential Searching – Multi-dimensional Indexing.

UNIT 4: WEB RETRIEVAL AND WEB CRAWLING

The Web – Search Engine Architectures – Search Engine Ranking – Managing Web Data – Search Engine User Interaction – Browsing – Applications of a Web Crawler – Taxonomy – Architecture and Implementation – Scheduling Algorithms – Evaluation - Structured Text Retrieval.

UNIT 5: TYPES OF IR AND APPLICATIONS

Parallel and Distributed IR –Data Partitioning – Parallel IR – Cluster-based IR – Distributed IR - Multimedia Information Retrieval – Challenges – Content Based Image Retrieval – Audioand Music Retrieval – Retrieving and Browsing Video – Fusion Models – Segmentation – Compression - Enterprise Search –Tasks – Architecture of Enterprise Search Systems – Enterprise Search Evaluation - Library Systems – Digital Libraries

TEXT BOOKS

- 1. Ricardo Baeza-Yates and Berthier Ribeiro-Neto, "Modern Information Retrieval: The Concepts and Technology behind Search", Second Edition, ACM Press Books, 2011.
- 2. Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, "Information Retrieval: Implementing and Evaluating Search Engines", The MIT Press, 2010.

- 1. C. Manning, P. Raghavan, and H. Schütze, "Introduction to Information Retrieval", Cambridge University Press, 2008.
- 2. Bruce Croft, Donald Metzler and Trevor Strohman, "Search Engines: Information Retrieval in Practice", First Edition, Addison Wesley, 2009.

213INT1303	Parallel and Distributed Computing L T P X C H
21311(11303	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Prerequisite	Nil
Course	Professional Electives
Category	
Course Type	Integrated Course with Theory
Objective (s)	 To understand the need and fundamentals of parallel computing paradigms To learn the nuances of parallel algorithm design To understand the programming principles in parallel and distributed computing architectures To learn few problems that are solved using parallel algorithms
Course Outco	me(s)
CO1	Apply parallel and distributed computing architectures for any given problem
CO2	Apply problem solving (analysis, design, and development) skills to distributed applications
CO3	Develop applications by incorporating parallel and distributed computing architectures
CO4	Develop applications by incorporating fault tolerance
CO5	Convert a sequential algorithm to a parallel one

Mappi	Mapping of COs with Pos														
COs	PO's	PSO	's												
CO	1 2 3 4 5 6 7 8 9 10 11 12													2	3
CO1	3	3				3						3	2		
CO2	2	3	3											1	
CO3	1	3	3												2
CO4		3	3	3	1						2	3		3	
CO5			3	3	1						2	2	2		

UNIT 1: INTRODUCTION TO PARALLEL COMPUTING

Scope of Parallel Computing – Parallel Programming Platforms – Implicit Parallelism – Limitations of Memory System Performance – Control Structure of Parallel Platforms – Communication Model of Parallel Platforms – Physical Organization of Parallel Platforms – Communication Costs in Parallel Machines – Impact of Process - Processor Mapping and Mapping Techniques.

UNIT 2: PARALLEL ALGORITHM DESIGN

Preliminaries – Decomposition Techniques – Characteristics of Tasks and Interactions – Mapping Techniques for Load Balancing – Methods for Containing Interaction Overheads – Parallel Algorithm Models – Basic Communication Operations – One-to-All Broadcast and Allto-One Reduction – All-to-All Broadcast and Reduction – All-Reduce and Prefix Sum Operations – Scatter and Gather – All-to-All Personalized Communication- Circular Shift – Improving the Speed of some Communication Operations

UNIT 3: PROGRAMMING USING MESSAGE PASSING AND SHARED ADDRESS SPACE

Principles of Message Passing Programming – Building Blocks – Send and Receive Operations – MPI – Message Passing Interface – Topologies and Embedding – Overlapping Communication with Computation – Collective Communication and Computation Operations – Groups and Communicators – POSIX thread API – OpenMP: a Standard for Directive based Parallel Programming – Applications of Parallel Programming - Matrix-Matrix Multiplication – Solving Systems of Equations – Sorting Networks - Bubble Sort Variations – Parallel Depth First Search

UNIT 4: DISTRIBUTED COMPUTING PARADIGM

Paradigms for Distributed applications – Basic algorithms in Message passing Systems – Leader Election in Rings – Mutual Exclusion in Shared Memory

UNIT 5: FAULT TOLERANT DESIGN

Synchronous Systems with Crash Failures – Byzantine Failures – Impossibility in Asynchronous Systems - Formal Model for Simulation – Broadcast and Multicast – Specification of a Broadcast Service – Implementing a Broadcast Service – Multicast in Groups – Distributed Shared Memory – Linearizable – Sequentially Consistent Shared Memory – Algorithms

TEXT BOOK

- 1. AnanthGrama, Anshul Gupta, George Karypis and Vipin Kumar, —Introduction to Parallel Computing, Second Edition, Pearson Education, 2009.
 - 2. HaggitAttiya and Jennifer Welch, —Distributed Computing Fundamentals, Simulations and Advanced Topics, Second Edition, Wiley, 2012.

- 1. Norman Matloff, —Parallel Computing for Data Science With Examples in R, C++ and CUDAI, Chapman and Hall/CRC, 2015.
- 2. Wan Fokkink, —Distributed Algorithms: An Intuitive Approachl, MIT Press, 2013.
- 3. M.L. Liu, —Distributed Computing Principles and Applications, First Edition, Pearson Education, 2011.

213INT3303	CDADH THEODV	L	Т	P	Χ	С	Η
21311113303	GRAI II THEOR I	3	0	2	0	4	5
Prerequisite	Data Structures and Algorithms (212INT2303)						
Course	Professional Electives						
Category							
Course Type	Integrated Course with Theory						
Objective(s)	This course comprehends the graphs as a modeling a science & Engineering. It introduces the structures techniques of counting and combinations, which a	and suc re n	anal h as leede	ysis s gra ed ii	tool phs 1 nu	in con & tree mber t	nputer es and theory
	based computing and network security studies in Co	mpt	iter S	Scie	nce.		
Course Outco	me(s)						
CO1	Able to precise and accurate mathematical definition	ns of	obj	ects	in g	raph th	eory.
CO2	Apply mathematical definitions to identify and cons	truc	t exa	mpl	es		
CO3	Able to Validate and critically assess a mathematica	l pro	oof.				
CO4	Analyze the use of combination of theoretical k	now	ledg	ge a	nd	indepe	ndent
	mathematical thinking in creative investigation of qu	ıesti	ons	in g	raph	theory	1.
CO5	Identify the reason from definitions to construct mat	hem	atic	al pr	oofs	5.	

Mappi	pping of COs with Pos														
COs	PO's PSO's														
CO	1 2 3 4 5 6 7 8 9 10 11 12												1	2	3
CO1		3											3		
CO2								2						2	
CO3		3					1								2
CO4						3								3	
CO5		1		2		3							2		

UNIT 1 INTRODUCTION

Graphs – Introduction – Isomorphism – Sub graphs – Walks, Paths, Circuits –Connectedness – Components – Euler graphs – Hamiltonian paths and circuits – Trees – Properties of trees – Distance and centers in tree – Rooted and binary trees.

UNIT 2 TREES, CONNECTIVITY & PLANARITY

Spanning trees – Fundamental circuits – Spanning trees in a weighted graph – cut sets –Properties of cut set – All cut sets – Fundamental circuits and cut sets – Connectivity and separability – Network flows – 1-Isomorphism – 2-Isomorphism – Combinational and geometric graphs – Planer graphs – Different representation of a planer graph.

UNIT 3 MATRICES, COLOURING AND DIRECTED GRAPH

Chromatic number – Chromatic partitioning – Chromatic polynomial – Matching – Covering – Four color problem – Directed graphs – Types of directed graphs – Digraphs and binary relations – Directed paths and connectedness – Euler graphs.

UNIT 4 PERMUTATIONS & COMBINATIONS

Fundamental principles of counting - Permutations and combinations - Binomial theorem - combinations with repetition - Combinatorial numbers - Principle of inclusion and exclusion - Derangements - Arrangements with forbidden positions.

UNIT 5 GENERATING FUNCTIONS

Generating functions - Partitions of integers - Exponential generating function – Summation operator - Recurrence relations - First order and second order – Non-homogeneous recurrence relations - Method of generating functions

TEXT BOOKS:

1. NarsinghDeo, Graph Theory: With Application to Engineering and Computer Science, Prentice Hall of India, 2003.

2. Grimaldi R.P., Discrete and Combinatorial Mathematics: An Applied Introduction, Addison Wesley, 1994.

REFERENCES:

1. Clark J. & Holton D.A., A First Look at Graph Theory, Allied Publishers, 1995.

2. Mott J.L., Kandel A. & Baker T.P., Discrete Mathematics for Computer Scientists and Mathematicians, Prentice Hall of India, 1996.

3. Liu C.L., Elements of Discrete Mathematics, McGraw Hill, 1985.

4. Rosen K.H., Discrete Mathematics And Its Applications, McGraw Hil, 2007

213INT1100	EDCE COMPLITINC	L	Т	P	Χ	С	Н
2131111109	EDGE COMI UTING	3	0	0	0	3	3
Prerequisite	Nil						
Course	Professional Electives						
Category							
Course Type	Theory						
Objective(s)	This course comprehends the graphs as a modeling science & Engineering. It introduces the structures techniques of counting and combinations, which a based computing and network security studies in Co	and suc re n mpu	anal ch as leede lter S	ysis s gra ed in Scien	tool aphs n nu nce.	in con & tre mber	mputer es and theory
Course Outco	me(s)						
CO1	Explore research, frameworks, applications in edge	and	fog	com	puti	ng.	
CO2	Review underlying technologies, limitations, and research direction and discuss generic conceptual fra problems in fog computing.	cha ame	llenş work	ges a	alon opt	g witl imizat	n future ion
CO3	Analyse the restrictions introduced by the General D (GDPR), and discuss how these legal constraints affection of the optications in fog and cloud environments.	Data ect t	Prot he d	ection esig	on R n an	legulat d oper	ion ationof
CO4	Design and develop simulation scenarios for Edge a network simulator.	nd F	Fog (Com	puti	ng usi	ng

Mappi	ing of	COs v	with Po	OS											
COs	PO's PSO's														
CO	1 2 3 4 5 6 7 8 9 10 11 12													2	3
CO1		3											2		
CO2								2						1	
CO3		3					1								2
CO4						3								3	
CO5													2		

Edge and Fog Computing – Foundations

Internet of Things (IoT) and New Computing Paradigms . Addressing the challenges in Federating Edge Resources- Integrating IoT + Fog + Cloud Infrastructures: System Modelling and Research Challenges- Management and Orchestration of Network slices in 5G, Fog, Edge and Clouds . Optimization problems in Fog and Edge Computing

Middleware

Middleware for Fog and Edge Computing: Design Issues . A Lightweight Container Middleware for Edge Cloud Architectures - Data Management in Fog Computing

- Predictive analysis to develop to support Fog Application Deployment- Using Machine Learning (ML) for protecting the security and privacy of IoT Systems

Applications

Fog Computing Realization for Big Data Analytics. Exploiting Fog Computing in Health Monitoring.- Smart Surveillance Video Stream Processing at the Edge for Real-Time Human Objects Tracking. Fog Computing Model for Evolving Smart Transportation Applications.

Application Testing and Issues

Testing Perspectives of Fog-Based IoT Applications. Legal Aspects of Operating IoT Applications in the Fog.

Model & Simulate Edge and Fog computing

Model Fog and Edge Computing Environments Using network simulator toolkit (such as iFogSim, Ns3, OMNeT++, NetSim etc..,) - Simulate Fog and Edge Computing Environments Using network simulator Toolkit (such as iFogSim, Ns3, OMNeT++, NetSim etc..,)

Books:

Satish Narayana Srirama, RajkumarBuyya,. (2019), , Fog and Edge Computing : Principles and Paradigms ,Wiley ,.

AbdulrahmanYarali, (2018), Cloud, Fog, and Edge: Technologies and Trends in Telecommunications Industry (Computer Science, Technology and Applications), Nova Science Pub Inc].

Mahmood, Zaigham, (2018), Fog Computing Concepts, Frameworks and Technologies, Springer.

Rahmani, A., Liljeberg, P., Preden, J.-S., Jantsch, A.,. (2018), , Fog Computing in the Internet of Things Intelligence at the Edge,Springer.

AI STREAM

213INT1110	BIO INFORMATICS L T P X C H 3 0 0 0 3 3
Prerequisite	Nil
Course Category	Professional Electives
Course Type	Theory
Objective(s)	 Exposed to the need for Bioinformatics technologies Be familiar with the modeling techniques Learn microarray analysis Exposed to Pattern Matching and Visualization
Course Outco	me(s)
CO1	Learn the structural bioinformatics
CO2	Understand the concept of data warehousing and data mining in bioinformatics
CO3	Examine different models in bio informatics
CO4	Demonstrate the various patterns of DNA
CO5	Learn to analyze image and data extraction in informatics database

Mappi	pping of COs with Pos														
COs	PO's	5		PSO	's										
CO	1 2 3 4 5 6 7 8 9 10 11 12												1	2	3
CO1	1	3	2										2		
CO2	3	3			3							1		1	
CO3	1	3	2												2
CO4	1				2		3							3	
CO5	1	3	2		2							1	2		

Course Topic(s)

UNIT 1: INTRODUCTION

Need for Bioinformatics technologies – Overview of Bioinformatics technologies Structural bioinformatics – Data format and processing – Secondary resources and applications – Role of Structural bioinformatics - Biological Data Integration System.

UNIT 2: DATAWAREHOUSING AND DATAMINING IN BIOINFORMATICS

Bioinformatics data - Data warehousing architecture - data quality - Biomedical data analysis -DNA data analysis - Protein data analysis - Machine learning - Neural network architecture and applications in bioinformatics.

UNIT 3: MODELING FOR BIOINFORMATICS

Hidden markov modeling for biological data analysis - Sequence identification -Sequence classification - multiple alignment generation - Comparative modeling -Protein modeling genomic modeling - Probabilistic modeling - Bayesian networks - Boolean networks - Molecular modeling - Computer programs for molecular modeling.

UNIT 4: PATTERN MATCHING AND VISUALIZATION

Gene regulation - motif recognition - motif detection - strategies for motif detection -Visualization - Fractal analysis - DNA walk models - one dimension - two dimension - higher dimension – Game representation of Biological sequences – DNA, Protein, Amino acid sequences. **UNIT 5: MICROARRAY ANALYSIS**

Microarray technology for genome expression study - image analysis for data extraction preprocessing – segmentation – gridding – spot extraction – normalization, filtering – cluster analysis – gene network analysis – Compared Evaluation of Scientific Data Management Systems - Cost Matrix - Evaluation model - Benchmark - Tradeoffs.

TEXT BOOK

1. Yi-Ping Phoebe Chen (Ed), "BioInformatics Technologies", First Indian Reprint, Springer Verlag, 2007.

- 1. Bryan Bergeron, "Bio Informatics Computing", Second Edition, Pearson Education, 2003.
- 2. Arthur M Lesk, "Introduction to Bioinformatics", Second Edition, Oxford University Press, 2005.

213INT1311	NEURAL NETWORKS AND FUZZY LOGIC	L 2	T 1	P 2	X 0	C 4	H 5
Prerequisite	Nil						
Course	Professional Flootive						
Course	Professional Elective						
Course Type	Integrated Course with Theory						
Objective(s)	 Introduce students to the various neural netwo Reveal different applications of these models problems. Introduce the theory and applications of artifi systems to engineering applications with emplicant control. Discuss neural networks and fuzzy systems, applications, including Back-propagation, BA Competitive Learning, Fuzzy inference method 	rk and t to solve cial net hasis or archite AM, He ods and	fuzz e eng ural n ima ectur opfie expe	y syg ginee netw age j es, a eld 1 ert sy	stem ering vork proc algon netw yster	and g and essin rithn ork, ns	odels. d other fuzzy ng and ns and
Course Outco	me(s)						
CO1	Identify different neural network architectures, the learning rules for each of the architectures	eir limit	atio	ns a	nd a	ppro	opriate
CO2	Design and implement a neural network simuloperation: learning and processing) using a high-level	lation vel lang	(witl juage	h tv e C+	vo 1 -+	nod	es of
CO3	Demonstrate knowledge and understanding of fuzz engineering and science	y syster	n as	app	lied	in	
CO4	Learn the power and usefulness of artificial applications including speech synthesis, diagnostic finance, robotic control, signal processing, comp problems that fall under the category of pattern reco	neural c probl uter vi ognition	l ne ems, ision	etwo , bus 1 an	rks sines id r	in ss ar nany	several nd y other
COS	Develop models for different applications using fuz	izy syst	em a	ina l	viati	Lau	

Mappi	ing of	COsv	with P	OS											
COs	s PO's PSO's														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		3		3			2						2		
CO2		3	3											1	
CO3							3			3	3	1			2
CO4		2												3	
CO5			3	2									2		

UNIT 1: INTRODUCTION TO NEURAL NETWORKS

Introduction - Humans and Computers - Organization of the Brain - Biological Neuron -Biological and Artificial Neuron Models - Characteristics of ANN - Models of ANNs -
McCulloch-Pitts Model - Feed forward & feedback networks - learning rules - Hebbian learning rule - perception learning rule - delta learning rule - Widrow-Hoff learning rule - correction learning rule - Winner – lake all learning rule - etc.

UNIT 2: FEED FORWARD NEURAL NETWORKS

Classification model - Features & Decision regions - training & classification using discrete perception - algorithm - single layer continuous perception networks for linearly separable classifications - linearly non- separable pattern classification - Delta learning rule for multiperception layer - Generalized delta learning rule -Back-propagation training - learning factors - Examples.

UNIT 3: ASSOCIATIVE MEMORIES

Paradigms of Associative Memory - Pattern Mathematics - Hebbian Learning - General Concepts of Associative Memory - Bidirectional Associative Memory (BAM) Architecture - BAM Training Algorithms - Storage and Recall Algorithm - BAM Energy Function - Hopfield networks - Basic Concepts - Training & Examples - SOM-UN supervised learning of clusters - winner-take-all learning - recall mode, Initialization of weights - seperability limitations del - Historical Developments - Potential Applications of ANN.

UNIT 4: CLASSICAL SETS

Introduction to classical sets – properties - Operations and relations -Fuzzy sets –Membership – Uncertainty – Operations – properties - fuzzy relations – cardinalities - membership functions -Overview of Classical Sets - Membership Function - a-cuts - Properties of a-cuts – Decomposition – Theorems - Extension Principle

UNIT 5: UNCERTAINTY BASED INFORMATION

Information & Uncertainty - Non specificity of Fuzzy & Crisp sets - Fuzziness of Fuzzy Sets – Fuzzification - Membership value assignment - development of rule base and decision making system - Defuzzification to crisp sets - Defuzzification methods - Neural network applications - Process identification – control - fault diagnosis - Fuzzy logic applications - Fuzzy logic control and Fuzzy classification.

TEXT BOOKS

- 1. S. Rajasekharan and G. A. Vijayalakshmipai, "Neural Networks, Fuzzy logic, Genetic algorithms: synthesis and applications", PHI Publication, 2011.
- 2. John Yen and Reza Langan, "Fuzzy Logic: Intelligence, Control and Information", Pearson Education, 2011.

REFERENCES

- 1. Simon Haykin, "Neural Networks- A comprehensive foundation", Pearson Education, 2005.
- 2. S.N.Sivanandam, S.Sumathi, S. N. Deepa "Introduction to Neural Networks using MATLAB 6.0", TMH, 2006.
- 3. James A Freeman and Davis Skapura, Neural Networks Pearson Education, 2002.

213INT3304	MACHINE LEARNING	L 3	T 0	P 2	X 0	C 4	H 5
Prerequisite	Data Structures and Algorithms (212INT2303)					-	
Course Category	Professional Electives						
Course Type	Integrated Course with Theory						
Objective(s)	 To introduce students to the basic concepts Learning. To have a thorough understanding of the S learning techniques To study the various probability based learning To understand graphical models of machinical models of machin	and te upervis ning te e learn	sed ar chniq chniq ing al	lues nd U lues lgori	of M nsup thms	Iach bervi	ine sed
Course Outco	me(s)						
CO1	Distinguish between, supervised, unsupervised and	l semi-	super	vise	d lea	ırnin	ıg
CO2	Choose the appropriate machine learning strategy	for an	ıy giv	en p	roble	em	
CO3	Suggest supervised, unsupervised or semi-supervised	sed lear	rning	algo	orithi	ns fo	or any
CO4	Design systems that use the appropriate graph mod	lels of	mach	ine l	earn	ing	
CO5	Modify existing machine learning algorithms to im	prove	class	ifica	tion	effic	ciency

Mappi	ing of	COs	with P	os											
COs	PO's													's	
CO	1 2 3 4 5 6 7 8 9 10 11 12											12	1	2	3
CO1		1	3										2		
CO2	1		3	2		3								1	
CO3			3	2		2		3							2
CO4			2			2						3		3	
CO5										3		3	2		

UNIT 1: INTRODUCTION

Learning – Types of Machine Learning –Supervised Learning – The Brain and the Neuron– Design a Learning System –Perspectives and Issues in Machine Learning–Concept Learning Task –Concept Learning as Search –Finding a Maximally Specific Hypothesis –Version Spaces and the Candidate Elimination Algorithm –Linear Discriminants –Perceptron –Linear Separability –Linear Regression

UNIT 2: LINEAR MODELS

Multi-layer Perceptron – Going Forwards –Going Backwards: Back Propagation Error –Multilayer Perceptron in Practice –Examples of using the MLP –Overview –Deriving BackPropagation -Radial Basis Functions and Splines -Concepts -RBF Network -Curse ofDimensionality-Interpolations and Basis Functions –Support Vector Machines

UNIT 3 : TREE AND PROBABILISTIC MODELS

Learning with Trees -Decision Trees -Constructing Decision Trees -Classification and Regression Trees –Ensemble Learning –Boosting –Bagging –Different ways to Combine Classifiers –Probability and Learning –Data into Probabilities –Basic Statistics –Gaussian Mixture Models –Nearest Neighbor Methods –Unsupervised Learning –K means Algorithms – Vector Quantization –Self Organizing Feature Map

UNIT 4: DIMENSIONALITY REDUCTION AND EVOLUTIONARY MODELS

Dimensionality Reduction - Linear Discriminant Analysis - Principal Component Analysis - Factor Analysis –Independent Component Analysis –Locally Linear Embedding –Isomap –LeastSquares Optimization –Evolutionary Learning –Genetic algorithms –Genetic Offspring: -GeneticOperators –Using Genetic Algorithms –Reinforcement Learning –Overview –Getting Lost Example – Markov Decision Process

UNIT 5: GRAPHICAL MODELS

Markov Chain Monte Carlo Methods-Sampling-Proposal Distribution-Markov Chain Monte Carlo -Graphical Models -Bayesian Networks -Markov Random Fields -Hidden Markov Models – Tracking Methods **TEXTBOOKS:**

Stephen Marsland, —Machine Learning –An Algorithmic Perspectivel, Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.
 Tom M Mitchell, —Machine Learningl, First Edition, McGraw Hill Education, 2013.

REFERENCES:

1. Peter Flach, --Machine Learning: The Art and Science of Algorithms that Make Sense of Datal, First Edition, Cambridge University Press, 2012. 2. Jason Bell, —Machine learning –Hands on for Developers and Technical Professionals, First

Edition, Wiley, 2014

3. Ethem Alpaydin, —Introduction to Machine Learning 3e (Adaptive Computation and Machine Learning Series), Third Edition, MIT Press, 2014

213INT1312	SOFT COMPUTING	L 3	T 0	P 2	X 0	C 4	H 5
Prerequisite	Nil			•			
Course Category	Professional Electives						
Course Type	Integrated Course with Theory						
Objective(s)	 To give students knowledge of soft comput To learn the fundamentals of non-traditiona to solving hard real-world problems. To learn and apply artificial neural networl and genetic algorithms in problem solving and u on human experience 	ing theo Il techn ks, fuzz 1se of l	ories olog zy se neuri	fund ies a ets an stics	damo and a nd f bas	ental appro fuzzy ed	ls, baches ylogic,
Course Outco	me(s)						
CO1	Learn the importance of tolerance of imprecision robust and low- cost intelligent machines.	and un	ncerta	ainty	for	des	ign of
CO2	Acquire soft computing fundamentals and design real-world problems.	ı syster	ns f	or so	olvir	ng v	arious
CO3	Integrate the knowledge of neural networks, fuz probabilistic reasoning, rough sets, chaos, hybrid a	zy log pproacł	ic, g nes	genet	ic a	lgor	ithms,
CO4	Learn about fuzzy sets, fuzzy logic, neural netw rules for inference systems	vorks	and	forn	n ap	opro	priate
CO5	Learn about genetic algorithms and other range global optimum in self-learning situations	dom s	earch	n pi	oce	dure	s for

Mappi	ing of	COs v	with P	OS											
COs	0s PO's													's	
CO	1 2 3 4 5 6 7 8 9 10 11 12										12	1	2	3	
CO1				3									2		
CO2				3		3								1	
CO3				3		2		3	2						2
CO4				2		2			2			3		3	
CO5										3		3	2		

UNIT 1: NEURAL NETWORKS -I

(Introduction and Architecture) Neuron, Nerve Structure and Synapse, Artificial Neuron and its Model, Activation Functions, Neural Network Architecture: Single Layer and Multilayer Feed Forward Networks, Recurrent Networks. Various Learning Techniques; Perception and Convergence Rule, Auto-Associative and Hetro-Associative Memory.

UNIT 2: NEURAL NETWORKS -II

(Back Propagation Networks) Architecture: Perceptron Model, Solution, Single Layer

Artificial Neural Network, Multilayer Perception Model; Back Propagation Learning Methods, Effect of Learning Rule Co-Efficient ;Back Propagation Algorithm, Factors Affecting Back Propagation Training, Applications.

UNIT 3: FUZZY LOGIC -I

(Introduction) Basic Concepts of Fuzzy Logic, Fuzzy Sets and Crisp Sets, Fuzzy Set Theory and Operations, Properties of Fuzzy Sets, Fuzzy and Crisp Relations, Fuzzy to Crisp Conversion.

UNIT 4 : FUZZY LOGIC –II

(Fuzzy Membership, Rules) Membership Functions, Interference in Fuzzy Logic, Fuzzy If -Then Rules, Fuzzy Implications and Fuzzy Algorithms, Fuzzifications and Defuzzificataions, Fuzzy Controller, Industrial Applications

UNIT 5: GENETIC ALGORITHM

Basic Concepts, Working Principle, Procedures of GA, Flow Chart of GA, Genetic Representations, (Encoding) Initialization and Selection, Genetic Operators, Mutation, Generational Cycle, Applications

TEXTBOOKS:

1.S. Rajasekaran and G.A. VijayalakshmiPai, —Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications^{II}, Prentice Hall of India, 2003. 2.N.P.Padhy,^{II}Artificial Intelligence and Intelligent Systems^{II}, Oxford University Press, 2005.

3.J.S.R. Jang, C.T. Sun and E. Mizutani, —Neuro-Fuzzy and Soft Computing, Pearson Education, 2004.

REFERENCES:

1. Siman Haykin, —Neural Networks I, Prentice Hall of India, 1999

2. Timothy J. Ross, —Fuzzy Logic with Engineering Applications^{II}, Third Edition, Wiley India, 2010

3. S.Y.Kung, —Digital Neural Network^I, Prentice Hall International, 1993.

4. Aliev.R.A and Aliev,R.R, — Soft Computing and its Application^{II}, World Scientific Publishing Company, 2001

213INT2305	SPEECH AND LANGUAGE PROCESSINGLTPXCH202034
Prerequisite	Python for Programming and Product Development (211CSE1401)
Course Category	Professional Electives
Course Type	Integrated Course with Theory
Objective(s)	• To learn the fundamentals of natural language processing
	 To appreciate the use of CFG and PCFG in NLP
	• To understand the role of semantics and pragmatics
Course Outco	me(s)
CO1	To tag a given text with basic Language features
CO2	To design an innovative application using NLP components
CO3	To implement a rule based system to tackle morphology/syntax of a language
CO4	To design a tag set to be used for statistical processing for real-time applications
CO5	To compare and contrast use of different statistical approaches for different types of NLP applications

Mappi	ing of	COs v	vith Po	OS											
COs	3 PO's														
CO	1 2 3 4 5 6 7 8 9 10 11 12										12	1	2	3	
CO1	3												2		
CO2	3					3								1	
CO3	3					2		3	2						2
CO4	2					2			2			3		3	
CO5										3		3	2		

UNIT 1 : INTRODUCTION

Words-Regular Expressions and Automata -Words and Transducers -N-grams -Part-of-Speech –Tagging -Hidden Markov and Maximum Entropy Models.

UNIT 2: SPEECH

Speech–Phonetics -Speech Synthesis -Automatic Speech Recognition -Speech Recognition: -Advanced Topics -Computational Phonology

UNIT 3: SYNTAX

Formal Grammars of English -Syntactic Parsing -Statistical Parsing -Features and Unification -Language and Complexity.

UNIT 4: SEMANTICS AND PRAGMATICS

The Representation of Meaning -Computational Semantics -Lexical Semantics -Computational Lexical Semantics -Computational Discourse

UNIT 5: APPLICATIONS

Information Extraction -Question Answering and Summarization -Dialogue and Conversational Agents -Machine Translation

TEXTBOOKS:

1. Daniel Jurafsky,—Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech^I, Pearson Publication, 2014.

2. Steven Bird, Ewan Klein and Edward Loper, —Natural Language Processing with Python, First Edition, O'Reilly Media, 2009.

REFERENCES:

1.Breck Baldwin, —Language Processing with Java and LingPipe Cookbook^{II}, Atlantic Publisher, 2015.

2. Richard M Reese, —Natural Language Processing with Javal, O'Reilly Media, 2015.

3.Nitin IndurkhyaandFred J. Damerau, —Handbook of Natural Language Processingl,

Second Edition, Chapman and Hall/CRC Press, 2010.

213INT1313	DEEP LEARNING	L 3	Т 0	P 2	X 0	C 4	H 5
Prerequisite	Nil						
Course Category	Professional Electives						
Course Type	Integrated Course with Theory						
Objective(s)	 To present the mathematical, statistical an building neural networks To study the concepts of deep learning To introduce dimensionality reduction tech To enable the students to know deep learn time applications To examine the case studies of deep learning 	d con nique ing te	nputat s chniq hnique	iona ues t es	l cha o su	allen	ges of rt real-
Course Outco	me(s)						
CO1	Understand basics of deep learning						
CO2	Implement various deep learning models						
CO3	Realign high dimensional data using reduction tech	nnique	es				
CO4	Analyze optimization and generalization in deep le	arnin	g				
CO5	Explore the deep learning applications						

Mappi	ing of	COs v	with Po	OS											
COs	PO's												PSO	's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1					3								2		
CO2	3				3		3							1	
CO3			1		3										2
CO4	2				2						2			3	
CO5													2		

UNIT 1: INTRODUCTION

Introduction to machine learning- Linear models (SVMs and Perceptrons, logistic regression)-Intro to Neural Nets: What a shallow network computes- Training a network: loss functions, back propagation and stochastic gradient descent- Neural networks as universal function approximates

UNIT 2: DEEP NETWORKS

History of Deep Learning- A Probabilistic Theory of Deep Learning- Backpropagation and regularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow Networks-Convolutional Networks- Generative Adversarial Networks (GAN), Semi-supervised Learning

DIMENTIONALITY REDUCTION UNIT 3:

Linear (PCA, LDA) and manifolds, metric learning - Auto encoders and dimensionality reduction in networks - Introduction to Convnet - Architectures - AlexNet, VGG, Inception, ResNet -Training a Convnet: weights initialization, batch normalization, hyperparameter optimization

UNIT 4: OPTIMIZATION AND GENERALIZATION

Optimization in deep learning- Non-convex optimization for deep networks- Stochastic Optimization-Generalization in neural networks- Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models- Word-Level RNNs & Deep Reinforcement Learning - Computational & Artificial Neuroscience

CASE STUDY AND APPLICATIONS UNIT 5:

Imagenet- Detection-Audio WaveNet-Natural Language Processing Word2Vec - Joint Detection-BioInformatics- Face Recognition- Scene Understanding- Gathering Image Captions **REFERENCES:**

- 1. CosmaRohillaShalizi, Advanced Data Analysis from an Elementary Point of View, 2015.
- 2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.
- 3. Ian Goodfellow, YoshuaBengio, Aaron Courville, Deep Learning, MIT Press, 2016.
 - 4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

213INT1101	Augmented Reality and Virtual Reality	L 3	Т 0	P 0	X 0	C 3	H 3
Prerequisite	Nil		•				
Course	Professional Elective						
Category							
Course Type	Theory						
Objective(s)	Introduction to virtual reality, output/input device interaction techniques, modeling and simulation, ex studies, effects of system fidelity, augmented reality virtual reality	es, vir xperim y, real	tual ienta -wo	rea al de rld a	lity esigr appli	APIs and catio	s, 3D l user ns of
Course Outco	me(s)						
CO1	Design, create, and integrate audio, visual, and interact comprehensive immersive experience.	ctive el	leme	ents i	into	a	
CO2	Develop content for successful delivery across multiple mobile devices and head-mounted displays.	ole plat	forn	ns, ir	ncluc	ling I	PC,
CO3	Evaluate current trends of AR and VR media delivery potential clients, and discuss the benefits, challenges with working in AR and VR.	to pros and r	pos nisc	e opt once	tions ptio	s to ns in	volved
CO4	Evaluate various interaction schemes common to AR/	/VR ex	peri	ence	es.		
CO5	Use immersive effects of visual and audio assets to Al evaluate implementation methods.	R/VR	expe	erien	ces	and	

Mapp	ing of	COsv	with Po	os											
COs	PO's	5											PSO	's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		2				3							2		
CO2	3				3		3							1	
CO3			1		3				3						2
CO4	2				2						2			3	
CO5													2		

UNIT 1: INTRODUCTION

Introduction to machine learning- Linear models (SVMs and Perceptrons, logistic regression)-Intro to Neural Nets: What a shallow network computes- Training a network: loss functions, back propagation and stochastic gradient descent- Neural networks as universal function approximates

UNIT 2: DEEP NETWORKS

History of Deep Learning- A Probabilistic Theory of Deep Learning- Backpropagation and regularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow Networks-Convolutional Networks- Generative Adversarial Networks (GAN), Semi-supervised Learning

DIMENTIONALITY REDUCTION **UNIT 3:**

Linear (PCA, LDA) and manifolds, metric learning - Auto encoders and dimensionality reduction in networks - Introduction to Convnet - Architectures - AlexNet, VGG, Inception, ResNet -Training a Convnet: weights initialization, batch normalization, hyperparameter optimization

UNIT 4: OPTIMIZATION AND GENERALIZATION

Optimization in deep learning- Non-convex optimization for deep networks- Stochastic Optimization-Generalization in neural networks- Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models- Word-Level RNNs & Deep Reinforcement Learning - Computational & Artificial Neuroscience

CASE STUDY AND APPLICATIONS UNIT 5:

Imagenet- Detection-Audio WaveNet-Natural Language Processing Word2Vec - Joint Detection-BioInformatics- Face Recognition- Scene Understanding- Gathering Image Captions **REFERENCES:**

- 1. CosmaRohillaShalizi, Advanced Data Analysis from an Elementary Point of View, 2015.
- 2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.
- 3. Ian Goodfellow, YoshuaBengio, Aaron Courville, Deep Learning, MIT Press, 2016.
 - 4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

OPEN ELECTIVE

214INT1301	WEB PROGRAMMINGLTPXCH202034
Prerequisite	
Course	Open Elective
Category	
Course Type	Integrated Course with Theory
Objective (s)	 To learn the theoretical and practical concepts of web programming. To introduce the programming languages for developing simple web
	 applications. To make students to understand about the architecture of web server and deployment of web site
	• To teach methodologies useful for the implementation of dynamic web applications
	• To efficiently design and implement web applications using server side programming languages
Course Outcon	ne(s)
CO1	Understand the programming concepts of HTML, DHTML, CSS, JavaScript, XML and other Web technologies
CO2	Understand Java programming concepts and utilize Java Graphical User Interface program writing.
CO3	Build Java Application for distributed environment. Design and Develop multi- tier applications.
CO4	Utilize professional level platforms (ASP, JSP, Servlets) to produce software systems/websites that meet specified user needs and constraints.
CO5	Understand database basics related to develop dynamic web applications and Apply XML for designing web pages.

Mapp	ing of	COs	with P	os											
COs	PO's	5											PSO	's	
CO	<u>1 2 3 4 5 6 7 8 9 10 11 12</u>										12	1	2	3	
CO1	3	2										1	2		
CO2		2	2	3								1		1	
CO3		2	2			3						1			2
CO4		2	2				3					1		3	
CO5		2	2								3	1	2		

UNIT 1: INTRODUCTION

World Wide Web – History of the World Wide Web, World Wide Web Consortium – HTML - Dynamic HTML - Object model and collections, Event model, Filters and Transitions.

UNIT 2: JAVA SCRIPT

Introduction – Simple program, Memory concepts, Arithmetic, Decision making - Equality and Relational operators – Control statements – Control structures, Operators – Functions – Programmer defined functions, JavaScript global functions, Recursion – Arrays – References and Reference parameters, Passing arrays to functions, Multidimensional arrays – Objects – Object types, Cookies.

UNIT 3: XML

Introduction, Structuring data, XML namespaces, Document Type Definitions (DTDs) and Schemas, Document type definitions, W3C XML schema documents, XML vocabularies, Document Object Model (DOM), DOM methods, Simple API for XML (SAX), Extensible Style sheet Language (XSL), Simple Object Access Protocol (SOAP).

UNIT 4: PERL, CGI AND PHP

Introduction, String processing and Regular expressions, Viewing Client/Server environment variables, Form processing and Business logic, Verifying a username and password, Connecting to a database, Cookies, Operator precedence chart.

UNIT 5: JAVA PROGRAMMING

Classes – Constructors, Garbage collection - Overloading methods – Overriding methods - Exception handling - Multithreading – Creating a thread, Synchronization, Inter thread communication - Streams – Byte streams, Character streams.

TEXT BOOKS:

1. 1. Harvey Deitel, Abbey Deitel, "Internet and World Wide Web: How To Program" 5th Edition.

2. Herbert Schildt, "Java – The Complete Reference, 7th Edition". Tata McGraw-Hill.

REFERENCES:

1. John Pollock, "Javascript – A Beginners Guide", 3rd Edition –- Tata McGraw-Hill.

2. Keyur Shah, "Gateway to Java Programmer Sun Certification", Tata McGraw Hill, 2002.

		L	Т	P	X	С	Н									
214INT2301	BIG DATA ANALYTICS	2	0	2	0	3	4									
Prerequisite	Nil		1	1	I	1										
Course	Open Elective															
Category																
Course Type	Integrated Course with Theory															
Objective (s)	• Prepare the students to understand and pract	• Prepare the students to understand and practice Big Data Analytics using Hadoop Ecosystem and prepare them for a Career in Analytics as a														
	Hadoop Ecosystem and prepare them for a Career in Analytics as a															
	Hadoop Developer, Hadoop Administrator, Data Scientist.															
Course Outcon	ne(s)															
CO1	Understand the key issues on big data, character associated applications in intelligent business and s	ristics, cientifi	data c co	i sou mpu	irces ting.	and	the									
CO2	Acquire fundamental enabling techniques and sca analytics.	alable a	lgor	ithm	s in	big	data									
CO3	Interpret business models and scientific compu software tools for Big data analytics.	ting pa	radi	gms	, an	d a	pply									
CO4	Achieve adequate perspectives of big data analy	tics in	ma	rketi	ng,	fina	ncial									
	services, health services, social networking, a	strophy	vsics	exp	plora	ntion	, and									
	environmental sensor applications, etc.															
CO5	Select visualization techniques and tools to an statistical models and understand how to handle lar	alyze d ge amo	big unts	data of c	ano lata.	d cr	reate									

Mapp	Mapping of COs with Pos														
COs	$\frac{Ds}{D} = \frac{PO's}{1 + 2} + \frac{1}{2} + \frac{1}{2$														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2										1	2		
CO2		2	2	3								1		1	
CO3		2	2			3						1			2
CO4		2	2				3					1		3	
CO5		2	2								3	1	2		

UNIT 1: INTRODUCTION TO BIG DATA

Introduction to Big Data Platform – Challenges of conventional systems – Web data – Evolution of Analytic scalability, analytic processes and tools, Analysis vs reporting – Modern data analytic tools, Stastical concepts: Sampling distributions, resampling, statistical inference, prediction error. **UNIT 2: MINING DATA STREAMS**

Introduction to Streams Concepts – Stream data model and architecture – Stream Computing, Sampling data in a stream – Filtering streams – Counting distinct elements in a stream – Estimating moments – Counting oneness in a window – Decaying window – Realtime Analytics Platform(RTAP) applications – case studies – real time sentiment analysis, stock market predictions.

UNIT 3: HADOOP

History of Hadoop- The Hadoop Distributed File System –Components of Hadoop -Analyzing The Data with Hadoop-Scaling Out-Hadoop Streaming-Design of HDFS-Java interfaces toHDFS-Basics-Developing a Map Reduce Application-How Map Reduce Works-Anatomy of aMap Reduce Job run-Failures-Job Scheduling-Shuffle and Sort–Task execution-Map ReduceTypes and Formats

UNIT 4: HADOOP ENVIRONMENT

Setting up a Hadoop Cluster -Cluster specification -Cluster Setup and Installation -HadoopConfiguration-Security in Hadoop -Administering Hadoop –HDFS -Monitoring-Maintenance-Hadoop benchmarks-Hadoop in the cloud

UNIT 5: FRAMEWORKS

Applications on Big Data Using Pig and Hive –Data processing operators in Pig –Hive services – HiveQL –Querying Data in Hive -fundamentals of HBase and ZooKeeper -IBM InfoSphere-. Visualizations -Visual data analysis techniques, interaction techniques.

TEXT BOOKS:

1. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007. 2. AnandRajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.

REFERENCES:

1. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with advanced analystics", John Wiley & sons, 2012.

2. Glenn J. Myatt, "Making Sense of Data", John Wiley & Sons, 2007 Pete Warden, Big Data Glossary, O'Reilly, 2011.

214INT2302	INFORMATION THEORY & CODING	L	Τ	P	Х	С	Η								
2141112302		2	0	2	0	3	4								
Prerequisite	Nil														
Course	Open Elective														
Category															
Course	Integrated Course with Theory														
Туре															
Objective (s)	• To introduce to the students the concept of information and entropy of Information.														
	Information.														
	 Information. To know the concept of compression of information, error control of 														
	Information, and securing information through	gh cryp	togra	aphy	y.										
	• Describe the mathematical foundation of cor	npressi	on, e	erroi	cor	ntrol	and								
	security of information.														
Course Outco	me(s)														
CO1	Understand the basic information and entropy.														
CO2	Analyze source coding compression, decoding an	d error	coi	ntro	l me	ethoo	ls as								
	applied in communication system.														
CO3	Understand different types coding techniques.														
CO4	Understand the basic number theory of coding techn	iques.													
CO5	Analysis the various algorithms techniques.														

Mappi	Mapping of COs with Pos														
COs	Os PO's													's	
CO	1 2 3 4 5 6 7 8 9 10 11 12											12	1	2	3
CO1	3	3					3					3	2		
CO2	2	3	1											1	
CO3	3	3	1			1	3	1				1			2
CO4		3	1				2				3	1		3	
CO5		3	1				2				3	1	2		

UNIT 1: INFORMATION THEORY & SOURCE CODING

Introduction to Information Theory- Entropy & Types of Entropy Source Coding, Prefix Coding, Channel Capacity

UNIT 2: COMPRESSION ALGORITHMS

Optimal Compression- Compression Algorithms, Huffman Coding, Adaptive Huffman Compression, Dictionary Based Compression, Speech Compression, Sliding Window Compression, LZW,RLE, Lossy& Lossless Compression Schemes, Image Compression – GIF,JPEG

UNIT 3: ERROR CONTROL CODING TECHNIQUES

Types of Codes - Error Checking & Correcting Codes, Linear Block Codes, Cyclic Codes, BCH

Codes, Convolution Codes

UNIT 4: BASIC NUMBER THEORY

Modular Arithmetic, Solving ax+by=d, Congruence's, Chinese Remainder Theorem Modular Exponentiation, Fermat's Little and Euler Theorem, Prime Number Generation, Random Number Generation, Primitive Roots, Legendre and Jacobi Symbols, Discrete Probability, Discrete Logarithms

UNIT 5: CRYPTOGRAPHIC TECHNIQUES

Security Goals, Threats and Attack on Information-Classic Cryptography-Symmetric Key Cryptography – Stream Ciphers, Block Cipher, Stream Cipher, DES, Triple DES, AES-Public and Private Key Cryptography – RSA, Diffie-Hellman-Hash Function – MD5, SHA-1, Digital Signature

TEXTBOOKS

1. Ranjan Bose, "Information Theory, Coding and Cryptography", Tata McGrawHill , Second Edition.2012

2. R Avudaiammal, "Information Coding Techniques", Tata McGrawHill , Second Edition.2009 **REFERENCES**

1.Mark Nelson, "Data Compression Book", BPB Publication 2nd edition 2002.

2. Watkinson J, "Compression in Video and Audio", Focal Press, London, 2005.

21/INT1302	INTRODUCTION TO INFORMATION	L	Τ	P	Χ	C	Η								
2141111302	SECURITY	2	0	2	0	3	4								
Prerequisite	Nil														
Course	Open Elective														
Category															
Course	Integrated Course with Theory														
Туре															
Objective (s)	It covers Information Security, Vulnerabilities & threats, attacks, Risk Analysis														
	logical design and physical design														
Course Outco	ome(s)														
CO1	Understand the importance of information security	and m	odel	s to	develo	p sec	cure								
	information system.														
CO2	Learn about various kinds of issues, threats, att	acks in	ivolv	ved	while s	secu	ring								
	information														
CO3	Analyze the risks involved in information security														
CO4	Design and develop an information security system														
CO5	Learn the various technologies, tools and technique	es used	to er	nsur	e securi	ity.									

Mappi	Mapping of COs with Pos														
COs	PO's													's	
CO	1	1 2 3 4 5 6 7 8 9 10 11 12									12	1	2	3	
CO1	2	3	3									1	2		
CO2		3		3			3					1		1	
CO3		3		3		3	3								2
CO4			3									1		3	
CO5		3	2			3						1	2		

UNIT 1: INTRODUCTION

History, Information Security, Critical Characteristics of Information, NSTISSC Security Model, Components of an Information System, Securing the Components, Balancing Security and Access, The SDLC, The Security SDLC

UNIT 2: SECURITY INVESTIGATION

Need for Security, Business Needs, Threats, Attacks, Legal, Ethical and Professional Issues **UNIT 3: SECURITY ANALYSIS**

Risk Management: Identifying and Assessing Risk, Assessing and Controlling Risk

UNIT 4: LOGICAL DESIGN

Blueprint for Security, Information Security Policy, Standards and Practices, ISO 17799/BS 7799, NIST Models, VISA International Security Model, Design of Security Architecture, Planning for Continuity

UNIT 5: PHYSICAL DESIGN

Security Technology, IDS, Scanning and Analysis Tools, Cryptography, Access Control

Devices, Physical Security, Security and Personnel **TEXT BOOK**

1. Michael E Whitman and Herbert J Mattord, "Principles of Information Security", 4thEdition,Vikas Publishing House, New Delhi, 2011.

REFERENCES

- 1. Micki Krause, Harold F. Tipton, "Handbook of Information Security Management", 6th edition vol-5, CRC Press LLC, 2011.
- 2. Stuart Mc Clure, Joel Scrambray, George Kurtz, "Hacking Exposed 6th edition –Network security secrets and solutions", Tata McGraw-Hill, 2009.
- 3. Matt Bishop, "Computer Security Art and Science", Addison-Wesley Professional, 2003.

214INT2303	CYBER FORENSICS	L 2	Т 0	P 2	X 0	C 3	H 4								
Prerequisite	Nil						1								
Course	Open Elective														
Category															
Course	Integrated Course with Theory														
Туре															
Objective (s)	• To understand the fundamentals of Comput Investigations.	ter Fo	oren	sics	and	compi	ıting								
	 Investigations. To recognize the legal underpinnings and critical laws affecting forensics. 														
	• To apply the tools and methods to uncover	hidd	en ir	nforr	natio	on in d	ligital								
	systems.														
	• To learn about current licensing and certific	cation	n rec	quire	men	ts to b	ouild								
	the career in digital forensic.														
Course Outco	ome(s)														
CO1	Understand of the role of computer forensics														
CO2	Identify some of the current techniques and tools														
CO3	Describe and identify basic principles of good prof	essic	onal	prac	tice	for a f	orensic								
	computing practitioner														
CO4	Demonstrate an understanding of issues related to	priva	acy	and	deter	mine	how to								
	address them technically and ethically.		-												
CO5	Apply some forensic tools in different situations.														

Mappi	Mapping of COs with Pos														
COs	Os PO's													's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	3			3				1			1	2		
CO2		2			3				3					1	
CO3	1	3		3			2				3				2
CO4				2	3			3				2		3	
CO5		3				3					3		2		

UNIT 1: NTRODUCTION

The Scope of Computer Forensics - Windows Operating and File Systems –Handling Computer Hardware – Anatomy of Digital Investigation.

UNIT 2: INVESTIGATIVE SMART PRACTICES

Forensics Investigative Smart Practices - Time and Forensics - Incident closure

UNIT 3: LAWS AND PRIVACY CONCERNS

Laws Affecting Forensic Investigations – Search Warrants and Subpoenas – Legislated Privacy Concerns – The admissibility of Evidence – First Response and Digital Investigator

UNIT 4: DATA ACQUISITION AND REPORT WRITING

Data Acquisition – Finding Lost Files – Document Analysis – Case Management and Report Writing – Building a Forensics Workstation

UNIT 5: TOOLS AND CASE STUDIES

Tools of the Digital Investigator - Licensing and Certification – Case Studies: E-mail Forensics – Web Forensics – Searching the Network – Excavating a Cloud – Mobile device Forensics.

TEXTBOOKS:

- 1. Michael Graves, "Digital Archaeology: The Art and Science of Digital Forensics", Addison-Wesley Professional, 2014.
- 2. Darren R. Hayes, "Practical Guide to Computer Forensics Investigation", Pearson, 2015.
- 3. Albert J. Marcella and Frederic Guillossou, "Cyber Forensics: From Data to Digital Evidence "Wiley, 2015.

REFERENCE:

1. Bill Nelson, Amelia Phillips and Christopher Steuart, "Guide to Computer Forensics and Investigations", Fourth Edition, Cengage Learning, 2013.

	ESSENTIALS OF INFORMATION	L	Τ	Р	Χ	С	Η								
214INT1303	TECHNOLOGY	2	0	2	0	3	4								
Prerequisite	Nil	1	1												
Course	Open Elective														
Category	Interneted Course with Theory														
Course Type	Integrated Course with Theory														
Objective (s)	To know the concept of Internet, Networks and	its wo	orkin	g pr	incipl	es a	ınd								
-	understand the various applications related to Inforr	nation 7	Fech	nolo	gy.										
Course Outco	me(s)														
CO1	Understand the concept of website design and types	of serv	er.												
CO2	Know about scripting languages.														
CO3	Identify the concepts of Internet, Networks and its v	vorking	prin	ciple	es.										
CO4	Understand the concept of mobile communication.														
CO5	Understand various applications related to Informat	ion Tec	hnol	ogy.											

Mappi	Mapping of COs with Pos														
COs	Os PO's													's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	3			3				1			1	2		
CO2		2			3				3					1	
CO3	1	3		3			2				3				2
CO4				2	3			3				2		3	
CO5		3				3					3		2		

UNIT 1: WEB ESSENTIALS

Creating a Website - Working principle of a Website - Browser fundamentals - Authoring tools -Types of servers: Application Server - Web Server - Database Server

UNIT 2: SCRIPTING ESSENTIALS

Need for Scripting languages - Types of scripting languages - Client side scripting - Server side scripting - PHP - Working principle of PHP - PHP Variables - Constants - Operators – Flow Control and Looping - Arrays - Strings - Functions - File Handling - PHP and MySQL - PHP and HTML - Cookies - Simple PHP scripts

UNIT 3: NETWORKING ESSENTIALS

Fundamental computer network concepts - Types of computer networks - - Network layers - TCP/IP model - Wireless Local Area Network - Ethernet - WiFi - Network Routing - Switching - Network components.

UNIT 4: MOBILE COMMUNICATION ESSENTIALS

Cell phone working fundamentals - Cell phone frequencies & channels - Digital cell phone

components - Generations of cellular networks - Cell phone network technologies / architecture - Voice calls & SMS.

UNIT 5: APPLICATION ESSENTIALS

Creation of simple interactive applications - Simple database applications - Multimedia applications - Design and development of information systems – Personal Information System – Information retrieval system – Social networking applications.

TEXT BOOKS:

1. Robin Nixon, "Learning PHP, MySQL, JavaScript, CSS & HTML5" Third Edition, O'REILLY, 2014.

2. James F. Kurose, "Computer Networking: A Top-Down Approach", Sixth Edition, Pearson, 2012.

REFERENCES:

1. GottapuSasibhushana Rao, "Mobile Cellular Communication", Pearson, 2012. 2. R. Kelly Rainer, Casey G. Cegielski, Brad Prince, "Introduction to Information Systems", Fifth Edition, Wiley Publication, 2014. 3. it-ebooks.org

		L	Т	Р	Х	С	Η	
2141N 1 2304	INTERNET AND JAVA	2	0	2	0	3	4	
Prerequisite	Nil							
Course	Open Elective							
Category								
Course Type	Integrated Course with Theory							
Objective (s)	To learn the basics of Internetworking, Rout	ing,	Worle	d W	ide	Weł), .	Java
	Programming							
	with simple case studies.							
Course Outco	me(s)							
CO1	Understand the concept of Internetworking with T	CP/I	Р					
CO2	Learn routing for high speed multimedia traffic							
CO3	Learn the fundamentals in WWW, HTML and XM	[L.						
CO4	Understand Java for Networking application							
CO5	Understand the basic concepts in E-com, Netwo	rk op	peratin	g sy	stem	anc	N I	Veb
	design.	-		- •				

Mapp	Mapping of COs with Pos														
COs	Os PO's													's	
CO	1 2 3 4 5 6 7 8 9 10 11 12										12	1	2	3	
CO1	3	2										1	2		
CO2		2	2	3								1		2	
CO3		2	2			3						1			2
CO4		2	2				3					1		3	
CO5		2	2								3	1	2		

UNIT 1: INTERNETWORKING WITH TCP / IP

Review of network technologies, Internet addressing, Address resolution protocols (ARP / RARP), Routing IP datagrams, Reliable stream transport service (TCP) TCP / IP over ATM networks, Internet applications - E-mail, Telnet, FTP, NFS, Internet traffic management.

UNIT 2: INTERNET ROUTING

Concepts of graph theory, Routing protocols, Distance vector protocols (RIP), Link state protocol (OSPP), Path vector protocols (BGP and IDRP), Routing for high speed multimedia traffic, Multicasting, Resource reservation (RSVP), IP switching.

UNIT 3: WORLD WIDE WEB

HTTP protocol, Web browsers netscape, Internet explorer, Web site and Web page design, HTML, Dynamic HTML, CGI, Java script.

UNIT 4: INTRODUCTION TO JAVA

The java programming environment, Fundamental Programming structures, Objects and Classes, Inheritance, Event handling, Exceptions and Debugging, Multithreading, RMI.

UNIT 5: JAVA PROGRAMMING

Networking with Java, Swing: Applets and Applications, Menu's & Tool Bars, Java and XML – Creating packages, Interfaces, JAR files & Annotations, Javabeans, JDBC. **TEXTBOOKS**

1. Douglas E.Comer, "Internetworking with TCP/IP", Vol. I: 5th edition, Pearson Education, 2007 (Unit – I &II)

2. Robert W.Sebesta, "Programming the worldwide web", 3/e, Pearson Education, 2007.

3. Steven Holzner et. al, "Java 2 Programming", Black Book, Dreamtech Press, 2006. **REFERENCES**

1. Cay S.Hortsmann, Gary Cornwell, "Core Java 2", Vol I, Pearson Education, 7/e, 2005.

2. W. Richard Stevens, "TCP/IP Illustrated, The Protocol", Vol I, Pearson Education, 1st Edition, 2006.

3. Behrouz A. Farouzon, "TCP/IP Protocol Suite, 3rd edition, Tata McGraw Hill, 2007

214INT1304	R PROGRAMMING L T P X C H 2 0 2 0 3 4
Prerequisite	Nil
Course	Open Elective
Category	
Course Type	Integrated Course with Theory
Objective (s)	The student will be able to learn
	• Understand what R is and what it can be used for
	• Why would you choose R over another tool
	• Troubleshoot software installs (keep your fingers crossed)
	• Gain familiarity with using R from within the RStudio IDE
	• Get to know the basic syntax of R functions
	• Be able to install and load a package into your R library
Course Outco	me(s)
CO1	Familiarize themselves with R and the RStudio IDE
CO2	Understand and use the various forms of data with R
CO3	Access online resources for R and import new function packages into the R
	workspace
CO4	Import, review, manipulate and summarize data-sets in R
CO5	Get insight into the capabilities of the language as a productivity tool for data
	manipulation and statistical analyses.

Mappi	ing of	COs	with Po	OS											
COs	Os PO's													's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1	1										2		
CO2	3	3	2											1	
CO3	3				2										2
CO4			2		2	2	2							3	
CO5								1			1		2		

UNIT I: INTRODUCTION

Getting R, R Version, 32-bit versus 64-bit, The R Environment, Command Line Interface, RStudio, Revolution Analytics RPE, R Packages: Installing Packages, Loading Packages, Building a Package R Basics: Basic Math, Variables, Data Types, Vectors, Calling Functions, Function Documentation, Missing Data Advanced Data Structures: data frames, Lists, Matrices, Arrays

UNIT II: R DATA

Reading Data into R: Reading CSVs, Excel Data, Reading from Databases, Data from Other Statistical Tools, R Binary Files, Data Included with R, Extract Data from Web Sites Statistical

Graphics: Base Graphics, ggplot2

UNIT III: R FUNCTIONS & STATEMENTS

Writing R Functions: Hello, World!, Function Arguments, Return Values, do.call Control Statements: if and else, switch, ifelse, Compound Tests Loops: for Loops, while Loops, Controlling Loops

UNIT IV: DATA MANIPULATION

Group Manipulation: Apply Family, aggregate, plyr, data.table Data Reshaping: cbind and rbind, Joins, reshape2 Manipulating Strings: paste, sprint, Extracting Text, Regular

UNIT V: R STATISTICS & LINEAR MODELING

Probability Distributions: Normal Distribution, Binomial Distribution, Poisson Basic Statistics: Summary Statistics, Correlation and Covariance, T-Tests 200, ANOVA Linear Models: Simple Linear Regression, Multiple Regression Generalized Linear Models: Logistic Regression, Poisson Model Diagnostics: Residuals, Comparing Models, Cross-Validation, Bootstrap, Stepwise Variable Selection

TEXT BOOK(S):

1. Jared P. Lander, R for Everyone: Advanced Analytics and Graphics, Pearson Edu. Inc.,2nd Edition, 2017

REFERENCES:

- 1. Christian Heumann, Michael Schomaker and Shalabh, Introduction to Statistics and Data Analysis-With Exercises, Solutions and Applications in R, Springer, 2016
- 2. Pierre Lafaye de Micheaux, RémyDrouilhet, Benoit Liquet, The R Software-Fundamentals of Programming and Statistical Analysis, Springer 2013
- 3. Alain F. Zuur, Elena N. Ieno, Erik H.W.G. Meesters, A Beginner's Guide to R (Use R) Springer 2009

214INT1305	PROGRAMMING WITH C++ AND JAVA	L 2	Т 0	P 2	X 0	C 3	H 4
Prerequisite	Nil						•
Course	Open Elective						
Category							
Course Type	Integrated Course with Theory						
Objective(s)	 To get a clear understanding of object-oriented of To understand object oriented programming three To demonstrate adeptness of object oriented programming usa solutions to problems demonstrating usa encapsulation, and inheritance. To make the student to become aware of the In Concepts, Mark up& Scripting Languages. To equip the student with the techniques of C programming for online communication and communication	conce ough progr age terne CGI, S mputi	pts. C++ amm of t Prir Socke ng	ing data ncipl et ar	in d al es, I nd S	level bstra Basic erve	oping ction, e Web r side
Course Outco	me(s)						
CO1	Understand the object-oriented concepts. To u programming through C++.	inders	stand	ob	ject	ori	ented
CO2	Understand the role of inheritance, polymorphism, d structures in building reusable code.	lynarr	ic bi	ndir	ng ar	nd ge	eneric
CO3	Understand Java programming concepts and uti Interface in program writing.	lize	Java	Gr	aphi	cal	User
CO4	Understand database basics related to develop dyn Apply XML for designing web pages.	amic	web	o ap	plica	tion	s and
CO5	Utilize professional level platforms (ASP, JSP, Se systems/websites that meet specified user needs a software system/websites produced for usability, effi	ervlet and condecience	s) to onstr y and	o pro aints 1 acc	oduc s.Eva surac	e so aluat cy.	oftware the

Mappi	ing of	COs	with Po	OS											
COs	s PO's													's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2										1	2		
CO2		2	2	3								1		1	
CO3		2	2			3						1			2
CO4		2	2				3					1		3	
CO5		2	2								3	1	2		

Course Topic(s)
UNIT 1: INTRODUCTION TO OOP, CLASS & OBJECTS
Object Oriented Programming Paradigm- Basic Concepts of OOP- Benefits of OOP- Object

Oriented Languages- Features of OOP- How OOP Differ from Procedure Oriented Programmingapplications of OOP-a Simple C++ Program- structure of C++ Program-basicData Types in C++- Operators in C++ - Scope Resolution Operator- Member Dereferencing Operators- memory 31 SE-Engg&Tech-SRM-2013 management operators- Introduction of Classes-Inline member functions-Objects - Arrays of Objects- Objects as Function Arguments- Static data member and static member functions – Constructors- Parameterized Constructors- Default Argument constructors - Copy Constructors- Destructors – Friend functions.

UNIT 2: POLYMORPHISM, TEMPLATES & EXCEPTION HANDLING

Introduction to Operator overloading- Rules for Operator overloading- overloading of binary and unary operators-Introduction to inheritance–Types of inheritance- Abstract Classes- new Operator and delete Operator- Pointers to Objects- this Pointer- Virtual Functions- Pure Virtual Functions- Introduction to Class Templates- Function Templates-Member Function Templates- Basics of Exception Handling- Types of exceptions- Exception Handling Mechanism- Throwing and Catching Mechanism- Rethrowing an Exception- Specifying Exceptions.

UNIT 3: JAVA PROGRAMMING

An overview of Java – Data Types – Variables and Arrays – Operators – Control Statements – Classes – Objects – Methods – Inheritance – Packages – Abstract classes – Interfaces and Inner classes – Exception handling – Introduction to Threads – Multithreading – String handling – Streams and I/O – Applets.

UNIT 4: WEBSITES BASICS, HTML 5, CSS 3, WEB 2.0

Web 2.0: Basics-RIA Rich Internet Applications – Collaborations tools – Understanding websites and web servers: Understanding Internet – Difference between websites and web server- Internet technologies Overview –Understanding the difference between internet and intranet; HTML and CSS: HTML 5.0, XHTML, CSS 3.

UNIT 5: CLIENT SIDE AND SERVER SIDE PROGRAMMING

Java Script: An introduction to JavaScript–JavaScript DOM Model-Date and Objects,- Regular Expressions- Exception Handling-Validation-Built-in objects-Event Handling- DHTML with JavaScript. Servlets: Java Servlet Architecture- Servlet Life Cycle- Form GET and POST actions-Session Handling- Understanding Cookies- Installing and Configuring Apache Tomcat WebServer;-DATABASE CONNECTIVITY: JDBC perspectives, JDBC program example – JSP: Understanding Java Server Pages-JSP Standard Tag Library(JSTL)-Creating HTML forms by embedding JSP code.

TEXTBOOKS:

1. Deitel and Deitel and Nieto, "Internet and World Wide Web – How to Program", Prentice Hall, 5thEdition,2011.

2. Herbert Schildt, "Java-The Complete Reference", Eighth Edition, Mc Graw Hill Professional, 2011.

REFERENCES:

StephenWynkoop and John Burke "Running a Perfect Website", QUE, 2nd Edition,1999.
 Chris Bates, "Web Programming – Building Intranet Applications", 3rd Edition, Wiley Publications, 2009.

3. Jeffrey C and Jackson, "Web Technologies A Computer Science Perspective", Pearson Education, 2011.

214INT2305	NETWORK PROTOCOLS	L	T	Р	X	C	H
		2	0	2	0	3	4
Prerequisite	Nil						
Course	Open Elective						
Category							
Course Type	Integrated Course with Theory						
Objective (s)	It understands the networking concepts and Multiple	e proto	cols	type	es.		
Course Outco	me(s)						
CO1	Understand the existing network architecture	mode	ls a	and	anal	lyzes	their
	performance.						
CO2	Understand the multiple layers of the protocol.						
CO3	Understand the high speed network protocols and de	esign is	sue	s.			
CO4	Learn Network Security Technologies and Protocol	s.					
CO5	To study various protocols in wireless LAN, MAN.						

Mappi	ing of	COs v	with Po	OS											
COs	s PO's													's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	3			3				1			1	2		
CO2		2			3				3					1	
CO3	1	3		3			2				3				2
CO4				2	3			3				2		3	
CO5		3				3					3		2		

UNIT 1: FUNDAMENTALS OF NETWORKING STANDARDS AND PROTOCOLS

Network Communication Architecture and Protocols - OSI Network Architecture seven Layers Model - Definition and Overview of TCP/IP Protocols -TCP/IP Four Layers Architecture Model - Other Network Architecture Models: IBM SNA.

UNIT 2: ROUTED AND ROUTING PROTOCOLS

Application Layer Protocols-Presentation Layer Protocols- Session Layer Protocols - Transport Layer Protocols - Network Layer Protocols - Data Link Layer Protocols - Routing Protocols -Multicasting Protocols - MPLS.

UNIT 3: SDN AND NETWORK MANAGEMENT PROTOCOLS

Overview of ISDN – Channels – User access – Protocols Network management requirements – Network monitoring – Network control – SNMP V1, V2 and V3 – Concepts, MIBs – Implementation issues-RMON.

UNIT 4: SECURITY AND TELEPHONY PROTOCOLS

Network Security Technologies and Protocols - AAA Protocols - Tunneling Protocols - Security Protocols- Private key encryption – Data encryption system, public key encryption – RSA – Elliptic curve cryptography – Authentication mechanisms– Web security -Secured Routing Protocols - IP telephony -Voice over IP and VOIP Protocols –Signaling Protocols-Media/CODEC.

UNIT 5: NETWORK ENVIRONMENTS AND PROTOCOLS

Wide Area Network and WAN Protocols - Frame relay - ATM - Broadband Access Protocols - PPP Protocols - Local Area Network and LAN Protocols - Ethernet Protocols - Virtual LAN Protocols - Wireless LAN Protocols - Metropolitan Area Network and MAN Protocol - Storage Area Network and SAN Protocols.

TEXT BOOK

1. Javvin, "Network Protocols" ,Javvin Technologies Inc , second edition, 2005

2. William Stallings, "Cryptography and Network Security", PHI, 2000.

3. Mani Subramanian, "Network Management–Principles and Practices", Addison Wesley, 2000. **REFERENCES**

1. William Stallings, "SNMP, SNMPV2, SNMPV3 and RMON1 and 2", 3rd Edition, Addison Wesley, 1999.

2. William Stallings, "Data and Computer Communications" 5th Edition, PHI, 1997.

21/INT2201	HIGH SPEED NETWORKS	L	Т	Р	Χ	С	Η
21411N15501		2	0	2	0	3	4
Prerequisite	Nil						
Course	Open Elective						
Category							
Course Type	Integrated Course with Theory						
Objective (s)	To highlight the features of different technologies in	nvolve	ed in	High	Sp	eed	
	Networking and their performance.						
Course Outco	me(s)						
CO1	Students will get an introduction about ATM and Fi	rame r	elay.				
CO2	Enable to know techniques involved to sup congestion control.	oport	real	-time	e ti	raffic	and
CO3	Understand the concept of traffic management.						
CO4	Understand different services in network.						
CO5	Students will be provided with different levels o different applications.	f qual	ity c	of se	rvic	e (Q.	S) to

Mappi	ing of	COs v	with Po	OS											
COs	PO's	5		PSO	's										
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	3			3				1			1	2		
CO2		2			3				3					1	
CO3	1	3		3			2				3				2
CO4				2	3			3				2		3	
CO5		3				3					3		2		

Course Topic(s) UNIT 1: HIGH SPEED NETWORKS Frame Relay Networks - Asynchronous transfer mode - ATM Protocol Architecture, ATM logical Connection - ATM Cell - ATM Service Categories - AAL. High Speed LAN's: Fast Ethernet – Gigabit Ethernet – Fiber Channel – Wireless LAN's, WiFi and WiMax applications, requirements Architecture of _ **CONGESTION** AND TRAFFIC Queuing Analysis – Queuing Models – Single Server Queues – Effects of Congestion – Congestion Frame Relay Congestion

Control – Traffic Management – Congestion Control in Packet Switching Networks _ Control.UNIT 3: TCP AND ATM CONGESTION CONTROL TCP Flow control - TCP Congestion Control - Retransmission - Timer Management -Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TCP over ATM. Traffic and Congestion control in ATM - Requirements - Attributes - Traffic Management Frame work, Traffic Control – ABR traffic Management – ABR ratecontrol, RM cell formats - ABR Capacity allocations - GFR traffic management. UNIT 4: DIFFERENTIATED **INTEGRATED** AND **SERVICES** Integrated Services Architecture - Approach, Components, Services- Queuing Discipline - FQ - PS - BRFQ - GPS - WFQ - Random Early Detection - Differentiated Services. PROTOCOLS UNIT 5: FOR OOS SUPPORT9 Hours

Networks

MANAGEMENT

2:

802.11. UNIT

RSVP – Goa	ls & Cha	racteristics,	Data Flow,	RSVP operat	ions - Protoco	l Mechanisms							
- Multiprotoc	ol Label S	witching –	Operations,	Label Stackin	g – Protocol d	letails – RTP							
- Protoco	ol Are	chitecture	– Da	ta Transf	er Protoco	l– RTCP.							
TEXTBOOKS													
1. William	Stallings,	"High spee	ed networks	and internet	", Second Ed	ition, Pearson							
Education,						2002.							
REFERENCE	ES:												
1. Warland,	PravinVa	iraiya, "Hi	gh performa	nce commu	nication netwo	orks", Second							
Edition,	Jean	Harcourt	Asia	Pvt.	Ltd.,	, 2001.							
2. IrvanPepel	njk, Jim	Guichard,	Jeff Apcar,	"MPLS and	l VPN archite	ecture", Cisco							
Press,	Volu	me	1	and	2,	2003.							
Abhijit S. Pan	dya, Ercan	Sea, "ATM	Technology for	or Broad Band	l Telecommunica	ationNetworks",							
CRC Press, Ne	ew York., 2	010											

214INT2306	INTRODUCTION TO STORAGE	L	Т	Р	Х	С	Η
2141112300	MANAGEMENT	2	0	2	0	3	4
Prerequisite	Nil						
Course	Open Elective						
Category							
Course Type	Integrated Course with Theory						
Objective (s)	 Understand Storage Area Networks characteris Describe the challenges associated with data need for switch network convergence. Storage Area Networks including storage arch components of a storage infrastructure, management. 	stics an a cente itecture ging ar	id co er ni es, lo nd n	ompo etwo ogica nonit	onen orkin al an corin	ts. g an d ph g the	d the ysical e data
Course Outco	me(s)						
CO1	Identify and describe challenges in data storage and	data n	nana	gem	ent.		
CO2	Discuss different types of logical and physical infrastructure.	comp	one	nts	of a	a sto	orage
CO3	Understand benefits of the different network stapplication environments.	orage	opti	ons	for	diff	erent
CO4	Identify and analyzes the common threats in each do	omain.					
CO5	Know about the virtualization Techniques.						

Mappi	ing of	COs v	with Po	os											
COs	s PO's													's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		3	2		3		3					1	2		
CO2	1	3	2						3					1	
CO3	1	3										1			2
CO4		3	3					3						3	
CO5		3	3									1	2		

UNIT 1: INTRODUCTION TO STORAGE TECHNOLOGY

Review data creation and the amount of data being created and understand the value of data to business - challenges in data storage and data management - Solutions available or data storage - Core elements of a data center infrastructure - role of each element in supporting business activities.

UNIT 2: STORAGE SYSTEMS

Hardware and software components of the host environment - Key protocols and concepts used by each component - Physical and logical components of a connectivity environment Major physical disk - access characteristics - and performance implications

UNIT 3: NETWORKED STORAGE

Evolution of networked storage – Architecture – Components - and topologies of FC-SAN, NAS, and IP-SA Benefits of the different networked storage options -Understand the need for

long-term archiving solutions

UNIT 4: DATA CENTER

List reasons for planned/unplanned outages and the impact of downtime - impact of downtime - Differentiate between business continuity (BC) and disaster recovery (DR) - RTO and RPO - Identify single points of failure in a storage infrastructure and list solutions to mitigate these failures - Architecture of backup/recovery and the different backup/recovery topologies- key management tasks in a data center.

UNIT 5: VIRTUALIZATION

Virtualization technologies – block-level and file-level virtualization technologies and Processes

TEXT BOOK

1. EMC, EMC Education Services, Lastemc, "Information Storage and Management: Storing, Managing, and Protecting Digital Information", John Wiley and Sons, 2010.

REFERENCES

- 1. Robert Spalding, "Storage Networks: The Complete Reference". Tata McGraw Hill, Osborne, 2003
- 2. Marc Farley, "Building Storage Networks", 2nd Edition, Tata McGraw Hill, Osborne, 2001.
- 3. Meeta Gupta, "Storage Area Network Fundamentals", Pearson Education Limited, 2002.

214INT2307	PRINCIPLES AND PRACITIES OF COMMUNICATION SYSTEMLTPXCH202034											
Prerequisite	Nil											
Course	Elective											
Category												
Course Type	Integrated Course with Theory											
Objective(s)	• To explain QoS requirements and compare different approaches to Qo											
	• To appreciate need for high speed networks											
	 To identify reliability issues and provide solutions 											
Course Outco	me(s)											
CO1	Demonstrate the knowledge of fundamental elements and concepts related to											
	Communication System.											
CO2	Address the challenges imposed on different types of Communication Systems.											
CO3	Use and apply important methods in communication systems to support both analog and digital communication.											
CO4	Provide solutions to digital communication by using different modulation techniques.											
CO5	Understand the concepts of digital transmission techniques											

Mapping of COs with Pos															
COs	PO's											PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3		1										2		
CO2				3	3		1					1		1	
CO3	3	3					1					1			2
CO4	3	1												3	
CO5							2						2		

UNIT 1: INTERNETWORKING

IPv6 - Design issues - Scalability - Addressing - Headers - Routing - Auto configuration - Transition from IPv4 to IPv6 - Interoperability - QoS in IPv6 - Multicast support - ICMPv6 - Security in IPv6

UNIT 2: QUALITY OF SERVICE

QoS taxonomy - Resource allocation - Scheduling - Queuing disciplines - Delay Analysis Integrated services - Differentiated services - RSVP.

UNIT 3: MPLS AND VPN

MPLS Architecture - MPLS to GMPLS - Traffic engineering with MPLS - QoS -Network
recovery and restoration with MPLS – VPN L2 - VPN L3.

UNIT 4: OPTICAL NETWORKS

Photonic Packet switching - WDM network design - Introduction to optical networks -optical layer - SONET/SDH - Optical packet switching - Client layers - Signaling protocols and network operation

UNIT 5: SOFTWARE DEFINED NETWORKING

Introduction to SDN - Network Function Virtualization - Data Plane- Control Plane - SDN software stack - Data center Traffic Management

TEXT BOOKS:

1. Larry L. Peterson, Bruce S. Davie, —Computer Networks: A Systems Approach^{II}, Fifth Edition, Elsevier/Morgan Kaufmann Publishers, 2011.

2. Bruce S. Davie, Adrian Farrel, -MPLS: Next Steps, Morgan Kaufmann Publishers, 2011.

3. Rajiv Ramaswami, Kumar N. Sivarajan and Galen H. Sasaki, "Optical Networks A Practical Perspective ", Third Edition, Morgan Kaufmann, 2010.

EFERENCES:

1. William Stallings, "High-speed networks and internets ", Second Edition Pearson Education India, 2002.

3. Ying-Dar Lin , Ren-Hung Hwang , Fred Baker , "Computer Networks: An Open Source Approach", McGraw-Hill Higher Education, 2011.

21/INT2202	MULTIMEDIA CODING AND	L	Т	Р	Х	С	Η
21411N 1 5502	COMMUNICATION	2	0	2	0	3	4
Prerequisite	Nil						
Course	Open Elective						
Category							
Course Type	Integrated Course with Theory						
Objective(s)	 To introduce the Significance and the roautomation. To understand the embedded system role in development. To observe the need for smart cities and syst To introduce the automotive embedded syste To observe the evolving trend in comm systems. 	ole of IOT an tems ems nunicat	emt nd us ion	bedd se it base	ed s for a ed a	syste applio auton	m for cation notive
Course Outco	me(s)						
CO1	Describe technical characteristics and performance terminals	ce of	mult	time	dia	syste	em and
CO2	Design creative approach in application of multim systems	edia d	levic	es, o	equi	pmer	nt and
CO3	Interpret and analyse measurement results obtaine and components	d on t	the r	nult	imeo	dia s	ystem
CO4	Describe the development process and applications	of the	mult	ime	dia s	syster	ns

Mappi	ing of	COs v	with P	os											
COs	PO's	5											PSO	's	
CO	1 2 3 4 5 6 7 8 9 10 11 12												1	2	3
CO1		3	2		3		3					1	2		
CO2	1	3	2						3					1	
CO3	1	3										1			2
CO4		3	3					3						3	
CO5		3	3									1	2		

Unit I- Multimedia Overview: Introduction, Multimedia presentation and production, Multimedia and hypermedia, Hardware and software requirements, uses of multimedia, Multimedia Authoring, Editing and authoring tools. Components of Multimedia: Text – types, Unicode standard on file format; Image and graphics, data types, file formats, color science and color model; Audio- digitization, midi, quantization and transformation of audio; Video- types ofvideo signals, analog and digital video, television broadcast standards, pc video; animation-

types, principals and techniques, 3D animation, camera, special effects, rendering.

Unit II-Lossless Compression Techniques: Introduction, Run-length coding, Variable length coding (Shannon-Fano, Huffman, adaptive Huffman), Dictionary based coding, Arithmetic coding, Lossless image compression.

Unit III-Lossy Compression Techniques: Introduction, Distortion measure, Quantization, transform coding, Wave-let based coding, Wavelet packets. Elements of Image Compression System and Standards: JPEG standard, JPEG-2000 standard, JPEG-LS standard, Bi-level Image Compression standard.

Unit -IV: Video Coding and Compressing Standards: Introduction, Motion estimation, MPEG-1, MPEG-2, MPEG-4, MPEG-7 etc. Audio compression Standards: ADPCM, psychoacoustics, MP3, MPEG.

Unit V-Multimedia communication and Retrieval: Basics of networks, multiplexing technologies, LAN, WAN, ATM, quality of multimedia data transmission, multimedia over IP (RTP, RTCP, RSVP, RTSP), multimedia over ATM networks. Multimedia architecture: User interface, distributed multimedia application, Play back architecture, temporal relationship, synchronization, multimedia database system, feature extract of image, audio, video.

Reference Book:

i) Fundamentals of Multimedia By Ze-Nian Li & Mark S. Drew

ii) Multimedia Computing communications & Applications By Ralf Stiemetz

iii) Multimedia Communications: Applications, Networks, Protocols and Standards By Fred Halsall

REFERENCES:

- 4. Rajkamal, 'Embedded system-Architecture, Programming, Design', TMH,2011
- 5. Ronald k. Jurgen, Automotive Electronics Handbook, 2nd edition, McGraw-Hill, 2007.
- 6. MehrdadEhsani, 'Modern Electric, Hybrid Electric and Fuel cell vehicles', CRC Press Second edition 2011
- 7. Internet of Things: A Hands-on Approach", by ArshdeepBahga and Vijay Madisetti (Universities Press) Research papers, 2014.

214INT2308	SOFTWARE TESTING	L 2	T 0	P 2	X 0	С 3	H 4
Prerequisite	Nil		Ū		Ū	<u> </u>	1-
Course	Electives						
Category							
Course Type	Integrated Course with Theory						
Objective(s)	 This course helps to understand theories, methor for professional software development. To define software engineering and explain in To discuss the concepts of software products and 	ods, an its imp	nd teo porta	chno nce e pro	logie	s ap	plied
Course Outco	me(s)			1			
CO1	Analyze and identify an appropriate process model for	or a gi	ven	proje	ct		
CO2	Understand the principles at various phases of softwa	are dev	velop	omen	ıt		
CO3	Understand the software project estimation models done, resources required and the schedule for a softw	and es are pr	stima ojec	ute th t	ne w	ork	to be
CO4	Translate specifications into design, and identify architecture for a given problem, all using an appro- methodology	the co opriate	ompo e sof	onent tware	s to e eng	bui gine	ld the ering
CO5	Define a Project Management Plan and tabulate a different levels during the development of the softward	ipprop ire	riate	Tes	ting	Pla	ns at

Mappi	ing of	COs	with Po	OS											
COs	PO's	5											PSO	's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1		3					3					2		
CO2		2	3			2	3				3			1	
CO3		3	1			3									2
CO4					3					3				3	
CO5							3				3		2		

UNIT 1 : SOFTWARE ENGINEERING CONCEPTS

Software and Software Engineering - Project Management Concepts - Software Engineering Paradigms – Generic Process Models, Assessment and Improvement - Water Fall Life Cycle Model - Prototype Model - RAD Model - Spiral Model - Incremental Model –Requirements Engineering

UNIT 2: MANAGING SOFTWARE PROJECTS

Metrics : Metrics in Process and Project Domains - Software Measurement - Metrics for Software Quality - Integrating Metrics in a Software Engineering Process - Estimation , Scheduling – Risk Management – Review Techniques - Software Quality Assurance

UNIT 3 : DESIGN CONCEPTS

Design Process - Design Principles - Design Concepts - Software Architecture – Architectural Style, Design and Mapping - User Interface Design

UNIT 4: SOFTWARE TESTING AND DEBUGGING

Testing Fundamentals and Strategies - White-box and Black-box testing - Basis Path

Testing - Data Flow Testing - Testing for Special Environments - Unit Testing, - Integration Testing - Validation Testing - System Testing – Debugging - Software Maintenance – Software Configuration Management

UNIT 5 : ADVANCED TOPICS

Computer Aided Software Engineering - Clean room software engineering - Reengineering - Reverse Engineering

PRACTICAL COMPONENTS

- 1. Introduction to UML (Unified Modeling Language)
 - b) Visualizing
 - c) Specifying
 - d) Constructing
 - e) Documenting
- 2. Program Analysis and Project Planning : Study of Problem definition Identification of project Scope, Objectives, Infrastructure
- 3. Preparation of System Requirement Specification (SRS) and related analysis documents as Per the guidelines in ANSI/IEEE Std 830-1984.
- 4. Create UML Diagrams (Use diagrams, Activity diagrams, Class diagrams, Sequence diagrams)
- 5. Software Development (Implementation)
- 6. Software Testing and Prepare test plan,
- 7. Execution of Test cases.
- 8. Debugging and demonstration.

TEXTBOOK

1. Roger S. Pressman, "Software Engineering: A Practitioner's Approach", seventh Edition, Mc-Graw Hill, 2014.

REFERENCE BOOKS

1. Steve McConnell, "Code Complete", Second Edition, Microsoft Press.2004

- **2.** Ian Somerville, "Software Engineering", Addison-Wesley, Ninth edition, 2011.
- 3. Richard E. Fairley, "Software Engineering Concepts", Second Edition McGraw-Hill, 1985.

214INT1306	IT in BUSINESS		T	P	X	C	H
		2	U	2	U	3	4
Prerequisite	Nil						
Course	Elective						
Category							
Course Type	Integrated Course with Theory						
Objective(s)	Enable the students coming from different graduat working and management of business.	tion str	eams	s to i	unde	rstai	nd the
Course Outco	me(s)						
CO1	Understand relationship between environment and	busines	ss; A	pply	ing	the	
	environmental analysis techniques in practice						
CO2	Understand Economic, Socio-Cultural and Technol	logical	Envi	ronr	nent		
CO3	Know state policies Economic legislations and Eco	onomic	refo	rms l	laid	by tł	ne
	government					-	

Mappi	ing of	COs v	with P	os											
COs	s PO's PSO's														
CO	1	1 2 3 4 5 6 7 8 9 10 11 12												2	3
CO1	3		1										2		
CO2				3	3		1					1		1	
CO3	3	3					1					1			2

UNIT 1: Information systems and strategic implications Data information systems Difference between data and information Information system activities and resources System approaches Organizational sub-systems Support system Systems application in strategy building

UNIT 2: Functional and enterprise systems Management Information systems Types of operating systems - Functional and cross functional systems Organizational sub systems - Transactional processing information systems - Accounting and finance systems - Marketing andsales systems - Production and operation management systems - Human resources management systems - e-CRM - SCM - KMS - ERP - BPR

UNIT 3: Introduction to E-Business Electronic Business Electronic Commerce Electronic commerce models Types of electronic commerce Value chains in Electronic commerce E-Commerce in India Internet World Wide Web Internet architectures Internet applications Web based tools for electronic commerce Intranet Composition of Intranet Business application on Intranets Extranets Electronic Data Interchange - Components of Electronic Data Interchange - Electronic Data Interchange communication process

UNIT 4:Database management Systems Systems Analysis and Design DSS and ES Software for

Decision Support Group Decision making Enterprise Wide computing Object oriented analysis and design

UNIT 5: Need for security Security techniques - Firewalls - Encrypting Cyber terrorism and other measures preventing misuse of IT

TEXT BOOKS:

- 1. Ralph StiaranGeorge Reynolds, Fundamentals of IT, Thompson
- 2. Introduction to IT, Pearson
- 3. Williams ans sawyer, IT, TMH
- 4. Carroll Frenzel and John Frenzel, MIS, Thompson
- 5. WananJawadekar, MIS, TMH
- 6. Ashok Arora and Akshya Bhatia, MIS,EB
- 7. MahadeoJaiswal and Monika Mital, MIS, Oxford

214INT2309	EMBEDDED C PROGRAMMINGLTPXCH202034
Prerequisite	Nil
Course Category	Professional Elective
Course Type	Integrated Course with Theory
Objective(s)	Aims to provide the practical and theoretical skills needed to use C language to program embedded microprocessors and systems.
Course Outco	me(s)
CO1	Identify Embedded C software components and know how they are different from standard C software components
CO2	Execute how to break big problems into small problems using functions and recursive functions
CO3	Utilize hardware/software signaling mechanism to implement effective communication between embedded software stack and hardware using the concept of array.
CO4	Understand embedded controller hardware and software stack and their respective differences from traditional software development using the concept of pointer
CO5	Comprehend hardware communication protocols for implementation with other peripheral hardware devices such as GPIO, ADC, and Serial I/O

Mapp	ing of	COs v	with Po	OS											
COs	PO's	5											PSO	's	
CO	1	1 2 3 4 5 6 7 8 9 10 11 12											1	2	3
CO1	3		1										2		
CO2				3	3		1					1		1	
CO3	3	3					1					1			2
CO4	3	1												3	
CO5							2						2		

Course Topic(s) UNIT I OVERVIEW

C Overview and Program Structure; Constants-Bits & Bytes, Syntax of C Constants; Preprocessor Directives- Standard Preprocessor Directives; Data Variables and Types- Data Types; Expressions and Operators; Statements-Definitions, Side Effects, Nesting, Indentation and use of braces, Design documentation, Program complexity.

UNIT II FUNCTIONS

Main() function, Function definition, parameters, Advanced features, Return values, Inline functions, Nested functions, Recursive functions, sequence points, well-structured programs, design documentation, Implementations

UNIT III ARRAYS AND STRUCTURES

Arrays- Array Initializers, Constant Arrays, String variables, Dimensionless arrays, Multidimensional arrays, Index Range, Example Array usage, Lookup table, Searching and Sorting Arrays; Structures- Structure Nesting and Arrays, Structure Layout in memory, Bit Field, Unions, Example of Structure in a program.

UNIT IV STRINGS, MEMORY AND POINTERS

String- String copy and length, String Search, String compare, String Manipulation, String Input and Output, String conversion to/from Numbers, Character Manipulation, and Constant String Manipulation; Memory and Pointers- Memory, Address of operator, Indirection operator, Forcing a variable address, Pointer types, Pointer math, Back to subscripts, Back to function parameters, Back to structures, Function pointers, Other uses of pointers, ROM pointers, User- defined memory, Compatible note, over the Hill.

UNIT V PIC MICROCONTROLLER AND INTERFACING

PIC Microcontroller, Assembly Language Instructions, Pin Configuration, GPIO Programming-Registers, Interfacing of Relays, Buzzer, switch, LEDs, Basics of LCD Interfacing, 16x2 LCD Features and Pin Diagram, LCD Interfacing Embedded C Program, 4x4 Matrix Keyboard Interfacing, Stepper Motor Interfacing.

TEXT BOOK

- 1. Mark Siegesmund, "Embedded C Programming Techniques and Applications of C and PIC MCUS", ScienceDirect, Elsevier, 2015.
- 2. Matrin P. Bates, "Programming 8-bit PIC Microcontrollers in C with interactive Hardware simulation", Newnespress, Second Edition, 2018

214INT2310	EMBEDDED SYSTEM AUTOMATION	L 2	Т 0	P 2	X C 0 3	H 4
Prerequisite	Nil			•		•
Course Category	Open Elective					
Course Type	Integrated Course with Theory					
Objective(s)	 To introduce the Significance and the rot automation. To understand the embedded system role in I development. To observe the need for smart cities and system. To introduce the automotive embedded system. 	le of IOT av ems ems unicat	eml nd u tion	bedde se it f base	ed syste for appl ed auto	em for ication motive
Course Outco	me(s)					
CO1	Ability to understand hardware and software require	ments	s in e	embeo	dded sy	stems.
CO2	Ability to do develop data management through cl technology	oud ii	nterf	ace v	vith pro	ocessor
CO3	Learn the development smart system solutions and a	nalys	e iss	ues.		
CO4	Ability to understand the types of sensors and Bus for	or con	trol	imple	ementat	ion.
CO5	Capacity to involve communication concepts development.	s for	· V	ehicle	e appl	ication

Mappi	ing of	COs v	with P	os											
COs	PO's	5											PSO	's	
CO	1 2 3 4 5 6 7 8 9 10 11 12												1	2	3
CO1		3	2		3		3					1	2		
CO2	1	3	2						3					1	
CO3	1	3										1			2
CO4		3	3					3						3	
CO5		3	3									1	2		

UNIT I EMBEDDED SYSTEMS DESIGN

Overview of Embedded system - Design process in embedded system- Communication Protocols Embedded SOC- RTOS- Embedded product Development Life Cycle.

UNIT II EMBEDDED SYSTEM FOR IOT

Overview of IOT- Sensing- Actuation- IOT Networking- Communication protocols-data handling and analytics- cloud computing- Implementation of IOT with Raspberry pi- Industrial IOT.

UNIT III EMBEDDED SYSTEMS AND IOT APPLICATIONS

Embedded system for Smart Meter- smart Grid -Smart cities and smart homes, Agriculture and Healthcare, Energy auditing.

UNIT IV EMBEDDED SYSTEM FOR AUTOMOTIVE SYSTEM

Electronic control Unit – Vehicle Management Systems- Sensors-Actuators-Vehicle Communication protocols –Infotronics- Introduction to AUTO SAR.

UNIT V ADVANCES IN AUTOMOTIVE ELECTRONIC SYSTEMS

Introduction to electric and hybrid vehicles – onboard diagnostics- Connected Cars technology - Autonomous vehicles - Safety and Collision Avoidance – Navigation support for vehicles- Battery Management- Plug in Electrical vehicle- Charging station- Solar powered vehicles.

TEXT BOOKS:

- 4. Peckol, "Embedded system Design", JohnWiley&Sons, 2010
- 5. William B. Ribbens, Understanding Automotive Electronics, 6th edition, YES DEE Publishing Private Limited, 2011.
- 6. The Internet of Things: Enabling Technologies, Platforms, and Use Cases", by Pethuru Raj and Anupama C. Raman (CRC Press), 1st Edition, 2017

REFERENCES:

- 8. Rajkamal, 'Embedded system-Architecture, Programming, Design', TMH,2011
- 9. Ronald k. Jurgen, Automotive Electronics Handbook, 2nd edition, McGraw-Hill, 2007.
- 10. MehrdadEhsani, 'Modern Electric, Hybrid Electric and Fuel cell vehicles', CRC Press Second edition 2011
- 11. Internet of Things: A Hands-on Approach", by ArshdeepBahga and Vijay Madisetti (Universities Press) Research papers, 2014.

314INIT3211	SYSTEM ON CHID DESIGN	L	Т	Р	Х	С	H							
2141N12511	SISIEM ON CHIP DESIGN	2	0	2	0	3	4							
Prerequisite	Nil													
Course	Elective													
Category														
Course Type	Integrated Course with Theory													
Objective(s)	With technological advances that allow us to integrate complete multi-processor systems on a single die, Systems-on-Chip (SoCs) are at the core of most embedded computing and consumer devices, such as cell phones, media players and automotive, aerospace or medical electronics. This course will provide an understanding of the concepts, issues, and process of designing highly integrated SoCs following systematic hardware/software co-design & co-verification principles													
Course Outco	me(s)													
CO1	Memorize the system architecture, components of s software.	system	hard	ware	e and	1								
CO2	Know the basic concepts of processor architecture	and ins	truc	tions	s and	l del	ays.							
CO3	Describe external and internal memory of SOC and	organi	zatio	on.										
CO4	Explain bus architectures, models of SOC and Know	w SOC	cus	tomi	zatio	on ai	nd							
	reconfiguration technologies.													
CO5	Apply the knowledge of SOC design in real time ap	oplication	ons											

Mappi	ing of	COs v	with P	os											
COs	PO's	5											PSO	's	
CO	1	1 2 3 4 5 6 7 8 9 10 11 12											1	2	3
CO1	3		1										2		
CO2				3	3		1					1		1	
CO3	3	3					1					1			2
CO4	3	1												3	
CO5							2						2		

Course Topic(s) UNIT-I: SOC FUNDAMENTALS

Essential issues of SoC design – A SoC for Digital still camera – multimedia IP development : Image and video codecs.

UNIT-II: SOC SOFTWARE AND ENERGY MANAGEMENT

SoC embedded software - energy management techniques for SoC design

UNIT-III: SYSTEM DESIGN AND METHODOLOGY

Design methodology for NOC based systems – Mapping concurrent application onto architectural platforms.

UNIT-IV: HARDWARE AND BASIC INFRASTRUCTURE

Packet switched network for on-chip communication – energy reliability tradeoff for NoC's – clocking strategies – parallel computer as a NoC's region.

UNIT-V: SOFTWARE AND APPLICATION INTERFACES

MP-SoC from software to hardware – NoC APIs – multilevel software validation for NoC – Software for network on chip

REFERENCE BOOKS

1. Axel Jantsch, HannuTenhunen, "Network on chips", Kluwer Academic Publishers, 2003.

2. Youn-Long, Steve Lin, "Essential Issues of SoC Design: Designing Complex Systems-On-Chip", Springer, 2006

Courses for Honour Students

213INT4101	ADVANCED NETWORKS	L 4	T 0	P 0	X 0	C 4	H 4								
Prerequisite	Data Communications and Computer Networks (2	12INT	3301))											
Course Category	Honours Elective														
Course Type	neory														
Objective(s)	 To explain QoS requirements and compare To appreciate need for high speed networks To identify reliability issues and provide so 	 To explain QoS requirements and compare different approaches to QoS. To appreciate need for high speed networks To identify reliability issues and provide solutions 													
Course Outco	ome(s)														
CO1	Gain an understanding of advanced networks cond	cept.													
CO2	Describe the principles behind the enhancement in	netwo	orking												
CO3	Know the recent development in networks														
CO4	Know the optical network design														
CO5	Know the virtualization.														

Mappi	ing of	COs v	with Po	OS											
COs	PO's	5											PSO	's	
CO	1 2 3 4 5 6 7 8 9 10 11 1												1	2	3
CO1	3		1										2		
CO2				3	3		1					1		1	
CO3	3	3					1					1			2
CO4	3	1												3	
CO5							2						2		

Course Topic(s)

UNIT 1: INTERNETWORKING

IPv6 - Design issues - Scalability - Addressing - Headers - Routing - Auto configuration - Transition from IPv4 to IPv6 - Interoperability - QoS in IPv6 - Multicast support - ICMPv6 - Security in IPv6

UNIT 2: QUALITY OF SERVICE

QoS taxonomy - Resource allocation - Scheduling - Queuing disciplines - Delay Analysis Integrated services - Differentiated services - RSVP.

UNIT 3: MPLS AND VPN

MPLS Architecture - MPLS to GMPLS - Traffic engineering with MPLS - QoS -Network recovery and restoration with MPLS – VPN L2 – VPN L3 .

UNIT 4: OPTICAL NETWORKS

Photonic Packet switching - WDM network design - Introduction to optical networks -optical layer - SONET/SDH - Optical packet switching - Client layers - Signaling protocols and network operation

UNIT 5: SOFTWARE DEFINED NETWORKING

Introduction to SDN - Network Function Virtualization - Data Plane- Control Plane - SDN

software stack - Data center Traffic Management

TEXT BOOKS:

1. Larry L. Peterson, Bruce S. Davie, —Computer Networks: A Systems Approach^{II}, Fifth Edition, Elsevier/Morgan Kaufmann Publishers, 2011.

2. Bruce S. Davie, Adrian Farrel, -MPLS: Next Steps, Morgan Kaufmann Publishers, 2011.

3. Rajiv Ramaswami, Kumar N. Sivarajan and Galen H. Sasaki, "Optical Networks A Practical Perspective ", Third Edition, Morgan Kaufmann, 2010.

EFERENCES:

1. William Stallings, "High-speed networks and internets ", Second Edition Pearson Education India, 2002.

3. Ying-Dar Lin , Ren-Hung Hwang , Fred Baker , "Computer Networks: An Open Source Approach", McGraw-Hill Higher Education, 2011.

212INT4102	Α CENTED A CED INTER I I CENTE OVOTEMO	L	Т	Р	X	С	H
2131N14102	AGENI BASED INTELLIGENI SISTEMS	3	1	0	0	4	4
Prerequisite	Artificial Intelligence (212INT2308)						
Course	Honours Elective						
Category							
Course	Theory						
Туре							
Objective (s)	• The structure of agents						
	• The learning mechanisms of agents						
	• The communication and cooperation within	n agents	s				
	• The design of agents	C					
Course Outco	ome(s)						
CO1	Implement a computational agent with various sear	ching t	echn	ique	5		
CO2	Apply the reasoning mechanisms of proposition and	d predi	cate]	logic	to a	gen	ts
CO3	Use the learning mechanisms for an artificial agent.						
CO4	Execute different communication and co-operation	on met	hodo	ologi	es in	1 a	multi-
	agent setup.			U			
CO5	Know about the agents design.						

Mappi	ing of	COsv	with P	os									
COs	PO's	5									PSO	's	
CO	1	2	12	1	2	3							
CO1	2	3									2		
CO2		3	3	1	2							1	
CO3		2	3	2									2
CO4						3	2		2	1		3	
CO5		3	1		3				3	2	2		

UNIT 1: INTRODUCTION

Agents as a paradigm for software engineering - Agents as a tool for understanding human societies- Intelligent Agent: Agents and Objects - Agents and Expert Systems - Agents as Intentional Systems - Abstract Architectures for Intelligent Agents - How to Tell an Agent What to Do

UNIT 2: LEARNING IN AGENTS

Proportional case - Handling variables and qualifiers - Dealing with intractability - Reasoning with horn clauses - Procedural control of reasoning - Rules in production – Reasoning with Higher order Logics.

UNIT 3: COMMUNICATION AND COOPERATION IN AGENTS

Software tools for ontology - OWL - XML - KIF - Speech acts - Cooperative Distributed Problem Solving - Task Sharing and Result Sharing - Result Sharing - Combining Task and Result Sharing - Handling Inconsistency - Coordination - Multi agent Planning andSynchronization

UNIT 4: DEVELOPING INTELLIGENT AGENT SYSTEMS

Situated Agents: Actions and Percepts - Proactive and Reactive Agents: Goals and Events -

Challenging Agent Environments: Plans and Beliefs - Social Agents - Agent Execution Cycle -Deciding on the Agent Types - Grouping functionalities - Review Agent Coupling - Acquaintance Diagrams - Develop Agent Descriptors

UNIT 5: **APPLICATIONS**

Agent for workflow and business process management- Mobile agents - Agents for distributed systems - agents for information retrieval and management - agents for electronic commerce - agent for human- computer interface - agents for virtual environments - agents for social simulation.

TEXT BOOKS:

1. Michael Wooldridge, "An Introduction to Multi Agent Systems", Second Edition, John Wiley and Sons, 2009.

2. Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, Pearson Education, 2009.

3. Lin Padgham, Michael Winikoff, "Developing Intelligent Agent Systems: A Practical Guide", Wiley publications, 2005

REFERENCES:

- 1. Ronald Brachman, Hector Levesque, "Knowledge Representation and Reasoning", The Morgan Kaufmann Series in Artificial Intelligence 2004
- 2. Arthur B. Markman, "Knowledge Representation", Lawrence Erlbaum Associates, 1998

213INT3105	COMPUTATIONAL LINCUISTICS L T P X C H												
21311113103	$\begin{array}{c} \text{COMPUTATIONAL LINGUISTICS} \\ 3 \\ 1 \\ 0 \\ 4 \\ 4 \end{array}$												
Prerequisite	Python for Programming and Product Development (211CSE1401)												
Course	Honours Elective												
Category													
Course	Theory												
Туре													
Objective(s)	 Learn about the statistical modeling and classification for NLP Learn the basic techniques of information retrieval Know about the basics of text mining Learn the generic issues in speech processing and applications relevant to natural language generation 												
Course Outco	pme(s)												
CO1	Develop applications related to speech processing.												
CO2	To know about the basic techniques of information retrieval.												
CO3	Develop applications related to text mining.												
CO4	Know about the generic issues in speech processing.												
CO5	Develop applications relevant to natural language generation												

Mappi	ing of	COs	with P	os											
COs	PO's	5											PSO	's	
CO	1	1 2 3 4 5 6 7 8 9 10 11 12													3
CO1	1	3											2		
CO2		3	2		1									1	
CO3		2	2	3		1									2
CO4		3										1		3	
CO5		3				1					3	1	2		

UNIT 1: NATURAL LANGUAGE PROCESSING

Linguistic background - spoken language input and output technologies - Written language input - Mathematical methods - Statistical modeling and classification - Finite state methods: Grammar for NLP - Parsing - Semantic interpretation: Semantics and logical form - Ambiguity Resolution -Other strategies for semantic interpretation - Word Sense Disambiguation - Named Entity Recognition

UNIT 2: INFORMATION RETRIEVAL

Information Retrieval architecture - Indexing - Storage - Compression techniques - Retrieval approaches - Evaluation - Search Engines - Commercial search Engine features - comparison -Performance measures - Document processing - NLP based Information Retrieval - Information Extraction - Vector Space Model

UNIT 3: TEXT MINING

Categorization : Extraction based Categorization - Clustering - Hierarchical clustering - Flat Clustering - Document classification and routing - Finding and organizing answers from text search - Categories and clusters for organizing retrieval results - Text Categorization - Efficient summarization using lexical chains - Pattern extraction

UNIT 4: GENERIC ISSUES

Multilinguality - Multilingual Information Retrieval and Speech Processing - Multimodality- Text and Images - Modality Integration - Transmission and storage - Speech coding - Evaluation of systems - Human factors and user acceptability.

UNIT 5: APPLICATIONS

Machine translation - Transfer metaphor - Interlingua and statistical approaches - Discourse processing - Dialog and conversational agents - Natural language generation - Surface Realization and discourse planning

TEXT BOOKS:

1. Daniel Jurafsky, James H. Martin, "Speech and Language Processing", Pearson Education, 2009.

2. Ronald Cole, J.Mariani, et.al, "Survey of the state of the art in human language Technology", Cambridge University Press, 1997.

3. Michael W.Berry, "Survey of Txt Mining: Clustering, Classification and Retrieval", SpringerVerlag, 2004.

REFERENCES:

1. James Allen, "Natural Language Understanding", Second Edition, Pearson Education, 2008.

2. Gerald J.Kowalski, Mark. T. Maybury, "Information Storage and Retrieval systems", Kluwer Academic Publishers, 2000.

3. TomekStrzalkowski, "Natural Language Information Retrieval", Kluwer Academic Publishers, 2009.

213INT1111	E-LEARNING TECHNIQUES	L	Τ	P	Χ	С	Η								
		4	0	0	0	4	4								
Prerequisite	Nil														
Course	Honours Elective														
Category															
Course	Theory														
Туре		• To gain knowledge shout modern technology for learning													
Objective (s)	 To gain knowledge about modern technology for learning. To be acquainted with e-Learning Tools. To learn technologies involved in e-learning application development. 														
	business	lenti	ui U	101	Curri	ing ous	cu								
Course Outco	ome(s)														
CO1	Work with technologies involved in e-Learning App	olica	tion	S											
CO2	Design and Develop e-Learning Application														
CO3	Know about the E-Learning tools.														
CO4	Develop web based E-learning methods.														
CO5	Know about the learning methodology.														

Mapp	ing of	COs	with P	os											
COs	PO's	5											PSO	's	
CO	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
CO1	3	3				3						3	2		
CO2	2	3	3											1	
CO3	1	3	3												2
CO4		3	3	3	1						2	3		3	
CO5			3	3	1						2	2	2		

UNIT 1: INTRODUCTION

Definition – Benefits – Challenges & opportunities- Developing E-learning-E-learning approachesE-learning components-Synchronous and asynchronous e-learning-Quality of e-learning-Blended learning- ROI metrics & evaluation – E-Learning cycle – Learning strategy – Business drivers – Elearning strategy.

UNIT 2: DESIGN

Identifying and organizing course content-Needs analysis- Analyzing the target audienceIdentifying course content-Defining learning objectives-Defining the course sequence-Defining instructional, media, evaluation and delivery strategies-Defining instructional methods, Defining the delivery strategy, Defining the evaluation strategy. Instructional design – Design issues – Types of learning engagements – Blended learning – Team – Infra structure – Vendor relationships.

UNIT 3: CREATING INTERACTIVE CONTENT

Multi-channel delivery – Learner support – Developing curriculum – E-learning standards – Content development process- Creating storyboards-Structure of an interactive e-lesson Techniques for presenting content-Integrating media elements-Courseware development Authoring tools-Types of authoring tools-Selecting an authoring tool.

UNIT 4: WEB BASED TRAINING

Definition – Need for web based training – Choosing an approach - Kind of courses – Technical standards – Metaphors – Course framework – registration – Running the course – resources – Feedback – Access - Collaborative learning- Moodle and other open-source solutions - E- learning methods.

UNIT 5: LEARNING METHODOLOGY

Organizing learning sequences – Common lesson structures – Creating building blocks – Designing learning sequences – Learning activities – Test and exercise learning – Planning tests – Selecting questions – Sequencing test questions – Feedback – Improve testing – Prevent cheating.

TEXT BOOKS:

1. Clark, R. C. and Mayer, R. E., " eLearning and the Science of Instruction". PHI 3rd edition, 2011

2. Means, B., Toyama, Y., and Murphy, R. "Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies", 2010

REFERENCES:

1 Crews, T. B., Sheth, S. N., and Horne, T. M "Understanding the Learning Personalities of Successful Online Students" Educause Review. Jan/Feb 2014.

2. MadhuriDubey, Effective "E-learning Design, Development and Delivery", University Press 2011.

213INT3106	HETEROGENEOUS COMPUTING	L	Τ	Р	Х	С	H								
		4	0	0	0	4	4								
Prerequisite	Computer Organization and Assembly Language Pr	rogramm	ning	(212	INT	C110	1)								
Course	Honours Elective														
Category															
Course	Theory	eory													
Туре															
Objective (s)	• To learn about the development of massively parallel systems														
	 To learn about the challenges in heterogeneous processing systems 														
	• Learn to program heterogeneous systems	 Learn to program heterogeneous systems 													
	• Learn to provide effective parallel solutions	for GPC	GPU	arch	itec	ture	S								
Course Outco	ome(s)														
CO1	Identify parallelism in an application														
CO2	Choose the right parallel processing paradigm for a	given p	roble	em											
CO3	Devise solutions for an application on a heterogene	ous mult	ti-co	re pl	atfo	rm									
CO4	Program using CUDA and Open MP	Program using CUDA and Open MP													
CO5	Know about the effective parallel solutions for GPC	GPU arch	nitec	tures	5										

Mapp	ing of	COs	with P	os											
COs	PO's	5											PSO	's	
CO	<u>1</u> <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u> <u>11</u> <u>12</u>													2	3
CO1	1	3	1										2		
CO2		3	1	3										1	
CO3			3		3						1	1			2
CO4		2			3						2	1		3	
CO5		3	1								1	3	2		

UNIT 1: PARALLEL COMPUTING BASICS

Importance of parallelism – Processes, tasks and threads - Modifications to von-Neumann model – ILP, TLP - Parallel hardware – Flynns classification – Shared memory and distributed memory architectures - Cache Coherence - Parallel software – Performance – Speedup and scalability – Massive parallelism - GPUs - GPGPUs

UNIT 2: SHARED MEMORY PROGRAMMING WITH OpenMP

 $\label{eq:constructive} OpenMP\ program\ structure\ -\ OpenMP\ Clauses\ and\ directives\ -\ Scheduling\ primitives\ -\ Synchronization\ primitives\ -\ Performance\ issues\ with\ caches\ -\ Case\ study\ -\ Tree\ Search$

UNIT 3: PROGRAMMING GPUS

GPU architectures - Data parallelism - CUDA Basics - CUDA program structure - Threads, Blocks, Grids - Memory handling

UNIT 4: PROGRAMMING WITH CUDA

Parallel patterns – Convolution – Prefix sum – Sparse matrix-vector multiplication – Imaging case study

UNIT 5: OTHER GPU PROGRAMMING PLATFORMS

Introduction to Open CL - Open ACC - C++AMP - Thrust - Programming Heterogeneous

clusters – CUDA and MPI

TEXT BOOKS:

1. Peter Pacheco, —Introduction to parallel programming|, Morgan Kauffman, 2011.

2. David B. Kirk, Wen-mei W. Hwu, —Programming massively parallel processors^I, Morgan Kauffman, 2013, 2nd Edition

REFERENCES:

1. Shane Cook, —CUDA Programming – A developers guide to parallel computing with GPUsl, Morgan Kauffman, 2013.

2. B.R. Gaster, L. Howes, D.R. Kaeli, P. Mistry, D. Schaa, — Heterogeneous computing with OpenCLI, Morgan Kauffman, 2012.

213INT3107	PATTERN RECOGNITION		T 1	P	X	C	H 4							
Prerequisite	Data Warehousing and Mining (213INT1305)	3	1	V	U	4	4							
Course Category	Honours Elective													
Course Type	neory													
Objective(s)	 To know about supervised and unsupervised Learning. To study about feature extraction and structural pattern recognition. To explore different classification models. To learn about fuzzy pattern classifiers and perception 													
Course Outco	ome(s)													
CO1	Classify the data and identify the patterns													
CO2	Extract feature set and select the features from giver	ı da	ta s	et.										
CO3	Learn about feature extraction and structural pattern recognition													
CO4	Know about the different classification models													
CO5	Know about fuzzy pattern classifiers and perception													

Mappi	ing of	COs	with P	os											
COs	PO's	5											PSO	's	
CO	1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12													2	3
CO1	3		3	3	2		1					1	2		
CO2	3	3					1							1	
CO3	3		3												2
CO4	3	1												3	
CO5							2						2		

UNIT 1: PATTERN CLASSIFIER

Overview of Pattern recognition – Discriminant functions – Supervised learning – Parametric estimation – Maximum Likelihood Estimation – Bayesian parameter Estimation – Problems with Bayes approach – Pattern classification by distance functions – Minimum distance pattern classifier.

UNIT 2: CLUSTERING

Clustering for unsupervised learning and classification – Clustering concept – C Means algorithm – Hierarchical clustering – Graph theoretic approach to pattern Clustering – Validityof Clusters. UNIT 3: **FEATURE EXTRACTION AND STRUCTURAL PATTERN RECOGNITION**

KL Transforms – Feature selection through functional approximation – Binary selection - Elements of formal grammars - Syntactic description - Stochastic grammars - Structural representation.

UNIT 4: HIDDEN MARKOV MODELS AND SUPPORT VECTOR MACHINE

State Machines – Hidden Markov Models – Training – Classification – Support vector Machine – Feature Selection.

UNIT 5: RECENT ADVANCES

Fuzzy logic – Fuzzy Pattern Classifiers – Pattern Classification using Genetic Algorithms – Case Study Using Fuzzy Pattern Classifiers and Perception.

TEXT BOOKS:

1. M. Narasimha Murthy and V.Susheela Devi, —Pattern Recognition, Springer 2011. 2.

S.Theodoridis and K.Koutroumbas, —Pattern Recognition^{II}, 4th Edition., Academic Press, 2009 **REFERENCES:**

1. Robert J. Schalkoff, —Pattern Recognition Statistical, Structural and Neural Approaches^{II}, John Wiley & Sons Inc., New York, 1992.

2. C.M.Bishop,—Pattern Recognition and Machine Learning, Springer, 2006.

3. R.O.Duda, P.E.Hart and D.G.Stork, —Pattern Classification, John Wiley, 2001.

4. Andrew Webb, -Stastical Pattern Recognition, Arnold publishers, London, 1999.

212INT/102	VISUALIZATION TECHNIQUES		Т	Р	Х	С						
21311 14103	VISUALIZATION TECHNIQUES	3	1	0	0	4						
Prerequisite	Artificial Intelligence (212INT2308)											
Course	Honours Elective											
Category												
Course	Theory											
Туре												
Objective (s)	• To learn about the importance of data visualization.											
	• To know the different types of visualization techniques.											
	To create various visualizations											
Course Outcome(s)												
CO1	Compare various visualization techniques.											
CO2	Design creative visualizations											
CO3	Apply visualization over different types of data.											
CO4	Study about types of visualization.											
CO5	Create various visualizations											

Mapping of COs with Pos															
COs	s PO's												PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	3	2									2	2		
CO2	1	3	2											1	
CO3	3	3	2												2
CO4	1	3												3	
CO5	1	3	2									3	2		

UNIT 1: INTRODUCTION

Introduction – Issues – Data Representation – Data Presentation – Common Mistakes in design. **UNIT 2: FOUNDATIONS FOR DATA VISUALIZATION**

Visualization stages – Experimental Semiotics based on Perception Gibson_s Affordance theory – A Model of Perceptual Processing – power of visual perception-Types of Data-visualization and data objects.

UNIT 3: COMPUTER VISUALIZATION

Non-Computer Visualization – Computer Visualization: Exploring Complex Information Spaces – Fisheye Views – Applications – Comprehensible Fisheye views – Fisheye views for 3Ddata – Interacting with visualization

UNIT 4: MULTIDIMENSIONAL VISUALIZATION

One Dimension – Two Dimensions – Three Dimensions – Multiple Dimensions – Trees – Web Works – Data Mapping: Document Visualization – Workspaces.

UNIT 5: CASE STUDIES

Small interactive calendars – Selecting one from many – Web browsing through a key hole – Communication analysis – Archival analysis

TEXT BOOKS:

1. Colin Ware, —Information Visualization Perception for Design MargonKaufmann Publishers, 2004, 2nd edition.

2. Robert Spence —Information visualization – Design for interaction^{II}, Pearson Education, 2 nd Edition, 2007

3. Stephen Few, —Information Dashboard Design-The Effective Visual Communication of Datal: O'Reilly Media Publisher,1st Edition 2006

REFERENCES:

1.Stuart.K.Card, Jock.D.Mackinlay and Ben Shneiderman, —Readings in Information Visualization Using Vision to thinkl, Morgan Kaufmann Publishers. 2008