


Anand Nagar, Krishnankoil - 626126. Srivilliputtur (Via), Virudhunagar (Dt), Tamil Nadu | info@kalasalingam.ac.in | www.kalasalingam.ac.in

B.TECH INFORMATION TECHNOLOGY

CURRICULUM AND SYLLABUS (CBCS)

(For the Students Admitted from the Academic Year 2018-19 Onwards)

KALASALINGAM UNIVERSITY

VISION

To be a Center of Excellence of International Repute in Education and Research

MISSION

To Produce Technically Competent, Socially Committed Technocrats and Administrators through Quality Education and Research

DEPARTMENT OF INFORMATION TECHNOLOGY

VISION

To become a centre of excellence in the field of Information Technology through quality education and research

MISSION

To provide high quality technical education through effective curriculum and innovative teaching to meet industry need.
To inculcate ethically and socially committed information technology professionals by value added courses.
To provide state-of-the-art learning facilities for students and faculties to investigate, apply and transfer knowledge.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- **PEO-1:** The graduates are trained to gain employment as an IT professional and to pursue higher studies to cater the global needs.
- **PEO-2:** The graduates could comprehend, analyze, design and create novel products and technologies that provide solution to real world problems.
- **PEO-3:** The graduates acquire multidisciplinary knowledge with ethical standards, effective communication skills and management skills to work as part of teams on all diverse professional environments.

PROGRAMME OUTCOMES (POs)

- **PO-1:** Apply knowledge of mathematics, science, engineering fundamentals and specialization in Information Technology for computational problem solving.
- **PO-2:** Identify, formulate, analyze and derive complex problems in the field of computer and communication.
- **PO-3:** Design/develop computing systems to meet the industry and society needs with due consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO-4:** Investigate the complex problems by research methods including design of experiments, analysis and interpretation of data to provide valid conclusions.
- **PO-5:** Select and apply necessary modern engineering and IT tools to solve complex computing and communication problems.
- **PO-6:** Apply reasoning acquired through contextual knowledge to assess the societal, legal, security and cultural issues relevant to the professional engineering practice.
- **PO-7:** Demonstrate the knowledge of contemporary issues for sustainable development in the field of IT.
- **PO-8:** Commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO-9:** Work effectively as an individual and also a member/leader in multidisciplinary teams.
- **PO-10:** Effectively communicate with engineering community and society about their field of expertise to write reports, design documentation and make presentations.
- **PO-11:** Demonstrate and apply the knowledge of information technology and management principles to manage projects in multidisciplinary environments.
- **PO-12:** Recognize the technology changes completely and enrich the knowledge by life-long learning.

Key Components in Department Mission	PEO1	PEO2	PEO3
Quality Education	\checkmark	✓	√
Research	\checkmark	✓	-
Social Commitment, Ethical Practices	-	~	✓
Innovative Skills	\checkmark	✓	\checkmark
Communication Skills (Meet Industrial and Social expectations)	✓	~	✓

 Table 1: PEOs consistency with Mission of the Department

Table 2: POs consistency with PEOs

PEO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PEO1	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	✓	~	\checkmark	\checkmark
PEO2	✓	\checkmark	✓	~	\checkmark	\checkmark	\checkmark	-	✓	-	\checkmark	-
PEO3	✓	\checkmark	✓	-	-	\checkmark	\checkmark	✓	✓	~	\checkmark	\checkmark

Table 3: Curriculum Contribution towards attainment of PEOs

Course Component	Number of Credits	PEOs
Basic Science and Mathematics	25	PEO1
Humanities and Social Science	3	PEO3
Soft Skills	3	PEO3
Basic Engineering	24	PEO1
Core Courses	48	PEO1, PEO2, PEO3
Community Service Project	3	PEO1, PEO2, PEO3
Project Work	10	PEO1, PEO2, PEO3
Professional Elective	18	PEO1, PEO2, PEO3
Open Elective	18	PEO1, PEO2, PEO3
Humanities Elective	6	PEO3
Internship/ Industry Training	2	PEO1, PEO2, PEO3
Total	160	

SCHEME OF INSTRUCTION

I. <u>Basic Sciences and Mathematics</u>

S.	Course Code	Course Name	Туре	L	Т	Р	Credits
1.	PHY18R174	Physics –Semi conductor physics	IC	3	1	2	5
2.	CHY18R171	Chemistry	IC	3	1	2	5
3.	MAT18R101	Calculus and Linear Algebra	Т	T 3 1 0		0	4
4.	MAT18R102	Multiple Integration, Ordinary Differential Equations and Complex Variables	Т	3	1	0	4
5.	MAT18R202	Probability and Statistics	Т	3	1	0	4
6.	BIT18R101	Biology for Engineers	Т	3	0	0	3
Total							25

II. <u>Humanities and Social Science</u>

S.	Course Code	Course Name	Туре	L	Т	Р	Credits
1.	HSS18R151	English for Technical Communication	TP	2	0	2	3
2.	HSS18R101	Soft Skills – I	Т	1	0	0	1
3.	HSS18R102	Soft Skills – II	Т	1	0	0	1
4.	HSS18R201	Soft Skills – III	Т	1	0	0	1
5.	HSS18R0XX	Humanities Elective – I	Т	3	0	0	3
6.	HSS18R0XX	Humanities Elective – II	Т	3	0	0	3
Total							

A. <u>Humanities Electives</u>

S.	Course Code	Course Name	Туре	L	Т	Р	Credits
1.	HSS18R001	Management Concepts and Techniques	Т	3	0	0	3
2.	HSS18R002	Marketing Management	Т	3	0	0	3
3.	HSS18R003	Organizational Psychology	Т	3	0	0	3
4.	HSS18R004	Project Management	Т	3	0	0	3
5.	HSS18R005	Stress Management and Coping Strategies	Т	3	0	0	3
6.	HSS18R006	Economics for engineers	Т	3	0	0	3
7.	HSS18R007	Human Resource Management and Labour Law	Т	3	0	0	3
8.	HSS18R008	Entrepreneurship Development	Т	3	0	0	3

S.	Course Code	Course Name	Type	L	Т	Р	Credits
9.	HSS18R009	Cost Analysis and Control	Т	3	0	0	3
10.	HSS18R010	Product Design and Development	Т	3	0	0	3
11.	HSS18R011	Business Process Reengineering	Т	3	0	0	3
12.	HSS18R012	Political Economy	Т	3	0	0	3
13.	HSS18R013	Professional Ethics	Т	3	0	0	3
14.	HSS18R014	Operations Research	Т	3	0	0	3
15.	HSS18R015	Total Quality Management	Т	3	0	0	3
16.	HSS18R016	Advanced Softskills	Т	3	0	0	3

III. Basic Engineering

S.	Course Code	requisite		L	Т	Р	Credits	
1.	EEE18R172	Basic Electrical Engineering			3	1	2	5
2.	MEC18R151	ingineering Graphics and Design		3	0	2	3	
3.	CSE18R171	Programming for Problem Solving IC Nil 3		3	1	2	5	
4.	MEC18R152	Engineering Practice	TP	Nil	3	0	2	3
5.	ECE18R220	Principles of Signals and Systems	Т	Nil	3	0	0	3
6.	INT18R171	Digital Principles and System Design	IC	Nil	3	1	2	5
Total								24

IV. Program Core

A. <u>Core Courses</u>

SI.	Course Code	Course Name	Туре	Pre- requisite/ Co-requisite	L	Т	Р	С
1.	CSE18R174	Computer Architecture and Organization	IC	Nil	3	0	2	4
2.	CSE18R273	Operating Systems	IC	CSE18R174	3	0	2	4
3.	INT18R201	Web Technology	Т	Nil	3	1	0	4
4.	INT18R271	Data Structures and Algorithms	IC	CSE18R171	3	1	2	5
5.	INT18R272	Analog and Digital Communication	IC	Nil	3	0	2	4

SI.	Course Code	Course Name	Туре	Pre- requisite/ Co-requisite	L	Т	Р	С
6.	INT18R273	Object Oriented Programming	IC	CSE18R171	3	0	2	4
7.	INT18R274	Principles of Digital Signal Processing	IC	ECE18R220	3	0	2	4
8.	INT18R251	Microcontrollers & Embedded Systems	TP	Nil	3	0	1	3.5
9.	CSE18R371	Computer Networks	IC	CSE18R273	3	1	2	5
10.	INT18R311	Artificial Intelligence	Т	Nil	3	0	0	3
11.	INT18R371	Database Management Systems	IC	Nil	3	0	2	4
12.	INT18R359	Software Engineering	TP	Nil	3	0	1	3.5
	Total 4							

B. <u>Community Service Project</u>

S.	Course Code	Course Name	Credits
1.	INT18R399	Community Service Project	3

C. <u>Project Work</u>

S.	Course Code	Course Name	Credits
1.	INT18R499	Project Work	10

V. <u>Elective Courses</u>

A. Professional Electives (Minimum 5 Courses)

(3.5 Credits *4) + (3 Credits * 1) **or** (4 Credits * 2) + (3.5 Credits *2) + (3 Credits * 1) **or** (4 Credits * 3) + (3 Credits * 2)

Course Code	Course Name	Туре	Pre- requisite/ Co- requisite	L	Т	Р	С
PROFES	SSIONAL ELECTIVES - COMPUZ	FER PRO	GRAMMING	ST	REA	M	
INT18R351	System Software	TP	CSE18R174	3	0	1	3.5
INT18R301	Object Oriented Analysis and Design	Т	Nil	3	0	0	3
INT18R352	Design and Analysis of Algorithms	TP	INT18R271	3	0	1	3.5
INT18R360	Data Analysis Using Python	TP	CSE18R171	3	0	1	3.5
INT18R361	Data Science Using R Programming	TP	INT18R371	3	0	1	3.5
INT18R451	Component Based Technology	TP	INT18R273	3	0	1	3.5

INT18R401	Principles of Compiler Design	Т	CSE18R171	3	1	0	4
INT18R401 INT18R402	Game Programming	T T	CSE18R171	3	1	0	4
	<u> </u>	TP	CSE18R171 CSE18R171	3	$\frac{1}{0}$	1	3.5
INT18R452	Programming with Open Source Software	IP	CSEI8RI/I	3	0	1	3.5
INT18R453	Multimedia and Computer	TP		3	0	1	3.5
111101433	Graphics	11	INT18R271	5	0	1	5.5
INT18R454	C# and .NET Programming	TP	INT18R273	3	0	1	3.5
-	CSSIONAL ELECTIVES - SOFTW			-		-	5.5
INT18R353	Data Warehousing and Mining	TP	INT18R371	3	0	1	3.5
INT18R353	Advanced DBMS	TP	INT18R371	3	0	1	3.5
INT18R302	Information Storage Management	T T	INT18R371	3	1	0	4
INT18R355	Data Analytics	TP	INT18R371	3	0	1	3.5
INT18R303	Software Quality Assurance	T	INT18R359	3	0	0	3
INT18R304	Mobile Application Development	T	INT18R273	3	1	0	4
INT18R403	Enterprise Resource Planning	T	Nil	3	0	0	3
INT18R404	Service Oriented Architecture	T	CSE18R174	3	0	0	3
	NAL ELECTIVES - EMBEDDED A			_	-	-	-
INT18R305	Mobile Communication and	T	INT18R272	3	1	0	4
In the forest of	Computing	-		5	-	Ŭ	
INT18R306	Information Coding Techniques	Т	INT18R272	3	1	0	4
INT18R307	Bluetooth Technology	Т	CSE18R371	3	1	0	4
INT18R405	Wireless Sensor Networks	Т	CSE18R371	3	1	0	4
ECE18R330	Digital Image Processing	Т	INT18R274	3	0	0	3
INT18R406	Real Time Systems	Т	CSE18R273	3	0	0	3
INT18R407	Internet of Things	Т	CSE18R371	3	1	0	4
PROF	ESSIONAL ELECTIVES - NETWO	ORK MA	NAGEMENT S	STR	EAI	М	
INT18R356	Network Design Security and	TP	CSE18R371	3	0	1	3.5
	Management						
INT18R308	Information Security	Т	Nil	3	1	0	4
INT18R357	Mobile Networks	TP	CSE18R371	3	0	1	3.5
INT18R309	Wireless Application Protocol	Т	CSE18R371	3	0	0	3
INT18R408	High Performance Networks	Т	CSE18R371	3	1	0	4
INT18R455	Cryptography and Network	TP	CSE18R371	3	0	1	3.5
	Security						
	ESSIONAL ELECTIVES - COMPU		-				
INT18R358	Distributed Systems	TP	CSE18R174	3	0	1	3.5
INT18R456	Formal Language and Automata	TP	CSE18R171	3	0	1	3.5
INT18R409	Computer Forensics	Т	CSE18R371	3	0	0	3
INT18R410	Cloud Computing	<u>Т</u>	CSE18R371	3	1	0	4
INT18R411	Green Computing	Т	CSE18R371	3	0	0	3
INT18R412	Social Network Analysis	T	INT18R271	3	0	0	3
INT18R413	Information Retrieval Techniques	T	INT18R371	3	0	0	3
INT18R414	Parallel and Distributed Computing	<u>Т</u> Т	INT18R358	3	0	0	3
INT18R415	Graph Theory SSIONAL ELECTIVES - ARTIFIC		INT18R271			-	4
PKUFE	SSIONAL ELECTIVES - AKTIFIC		LLIGENCE	211	кĽА		

INT18R310	Bio Informatics	Т	Nil	3	0	0	3
INT18R312	Neural Networks and Fuzzy Logic	Т	Nil	3	1	0	4
INT18R313	Machine Learning	Т	INT18R271	3	1	0	4
INT18R314	Soft Computing	Т	Nil	3	1	0	4
INT18R416	Speech and Natural Language	Т	CSE18R171	3	0	0	3
	Processing						3
INT18R417	Deep Learning	Т	Nil	3	1	0	4

B. Open Elective for Other Departments (18 credits) (6 courses)

S.	Course Code	Course Name	Туре	L	Т	Р	Credits
1.	INT18R315	Web Programming	Т	3	0	0	3
2.	INT18R316	Big Data Analytics	Т	3	0	0	3
3.	INT18R317	Information Theory & Coding	Т	3	0	0	3
4.	INT18R318	Introduction To Information Security	Т	3	0	0	3
5.	INT18R319	Cyber Forensics	Т	3	0	0	3
6.	INT18R320	Essentials Of Information Technology	Т	3	0	0	3
7.	INT18R321	Internet And Java	Т	3	0	0	3
8.	INT18R322	R Programming	Т	3	0	0	3
9.	INT18R418	Programming With C++ And Java	Т	3	0	0	3
10.	INT18R419	Network Protocols	Т	3	0	0	3
11.	INT18R420	High Speed Networks	Т	3	0	0	3
12.	INT18R421	Introduction To Storage Management	Т	3	0	0	3

VI. Industrial Training / Internship

S.	Course Code	Course Name	Credits
1.	INT18R397	Industrial Training	Nil
2.	INT18R398	Internship Training	Nil

VII. Honours Courses

Course Code	Course Name	Course	Pre requisite	L	Т	Р	С
INT18R422	Advanced Networks	Т	CSE18R371	3	1	0	4
INT18R423	Agent Based Intelligent Systems	Т	INT18R311	3	1	0	4
INT18R424	Computational Linguistics	Т	CSE18R171	3	1	0	4
INT18R425	E Learning Techniques	Т	Nil	3	1	0	4
INT18R426	Heterogeneous Computing	Т	CSE17R174	3	1	0	4
INT18R427	Pattern Recognition	Т	INT18R353	3	1	0	4

INT18R428	Visualization Techniques	Т	INT18R311	3	1	0	4

- VIII. Mandatory Courses 1. Induction Training
 - 2. Environmental Sciences
 - 3. Indian Constitution 4. Essence of Indian Traditional Knowledge

BASIC SCIENCES AND MATHEMATICS

PHY18R174		SE		ONDU	СТОБ	R PHY	SICS		L		Р	С
1111011/4		51			CIO		5105		3	1	2	5
Prerequisite		: Know										
Course	Basic	scienc	es and	Mathe	ematics	5						
Category												
Course	Integ	rated C	Course									
Туре												
Objective	•	-			idents a	a firm ı	underst	anding	of the	basics	of	
			icondu									
	•						pplicat	tion of	semico	onductin	ig mater	ials
		and	some o	of its m	easure	ments						
CO1		ribe the										
CO2	Unde	erstand	the bas	sic con	cepts o	of semi	conduc	ting m	aterials	3		
CO3	Unde	erstand	the bas	sic kno	wledge	e on lig	ht base	d semi	conduc	tor inter	action	
CO4										ing mat		
CO5	Desig	gn, fabr	ication,	, and cł	naracter	rization	of eng	ineered	l semic	onducto	r materia	als
Mapping of C	COs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М				М						L	
CO2	L		М			М					L	
CO3	М		L								L	
CO4	М	M									L	
CO5	М	L									L	
a												

Course Topic(s)

UNIT 1: Basic Concepts and Electronic materials

Free electron theory, Density of states and energy band diagrams, Kronig-Penny model (to introduce origin of band gap), Energy bands in solids, E-k diagram, Direct and indirect bandgaps, Types of electronic materials: metals, semiconductors, and insulators, Density of energy states, Occupation probability, Fermi level, Effective mass, Phonons.

UNIT 2: Semiconductors

Intrinsic and extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature (equilibrium carrier statistics), Carrier generation and recombination, Carrier transport: diffusion and drift, p-n junction, Metal-semiconductor junction (Ohmic and Schottky), Semiconductor materials of interest for optoelectronic devices.

UNIT 3: Light-semiconductor interaction

Optical transitions in bulk semiconductors: absorption, spontaneous emission, and stimulated

emission; Joint density of states, Density of states for photons, Transition rates (Fermi's golden rule), Optical loss and gain; Photovoltaic effect, Exciton, Drude model.

UNIT 4: Engineered semiconducting materials

Density of states in 2D, 1D and 0D (qualitatively), Practical examples of low-dimensional systems such as quantum wells, wires, and dots: design, fabrication (lithiography,CVD), and characterization techniques(XRD, TEM).

Unit 5: Measurements : Conducting and Semiconducting Materials

Four-point probe and van der Pauw measurements for carrier density, resistivity, and hall mobility; Hot-point probe measurement, capacitance-voltage measurements, parameter extraction from diode I-V characteristics, band gap by UV-Vis spectroscopy .

List of Experiments

- 1. Diode V-I characteristics
- 2. Transistor Static characteristics C.E. mode
- 3. Transistor characteristics C.B. mode
- 4. Logic Gates AND, OR, NOT truth table verification discrete components
- 5. Zener diode characteristics & Break down Voltage
- 6. Zener regulated power supply.
- 7. Hall co-efficient of a semiconductor sample
- 8. Resistivity of a semiconductor crystal with temperature by four probe method and to determine band gap.
- 9. Determination of band gap of a semiconductor using P.O box.

Text Book(s):

- 1. J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc. (1995).
- 2. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc., (2007).
- 3. S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley (2008).

Reference Books:

- 1. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, New York (2007).
- 2. P. Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall of India (1997).
- 3. Online course: "Semiconductor Optoelectronics" by M R Shenoy on NPTEL
- 4. Online course: "Optoelectronic Materials and Devices" by Monica Katiyar and Deepak Gupta on NPTEL

CHY18R171	CHEMISTRY	L 3	T 1	P 2	C 5
Prerequisite	Nil				
Course	Basic sciences and Mathematics				
Category					
Course	Integrated Course				
Туре					
Objective	To introduce the fundamental concepts and application	ns of Ch	nemistry	/ to	
	engineering students to understand, analyze and apply	the san	ne to co	mplex	

	1		ues.										
CO1								-	• •		in the do		
		l engineering applications and analyzing the same through modern methods. cidate and apply the principles of thermodynamics for solving engineering											
CO2	Elucion problemente de la construcción de la constr		nd app	ly the	princi	ples of	therm	odyna	mics fo	or solvi	ng engi	neering	
CO3					-	of ele		emistry	, batte	eries, co	orrosion	and to	
CO4						ics and materia		cations	of tec	hnologi	cally im	portan	
CO5		the the tiques.	underly	ying pr	rinciple	es, inst	rument	ation a	and app	plication	ns of an	alytica	
Mapping of C	COs	•											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	S				М								
CO2	S												
CO3	S		М				М						
CO4	S										L		
CO5	S										L		

Unit 1: Atomic and Molecular Structure

Schrodinger wave equation: Derivation of time independent Schrodinger wave equation, Representation of Schrodinger wave equation in polar coordinates - Radial distribution function graphs of s, p, d and f orbitals. Molecular Orbital Theory: MOT concept, MO diagrams of homonuclear diatomic molecules (hydrogen, nitrogen and oxygen) and hetero-nuclear diatomic molecules (carbon monoxide and nitric oxide). Crystal field theory: CFT concept, weak and strong ligands, energy level diagrams of transition metal ions ($Fe^{2+}\& Fe^{3+}$) in octahedral and tetrahedral complexes and their magnetic properties. Intermolecular forces - Ionic, dipolar and van der Waals interactions.

Unit-2: Periodic Properties

Effective nuclear charge - Factors affecting effective nuclear charge: Penetration or shielding of orbitals - Variation of s, p, d and f orbital energies of atoms in the periodic table - Aufbau principle (Building-up principle): Application of Aufbau principle in writing electronic configuration, Deviation from Aufbau principle - Periodicity of properties in a periodic table - Periodic properties: Atomic and ionic sizes, ionization energies, electron affinity and electronegativity - Variation of periodic properties in the periodic table - Hard soft acids and bases: Concept and examples.

Unit-3: Free Energy and Chemical Equilibria

Thermodynamic functions: Definition and mathematical expression for Work, Energy, Enthalpy, Entropy and Free energy - Nernst equation: Derivation, apply Nernst equation to determine of

solubility product, pH (glass electrode). Potentiometric titrations: Acid-Base, Redox and precipitation reaction - Water analysis: Hardness by EDTA method and chloride ion by Argentomentric method - Corrosion: Definition, types (dry & wet) and mechanism. and control of Dry and Wet corrosion.

Unit4: Organic Reactions

Nucleophilic substitution reactions: Definition, types and examples of nucleophile, Compare nucleophilicity and basicity of a nuceophile - Types of nucleophilic substitution (case RX and ArX): Mechanism of S_N1 , S_N2 , S_Ni and Benzyne. Electrophilic substitution reactions: Definition, types and examples of electrophile - Electrophilic substitution reactions of hydrocarbons: Halogenation, sulphonation, nitration. Friedel crafts alkylation and acylation reaction. Nucleophilic addition reactions (case aldehydes and ketones): Polarity of C=O bond. General mechanism of nucleophilic addition reactions on aldehydes and ketones: HCN, HOH, ROH and NaHSO₃ addition. Electrophilic addition reactions (case alkenes): General mechanism of electrophilic addition reactions on alkene - Addition of HBr [Markownikoff & Anti-Markownikoff (peroxide effect)] - Addition of alkene (polymerization of ethylene). Elimination reactions: Types of elimination reactions (case alkyl halides): Dehydrohalogenation of alkyl halides - E_1 and E_2 mechanism - Dehydration of alcohols to alkene and ethers. Greener synthesis of drug molecules (Aspirin and Ibuprofen)

Unit 5: Stereochemistry & Spectroscopic Techniques

Stereochemistry - Definition with examples: Geometrical isomers (alkene) and stereoisomers, symmetry, chirality, enantiomers, diastereomers, meso and racemic mixture. Representation of 3D structures: Wedge formula, Fischer projections, Newmann and Sawhorse formula (upto 2 carbons) - Conformational analysis: Ethane, butane and cyclohexane - Configurational analysis: Rules of RS nomenclature and application of RS nomenclature to molecules containing one chiral centre. Electronic spectroscopy: Principle, instrumentation, selection rules and medicinal application of fluorescence spectroscopy. Nuclear magnetic resonance spectroscopy (1 H-NMR): Principle, instrumentation, chemical shift, coupling constant and application (structural identification of the compound C₃H₆O from 1 H-NMR data). X-ray diffraction: Principle, instrumentation and applications X-ray diffraction.

List of Experiments (Any 10):

- 1. Determination of Viscosity by Ostwald Viscometer.
- 2. Determination of surface tension by stalagmometer.
- 3. Adsorption of acetic acid by charcoal.
- 4. Determination of chloride content of water.
- 5. Estimation of hardness of water by EDTA method.
- 6. Determination of the rate constant of a reaction
- 7. Thin layer chromatography.
- 8. Determination of the partition coefficient of a substance between two immiscible liquids
- 9. Determination of Saponification /acid value of oil.
- 10. Preparation of Aspirin
- 11. Potentiometric titration of strong acid vs strong base.
- 12. Potentiometric titration of weak acid vs strong base.
- 13. Determination of cell constant and conductance of solutions.

Text Books

- 1. Engineering Chemistry, 2nd Edition, Wiley India (P) Ltd., 2018.
- 2. Stereochemistry of Organic Compounds, Ernest L. Eliel, Samuel H. Wilen Student

edition, Wiley India (P) Ltd., 2017.

- 3. University Chemistry, by B. M. Mahan and R.J.Mayers, Pearson Publishers, 11th Edition, Noida, 2017.
- 4. Chemistry Laboratory Manual, Department of Chemistry, Kalasalingam University, 2018.

Reference Books

- 1. Fundamentals of Molecular Spectroscopy, by C. N. Banwell and E.M. McCash, Tata McGraw-Hill Publishers, 4th Edition, New Delhi, 2008.
- 2. Physical Chemistry, by <u>P. W. Atkins</u> and J.D. Paula, W H Freeman & Co Publishers, 10th Edition, 2014.
- 3. Modern Inorganic Chemistry, R. D. Madan, 4th Edition S. Chand & Company Ltd., 2009.
- 4. Organic Chemistry, Paula Y. Bruice, 7th Edition, Pearson (Dorling Kindersley India (P) Ltd.) 2014.
- 5. Principles of Physical Chemistry, B. R. Puri, L. R. Sharma, M. S. Pathania, 47th Edition, Vishal Publishing Co., 2017.
- 6. Spectrometric Identification of Organic Compounds, Robert M. Silverstein, Francis X. Webster, David J. Kiemle, David L. Bryce, 8th Edition, Wiley India (P) Ltd., 2010.
- 7. Inorganic Chemistry, Peter Atkins, Mark Weller, Fraser Armstrong, Jonathan Rourke, Tina Overton, Michael Hangerman 5th Edition, Oxford press, 2015.
- 8. Organic Chemistry, Volume 1, I. L. Finar, 6th Edition, Pearson (Thomson press India (P) Ltd.) 2014.

	Calculus and Linear Algebra	L	Т	Р	C
MAT18R101		3	1	0	4
Prerequisite	Nil				
Course	Basic sciences and Mathematics				
Category					
Course Type	Theory				
Objective	To enable the students to acquire knowledge and ski calculus, to handle the situations involving multi			-	
	diagonalize a symmetric matrix using eigen values and				u 10
CO1	know the fundamental theorems such as Rolle's theorem and its applications	heorem	, Mean	value	theore
CO2	understand the basic concepts of limit, continuity, de total derivative and its applications	erivativ	e, parti	al deriv	ative
CO3	solve the real world problems using differentiation and	integra	ation		
CO4	understand the concepts of sequence, convergent of s convergent of series using different methods	sequenc	ces, seri	es and	testing
CO5	find the solution of simultaneous linear equations usin values and eigen vectors of a matrix, Cayley-Har	-			

	transt	formati	ons									
Mapping of COs												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Μ										
CO2	Н	Μ										
CO3	Н	Μ										
CO4				L								
CO5				L								
Course Topic	Course Topic(s)											

Unit 1: Calculus:

Rolle's Theorem- Mean value theorems - Taylor's and Maclaurin theorems with remainders - indeterminate forms and L'Hospital's rule - Maxima and minima.

Unit 2: Multivariable Calculus (Differentiation):

Limit, continuity and partial derivatives - directional derivatives - total derivative - Maxima, minima and saddle points - Method of Lagrange multipliers.

Unit 3: Calculus (Applications):

Curvature (Cartesian coordinates) - Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

Unit 4: Sequences and series:

Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions;

Unit 5: Matrices:

System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Determinants; Eigenvalues and eigenvectors; Cayley-Hamilton Theorem - Diagonalization of matrices - Orthogonal transformation- Reduction of Quadratic form to Canonical form.

TEXT BOOKS:

1. Grewal, B.S., Grewal, J.S., Higher Engineering Mathematics, Khanna Publishers, New Del 43rd Edition, 2015.

REFERENCE BOOKS:

- 1. Kreyszig, E, Advanced Engineering Mathematics, John Wiley and Sons (Asia) Limited, Singapore, 10th Edn., 2001.
- Ramana B. V., Engineering Mathematics, Tata McGraw-Hill Publishing Company Limited New Delhi, Edition 2005.
- 3. Veerarajan, T., Engineering Mathematics (For First Year), Tata McGraw-Hill publishing company Limited, 2008.

MAT18R102	Multiple Integration, Ordinary Differential	L	Т	Р	С					
MAI 10K102	Equation and Complex Variables	3	1	0	4					
Prerequisite	Nil									
Course	Basic sciences and Mathematics									
Category										
Course Type	Theory									
Objective	To enable the students to understand the concepts of 1	nultiple	e integra	ations, t	heir					
	applications, and to handle analytic functions on complex plane and perform									

	comp	lex int	egratio	n.								
CO1	Unde	rstand	the cor	ncepts	of doul	ole and	triple	integra	l and it	s applic	ations	
CO2	Know	Know about the applications of double and triple integral in vector calculus										
CO3	Know	Know the methods of solving differential equations of first and second orders										
CO4	under	understand the concepts of analytic functions, conformal mappings and bilinear										
	transf	transformations										
CO5	under	stand	the con	ncepts	of sin	gularity	y, resid	lues ar	nd eval	uation of	of certai	n impro
	integr	rals										
Mapping of C	COs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н		М								

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н		М								
CO2	Η	Η		Μ								
CO3	Η	Η		Μ								
CO4	Η	Η		Μ								
CO5			Μ									
CO6												
~ .												

Unit 1: Multivariable Calculus (Integration):

Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar), Applications: areas and volume; Triple integrals (Cartesian), orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds;

Unit 2: Integral theorems:

Gradient, curl and divergence. Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.

Unit 3: Ordinary differential equations:

Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equations.

Unit 4: Complex Variable – Differentiation:

Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions; elementary analytic functions (exponential, trigonometric, logarithm) and their properties; Conformal mappings, Mobius transformations and their properties.

Unit 5: Complex Variable – Integration:

Contour integrals, Cauchy Integral formula (without proof); Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals (Integration around small semicircles and rectangular contours).

TEXT BOOKS:

1. Grewal, B.S., Grewal, J.S., *Higher Engineering Mathematics*, Khanna Publishers, New Delhi, 43rd Edition, 2015.

REFERENCE BOOKS:

- 1. Kreyszig, E, *Advanced Engineering Mathematics*, John Wiley and Sons (Asia) Limited, Singapore , 10th Edn., 2001.
- 2. Ramana B. V., *Engineering Mathematics*, Tata McGraw-Hill Publishing Company Limited, New Delhi, Edition 2005.
- 3. Veerarajan, T., *Engineering Mathematics (For First Year)*, Tata McGraw-Hill publish company Limited, 2008.

MAT18R202		PRO	BABI	LITY	AND S	STAT	STIC	S	L	, T	Р	С
MA 1 10K2U2									3	1	0	4
Prerequisite	Nil											
Course	Basic	scienc	es and	Mathe	ematics	5						
Category												
Course Type	Theor	ry										
Objective	To en	hable th	ne stud	ents to	acquir	e skills	s to har	ndle biv	variate	distribu	itions ai	nd to
	solve	real w	orld pi	oblem	s using	, statist	ical m	ethods				
CO1		rstand xpecta		ncepts	of prot	ability	, rando	om vari	able, d	istributi	on funct	ion
CO2	Learr	Learn standard distributions and its applications										
CO3		tate the					kurtosi	is for s	tandaro	d distrib	outions a	and to k
CO4	Solve	e the ph	ysical	world	proble	ms usii	ng sma	ll and l	arge sa	mple th	leory	
CO5	Knov	v the m	ethod	of usin	g analy	sis of	varianc	ce to so	lve rea	l world	problem	ıs
Mapping of C	Os											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Η	L										
CO2	Н	L										
CO3	Н	L										
CO4	Н	L										
CO5	Н	L										
Course Topic	(s)											
Unit 1: Basic	Proba	ability	and R	andon	n Varia	ables:						

Axiomatic definition of Probability - Conditional probability – Independent events - Total probability – Bayes theorem - Random variables – Discrete random variable - Probability mass function – Continuous random variable - Probability density functions – Cumulative distribution function-Properties- Expectation.

Unit 2: Standard Distributions and Bivariate Distributions:

Binomial, Poisson, Uniform, Exponential and Normal distributions and their properties. Two dimensional random variables – Joint probability density function – Cumulative distribution function – Marginal density function

Unit 3: Statistics:

Measures of Central tendency: Moments, skewness and Kurtosis - evaluation of statistical parameters for Binomial, Poisson and Normal distributions, Correlation and regression – Rank correlation- Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves.

Unit 4: Applied Statistics:

Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations. Small samples: Test for single mean, difference of means- Chi-square test for goodness of fit and independence of attributes.

Unit 5: Design of Experiments:

Analysis of variance – One way classification –Completely Randomised Design(C R D)– Two-way classification –Randomised Block Design(R.B.D)– Latin Square Design(L S D). **TEXT BOOKS**:

1. T. Veerarajan, Probability, Statistics and Random process, Fourth edition,

Tata McGraw-Hill Education (India) Pvt. Ltd., 2016

REFERENCE BOOKS:

- Flynn M., Probability, Random variables and random processes, Harper & Row Publishers. New York, 1982.
- 2. Gupta, S.C, and Kapur, J.N., Fundamentals of Mathematical Statistics, Sultan Chand, New Delhi, 11th Edition., 2006.

	1												
BIT18R101		B	OLO	GY FC)R EN	GINE	ERS		L 3		P 0	C 3	
Prerequisite	Nil										0	5	
Course	Basic	scienc	es and	Mathe	ematics	5							
Category													
Course	Theor	ry											
Туре		-											
CO1								nd cell					
CO2	Unde	nderstand the classification and functions of biomolecules											
CO3	Elabo	aborate the basic cellular mechanisms such as replication, transcription and											
	transl	ranslation											
CO4	Desci	ribe the	e under	lying c	concept	ts of in	fection	and in	nmunit	y			
CO5	Expla	in vari	ous ap	plicati	ons of	biolog	y						
Mapping of C	COs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	S	М											
CO2	S	S		S	М		L						
CO3	S	S		S	М		L						
CO4	S	S		S	М		L						
CO5	S	S		S	М		L						

CO6	S	М					

UNIT 1: INTRODUCTION

Fundamental difference between science and engineering- comparison between eye and camera, Bird flying and aircraft; major discoveries in biology- ; Classification based on: Cellularity-Unicellular and Multicellular; Ultra structure - prokaryotes and eukaryotes; three major kingdoms of life; Cell structure, intracellular organelles and their functions, comparison of plant and animal cells- Overview of Cell cycle and cell division

UNIT 2: BIOMOLECULES

Chemistry of biomolecules: Carbohydrates, Lipids, Proteins; classification of amino acids; classification of proteins based on structure and functions; Nucleic acids -types, structure and function of DNA and RNA

UNIT 3: GENES TO PROTEINS

Gene, Genome and chromosome; Central dogma of molecular biology; Classical experiments of DNA: Griffith and, Avery, McCarty and MacLeod, Meselson and Stahl - DNA replication, Transcription and Translation

UNIT 4: MICROBIOLOGY

Microscopy; Microbes as infectious agents - malaria, tuberculosis, typhoid, polio, dengue, AIDS;; cultivation of bacteria. Immunity - innate and acquired immunity - organs and cells of the immune system - classification of antibodies - types of T cells - transplantation, autoimmunity overview

Unit 5: APPLICATIONS OF BIOLOGY

Healthcare-antibiotics, vaccines, monoclonal antibodies, insulin and interferons; Beneficial bacteria - probiotic bacteria, nitrogen fixing bacteria, fermentation and fermented foods and products Environmental - waste water treatment, bioremediation; Biomaterials and biopolymers for medical and environmental applications; Biosensors;

TEXT BOOKS:

- 1. De Robertis, E.D.P. and De Robertis, E.M.F. Cell and Molecular Biology- Lippincott Williams & Wilkins- Philadelphia- USA- 8th Edition- 2010.
- 2. Voet, D., Voet, G., Biochemistry John Wiley and Sons, Singapore 3rd Edition- 2001.
- 3. Pelczar MJ, Chan ECS and Krieg NR Microbiology Tata McGraw Hill, India- 7th Edition- 2010

REFERENCES:

1. Friefelder. D. -Molecular Biology- McGraw-Hill Companies- New York, USA- 5th Edition- 2013.

HUMANITIES AND SOCIAL SCIENCES

HSS18R151	ENGLISH FOR TECHNICAL	L	Т	Р	С
1155161151	COMMUNICATION	2	0	2	3
Prerequisite	Nil				
Course	Humanities and Social Sciences				
Category					
Course	Theory with Practical				

Туре		
	e Topic	(\$)
00000		1 – VOCABULARY BUILDING
	1.1	The concept of word formation
	1.2	Root words from foreign languages and their use in English
	1.3	Prefixes and suffixes; word derivatives using them
	1.4	Synonyms, Antonyms and standard Abbreviations
	2	UNIT 2: BASIC WRITING SKILLS
	2.1	Sentence structures
	2.2	Use of phrases and clauses in sentences
	2.3	Creating Coherence
l	2.4	Techniques for Writing Precisely
	3	UNIT 3: IDENTIFYING COMMON ERRORS IN WRITING
	3.1	Tenses
	3.2	Subject – verb agreement
		Noun – Pronoun Agreement
		Verbs – Transitive, Intransitive
	3.5	Misplaced Modifiers
	3.6	Articles
		Prepositions
	3.8	Redundancies and Clichés
		Direct, Indirect speech
		Infinitives, Gerunds
	3.11	Comparison of adjectives
	4	UNIT 4: NATURE AND STYLE OF SENSIBLE WRITING
l		Describing
		Defining
	4.3	Classifying
	4.4	Providing examples or evidence
	4.5	Writing introduction or conclusion
	5	UNIT 5: WRITING PRACTICES
	5.1	Comprehension
	5.2	Precis writing
	5.3	Essay writing
	5.4 5.5	Letter writing Instructions
	5.6	Paragraph development UNIT 6: ORAL COMMUNICATION
	6 i)	Listening comprehension
	i) ii)	Pronunciation, intonation, stress and rhythm
	iii)	Common everyday situations: Conversations and dialogues
	,	Interviews
	iv) v)	Formal presentations
	v)	ronnar presentations

SOFTSKILLS

HSS18R101	SOFT SEILLS L	L	Т	Р	С
H5516K101	SOFT SKILLS I	1	0	0	1
Course Topic	(s)				
UNIT 1: EFF	ECTIVE COMMUNICATION				
Listening : Fo	ocus, Intuition about the speaker, Critical Listening,	Writing	; : Repo	orts, E-	mail,
Book & Mov	ie Review, Notices & Advertisements, Speaking : In	troduci	ng Self	, Just -	- a -
Minute, Ad Za	p, Story Telling				
UNIT 2: QUA	ANTITATIVE ABILITY				
Introduction to	Numerical Skills, Introduction to Logical Skills, Vedic	Mathe	matics		
UNIT 3: TIM	IE MANAGEMENT				
Prioritization,	Procrastination, Multi-Tasking				
UNIT 4: SOC	CIAL MEDIA				
Blog Writing,	LinkedIn, Usage of messaging applications				
UNIT 5: SOF	T SKILLS				
Importance of	Soft Skills, Lateral Thinking, Begin with the End in	n Mind	l, First	things 1	First,
Think Win – W	Vin			-	

SOFT SKILLS II	L	Т	Р	C
	1	0	0	1
(s)				
ECTIVE COMMUNICATION				
d Reading techniques, News Story Analysis, Presentati	on : Or	ganizing	g Conter	nt,
animations, Mock Presentations				
ANTITATIVE ABILITY				
rties, Averages, Progression				
BAL ABILITY				
ilding Techniques, Analogy				
TAL INTERACTION				
kills, Dealing with difficult people, Stress Managemen	t			
T SKILLS				
derstand, then to be understood, Synergy, Secret, Mind	Maps,	Creativ	ity	
	(s) ECTIVE COMMUNICATION ed Reading techniques, News Story Analysis, Presentati animations, Mock Presentations ANTITATIVE ABILITY rties, Averages, Progression RBAL ABILITY hilding Techniques, Analogy CIAL INTERACTION Skills, Dealing with difficult people, Stress Management T SKILLS	1 (s) ECTIVE COMMUNICATION ed Reading techniques, News Story Analysis, Presentation : Or animations, Mock Presentations ANTITATIVE ABILITY rties, Averages, Progression BAL ABILITY tilding Techniques, Analogy CIAL INTERACTION skills, Dealing with difficult people, Stress Management T SKILLS	1 0 Image: style="text-align: center;">1 ECTIVE COMMUNICATION ECTIVE COMMUNICATION ed Reading techniques, News Story Analysis, Presentation : Organizing animations, Mock Presentations ANTITATIVE ABILITY rties, Averages, Progression RBAL ABILITY tilding Techniques, Analogy CIAL INTERACTION Skills, Dealing with difficult people, Stress Management T SKILLS	1 0 0 ECTIVE COMMUNICATION ECTIVE COMMUNICATION colspan="2">Content animations, News Story Analysis, Presentation : Organizing Content animations, Mock Presentations ANTITATIVE ABILITY rties, Averages, Progression BAL ABILITY tilding Techniques, Analogy CIAL INTERACTION Skills, Dealing with difficult people, Stress Management

1100100201	S	OFT SKILLS III	L	Т	Р	С	
HSS18R201				1	0	0	1
Course Topic	(s)			·			
UNIT 1: EFF	ECTIVE COMM	UNICATION					
Sentence Con	struction, Tenses,	Verbal Communication,	Parts of	Speech,	Frami	ng effe	ctive
Sentences							
UNIT 2: QUA	ANTITATIVE AB	ILITY					

Percentages, Profit-Loss-Discount, Ratio & Proportion, Mixtures & Allegation, Interest Calculations, Data Sufficiency

UNIT 3: LOGICAL ABILITY

Data Arrangements, Coding & Decoding, Ranking / Ordering, Venn Diagrams, Syllogisms, Introduction to Data Interpretation

UNIT 4: VERBAL ABILITY

Sentence correction, Sentence Completion, Idioms & Phrases, Articles, Analytical Writing, Descriptive Writing

UNIT 5: SOFT SKILLS

Dining Etiquette, Hygiene, Team Work, Collaboration, Interdependence, Resume Building, Power Verbs, Group Discussion, Personal Interview.

HUMANITIES ELECTIVES

HSS18R001		MAN	AGEN	IENT	CON	CEPTS	S AND		L	Т	Р	С		
H5516K001			Т	ECHN	NIQUE	ES			3	0	0	3		
Prerequisite	Nil													
Course	Huma	anities	Electiv	re										
Category														
Course	Theor	ry												
Туре														
Objective (s)									,	aracteris	,			
		and importance as well as the functions performed by manages-planning, organizing directing and controlling. The course also intends to show students												
		organizing, directing and controlling. The course also intends to show students the applications of management functions in various enterprises such as												
		the applications of management functions in various enterprises such as marketing, finance, personnel, production, etc.												
Course Outco	ome(s)													
CO1	To E	xplain	the his	storical	l backd	lrop ar	nd func	lament	als of	Manage	ment th	oughts		
	vital	for u	ndersta	inding	the c	concept	ual fr	ame v	work o	of Man	agement	as a		
	discip	oline.												
CO2	To D	Discuss	about	the v	various	conc	epts o	f plan	ning, 1	Decision	n makir	ng and		
		olling t							-			-		
CO3	To U	ndersta	nding	concep	ts of E	thics, I	Delega	tion, C	oordina	ation and	d Team	work		
CO4	To St	udy an	d unde	rstand	the ma	nagem	ent coi	ncepts	and sty	les in G	lobal co	ntext		
CO5	To de	evelop	an unc	lerstan	ding a	bout en	nergin	g conc	epts in	n manag	ement t	hought		
	and p	hilosop	ohy											
Mapping of (COs wi	th PO	5											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1							L				Μ			
CO2						Н	Н	Н		М				
CO3										L	Н			
CO4						М		L	L	L				
CO5											Н			

UNIT 1: DEVELOPMENT OF MANAGEMENT THOUGHTS

Scientific Management Movement - Administrative Movement - Human Relations Movement - Decision Movement - Behavioral Science Movement - Systems Movement - Contingency Movement.

UNIT 2: ESSENTIALS OF PLANNING

Planning Objectives – Goals - Programmed Decisions and Unprogrammed Decisions; Decision – Making - Creativity in Decision - Making, Forecasting and Strategy to Formulation.

UNIT 3: EFFECTIVE ORGANIZING

Span of Control – Departmentation - Authority; Responsibility - Bureaucracy and Adhocracy; Group Dynamics.

UNIT 4: STAFFING AND DIRECTING

Staffing: Manpower Planning – Recruitment Sources – Selection Procedure – Training Methods – Performance Evaluation Methods – Executive Development Programs - Directing: Communication Process and Barriers – Motivation Techniques – Financial and Non – Financial Motivation- Leadership Qualities and Styles.

UNIT 5: CONTROLLING AND RECENT CONCEPTS

Controlling: Meaning and Process - Requisites of Effective Control - Control Techniques. Emerging Issues in Management: Japanese and American Management – Management by Objectives – Knowledge Management – Technology Management – Business Process Outsourcing- Social Responsibility and Business Ethics.

TEXT BOOKS

- 1. Harold Koontz & Heinz Weihrich, "Essentials of Management: An International, Innovation and Leadership Perspective", 10th Edition, McGraw Hill Education (India) Private Ltd. New Delhi, 2016.
- 2. Stephen P. Robbins, Mary A. Coulter, "Managemen"t, 13th Edition, Pearson Education Limited, New Delhi, 2016

REFERENCE BOOKS

- 1. C.B.Gupta, "Management Theory and Practice", 19th Revised Edition, Sultan Chand & Sons, New Delhi.2017.
- 2. L.M.Prasad, "Principles and Practices of Management", 9th Edition, Sultan Chand and Sons Private Limited, 2015.
- 3. K.Aswathappa, "Essentials of Business Environment: Text Cases and Exercises" 12th, edition, Himalaya Publishing House, Mumbai, 2014.
- 4. Tripathi & Reddy, "Principles of Management", 5th Edition, Tata McGraw Hill publishing company Ltd, New Delhi, 2012.

HSS18R002	MARKETING MANAGEMENT	L	Т	Р	С
115516K002		3	0	0	3
Prerequisite	Nil				
Course	Humanities Elective				
Category					
Course	Theory				
Туре					
Objective(s)	This course develops students understanding of here requirements of consumers in competitive environm to create the competitive edge. It covers areas	nents, a	nd devel	op stra	tegies

	imple	ementat	tion, ar	nd cont	trol, as	well a	is the i	narketi	ing mi	x, expor	tation, a	and the		
	social	l aspect	ts of m	arketin	ıg.									
Course Outcome(s)														
CO1														
	backg	ground.												
CO2	To D	evelop	unders	standin	g of m	arketin	g oper	ations	and co	mplexiti	ies for s	tudents		
	to app	To Develop understanding of marketing operations and complexities for students to apply in practical business situations.												
CO3	To U	Inderst	and co	oncepts	relate	d to S	Segmer	ntation,	Targe	eting an	d Posit	ioning,		
	produ	ict attri	butes,	and pr	ricing s	strategi	es prev	valent i	in dom	estic an	d intern	ational		
	scena	rio.												
CO4	To S	tudy v	arious	tools	and te	echniqu	ies of	promo	ting th	ne produ	ucts in	ethical		
	mann	er.												
CO5	To U	ndersta	nd em	erging	concep	ots of n	narketi	ng in tł	ne eme	rging glo	obal ma	rkets		
Mapping of (COs wi	ith POs	5											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1						Н	Н		L	М	Μ	L		
CO2						Н				Н				
CO3														
CO4		H H L M L												
CO5						Н				Н				
A B 1	$\langle \rangle$													

Course Topic(s) MARKETING

Meaning - concept - functions - marketing Planning & implementation marketing Programmes - Marketing environment – Market Segmentation and consumer behaviour – Influencing factors, Decision process –Marketing mix – Marketing department.

PRODUCT

Meaning - Product planning - policies - positioning - New product development Product life cycle – BCG Matrix - branding. Packing, labeling.

PRICING

Pricing objectives – Setting and modifying the price – Different pricing method Product line pricing and new product pricing.

DISTRIBUTION

Nature of Marketing channels - Types of Channel flows – Channel functions - Channel cooperation, conflict and competition - Direct Marketing Telemarketing, Internet shopping.

PROMOTION

Promotion Mix - Advertisement - Message - copy writing – Advertisement - budgeting - Measuring advertisement effectiveness - Media strategy - sales promotion - Personal selling steps, publicity and direct marketing.

TEXT BOOKS

- 1. Philip.T.Khotler, Kevin Lane Keller, "Marketing Management", 15th Edition, Pearson Education, New Delhi, 2016.
- 2. Ramaswamy.VS & Namakumari. S, "Marketing Management Global Perspective, Indian Contex"t, McGraw Hill Education (India) Private Limited, New Delhi, 2013.

REFERENCE BOOKS

1. Rajan Saxena, Dorector, Jain S.P., "Marketing Managemen"t, 1st edition, Tata McGraw Hill, New Delhi, 2006.

- 2. K.S.Chandrasekar, "Marketing Management, Text & Cases", 1st edition, Tata McGraw hill Education Pvt. Ltd. 2013.
- 3. Tapan K.Panda, "Marketing Management Text and Cases", 2nd Edition, Excel Books.2008.

HSS18R003		ORCA	NIZA	TION	AT DC	усно		V	L	Т	Р	С
		UNGA		TION	ALIS	ICII	LOG	1	3	0	0	3
Prerequisite	Nil											
Course	Hum	anities	Electiv	ve								
Category												
Course	Theo	ry										
Туре												
Objective (s)					•	-	-			cepts of busines	-	
										t enhanc		
										e gauge		
										e with		
										health i		
										dards th		
Course Outco			0101115			a parta		0011012				0
CO1			sic con	cepts (of indu	strial a	nd org	anizatio	onal ps	ycholog	v	
CO2										effectiv		hrough
			ehavio				0	0				0
CO3					ating to	o indiv	idual t	behavio	or to ac	hieve g	roup tar	get and
			lership							0	- T	5
CO4								d mean	is to ev	valuate b	ased on	nature
		gnizati		U			0					
CO5	To le	arn im	plicati	ons of	chang	es alig	ning tl	he inte	rest of	individ	ual, gro	up and
			i as a w		U	C	U					1
Mapping of (COs wi	ith PO	S									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						Μ		Н		Μ		Н
CO2						L	Н		Μ		L	L
CO3						Μ		L				Μ
CO4						Μ		Н		Μ		Н
CO5						L	Н		Μ		L	L
Course Topic	c(s)											
FOCUS AND	PUR	POSE										
Organizationa INDIVIDUA				and im	portan	ce, nati	ire and	l scope	, frame	work.		
			-	ionoin	T DOPOO	nolity	thac	rias 1	aamin	a tuna	of loo	mo ora
Personality –	• •			-		-						
learning theo components -												
perception – in					em. P	ercepti	0115 -	mpol	lance	- 1acto	45 IIIII	enemg
GROUP BEH			percept	1011.								

Organization structure – formation – groups in organizations – influence – group dynamics – emergence of informal leaders and working norms – group decision making techniques – interpersonal relations –communication process and Group Communication.

LEADERSHIP

Leadership styles – theories – Qualities - leaders Vs managers – sources of power – power centers – power and Organisational Politics- Motivation.

ORGANISATIONAL DEVELOPMENT

Organizational development - Importance, characteristics, objectives, stability Vs change, proactive vs reaction change , the change process, resistance to change, managing change, team building - Organizational effectiveness, perspective, effectiveness Vs efficiency, approaches, the time dimension, achieving organizational effectiveness

TEXT BOOKS

- 1. Stephen P.Robins and Timothy A . Judge, "Organisational Behavior", Peason Education, 17th edition, 2017.
- 2. Fred Luthans, "Organisational Behavior", McGraw Education, 12th Edition, 2010.

REFERENCES

- 1. Aswathappa, "Organisational Behavior", Himalaya Publishing House, 12th edition, 2016.
- 2. P.Subba Rao, "Management and Organisational behavior: Text, Cases and Games", Himalaya Publishing House, 1st edition, 2010.
- 3. Mullins, "Organisational Behavior", Pearson Education Limited, 9th edition, 2010.
- 4. L.M.Prasad, "Organisational Behaviour", 5th edition, Sultan Chand and Sons, New Delhi, 2014.

2014.		L	Т	Р	С
HSS18R004	PROJECT MANAGEMENT	3	0	0	3
Prerequisite	Nil			-	
Course	Humanities Elective				
Category					
Course	Theory				
Туре					
Objective(s) Course Outco	This course describes concepts relating to project students to evolve project objectives appropriately proposals. It covers the required dimensions relating testing the technical feasibility, financial viability, ma desirability of projects. It gives an account on risk a facilitates the making of the effective project prop project planning, implementation and control. It als project management in undertaking foreign collaboration ome(s)	with r g to eva arket ac and pro- posal ar so emai	relevance aluation cceptabil fitability nd guide ncipates	e to but of projectity and analysics learned	siness ect by social is that ers in
CO1	Familiarizes the concept of project and steps in project	ct mana	agement.		
CO2	Understand the basics stages involved in preparing but				
CO3	Evaluate the technical feasibility, financial viability, social desirability of projects.	market	acceptal	oility an	d
CO4	Enabled to analyse the Risk and profitability of the provident	roject p	roposals		
CO5	Act effectively as project managers and as part of pro-	oject tea	ams.		
	COs with POs				
CO	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8	PO9	PO10	PO11	PO12

CO1				Μ				Н	
CO2			L		Н	Н	L		Н
CO3								М	
CO4			М		L				М
CO5									L
CT	-)								

INTRODUCTION TO PROJECT MANAGEMENT

Projects - Project ideas and preliminary screening. Developments - Project planning to Project completion - Pre-investment phase, Investment phase, operational phase - Governmental Regulatory framework. Capital Budgeting .

STAGES OF PROJECT MANAGEMENT

Opportunity studies - prefeasibility studies, functional studies or support studies, feasibility study expansion projects, data for feasibility study. Market and Technical Appraisal : Market and Demand analysis, Market Survey, Demand forecasting. Technical analysis- Materials and inputs, Choice of Technology, Product mix, Plant location, capacity, Machinery and equipment.

APPRAISAL PROCESS

Concepts. Time value of money - Present and future value. Appraisal criteria - Urgency, Payback period, Rate of return, Debt service coverage ratio, Net present value, Benefit cost ratio, Internal rate of return, Annual capital charge, Investment appraisal in practice.

RISK AND PROFITABILITY ANALYSIS

Risk analysis- Measures of risk, Sensitivity analysis, and Decision tree analysis. Means of financing, Term Loans, Financial Institutions. Cost of capital. Profitability - Cost of Production, Break-even analysis. Assessing the tax burden and financial projections.

PROJECT PLANNING, IMPLEMENTATION, AND CONTROL

Forms of Project Organization, Project Planning, Implementation, and Control - Network construction, CPM, PERT, Development of Project schedule, Crashing of Project Network. Introduction to Foreign collaboration projects - Governmental policy framework, Need for foreign technology, Royalty payments, Foreign investments and procedural aspects.

TEXT BOOKS

- Prasanna Chandra, "Projects: Planning, Analysis, Selection, Financing, Implementation", 8th Edition, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2014.
- M.R. Gopalan, "Project Management Core Textbook", (Paper Back) 2nd edition, Wiley India, 2015

REFERENCES

- 1. Harold Kerzne, "Project Management Best Practices: Achieving Global Excellence", 3edition, Wiley Publications, 2013
- 2. George Ritz, Sidney Levy, "Project Management in Construction", Sixth Edition, Mc. Graw Hill Education, 2011.
- 3. Gary Heerkens, "Project Management", Second Edition, Mc. Graw Hill Education, 2013
- 4. P.Gopalakrishnan and V.E.Rama Moorthy "Text Book of Project Management",1st Edition, Macmillan India Ltd., New Delhi, 2014.
- 5. John M. Nicholas, Herman Steyn, "Project Management for Engineering, Business and Technology", 5th Edition, Routledge, 2016.

	ST	TRESS	MAN	AGEN	AENT	AND	COPI	NG	L	Т	Р	С		
HSS18R005				-	regie		0011		3	0	0	3		
Prerequisite	Nil									1				
Course	Huma	anities	Electiv	re										
Category														
Course	Theor	ry												
Туре		tress has become an integral part of every professional's life. Approaching the												
Objective(s)	stress one. today skills under	in the The st 's orga are rec	right n ress an inization quired ng the	nanner nd its on. In c to und intric	has be effect order to erstand	come i over j o cope l and to	mperat perform well a p overc	ive as nance nd to s come th	it has b has als bustain he same	b life. Age of the solution of	an unave me nota et, for t course h	bidable able in hat the elps in		
Course Outco		priate	арргоа	ciies.										
Course Outed CO1		tudents	under	etand t	he resr	onsihi	lity of	tacklin	a stres	c				
CO2										ess acco	ordingly	while		
0.02		ng with		•		ing the	uppi	suches	or su		Jungiy	winite		
CO3	Those	<u> </u>	nts wh	o are p	prone t			-		ting con	ditions	will be		
CO4		tudents												
CO5						•			-	onality a y of life.		ole and		
Mapping of C	COs wi	th PO	<u>s</u>											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1								Μ		Μ				
CO2						Н			Μ					
CO3							L	Н		L				
CO4								Н		Н		Н		
CO5						L		Μ	L	L	L	L		
Course Topic		<u>а стр</u>												

UNDERSTANDING STRESS

Meaning - Symptoms: Biological and Behavioural - Work Related Stress - Individual Stress - Reducing Stress - Burnout.

COMMON STRESS FACTORS TIME

Common Sources of Stress Biological, Personality and Environmental – Time Management – Techniques – Importance of planning the day – Time management schedule – Developing concentration – Organizing the Work Area - Prioritizing – Beginning at the start – Techniques for conquering procrastination – Sensible delegation – Taking the right breaks – Learning to say 'No'.

CRISIS MANAGEMENT

Implications – People issues – Structure issues, environmental issues, psychological fall outs – Learning to keep calm – Preventing interruptions – Controlling crisis – Importance of good communication – Taking advantage of crisis – Pushing new ideas – Empowerment

WORK PLACE HUMOUR

Developing a sense of Humour – Learning to laugh, role of group cohesion and team spirit, using humour at work, reducing conflicts with humour. Coping Styles Defensive Behaviours and Problem-Solving.

SELF DEVELOPMENT

Improving Personality – Leading with Integrity, enhancing creativity – Effective Decision Making – Sensible Communication – The Listening Game – Managing Self - Meditation for Peace – Yoga for Life.

TEXT BOOKS

- 1. D. Girdano and G. Everly., "Controlling Stress and Tension", 9 th Edition, Prentice-Hall, 2013.
- 2. Greenberg Jerrold S., "Comprehensive Stress Management", 14th Edition, McGraw Hill Education, 2017.

REFERENCES

- 1. Dr. P.K.Dutta, "Stress Management" Himalaya Publishing House, First Edition 2010.
- 2. Schafer, "Stress Management", 4th Edition, Cengage Learning, Delhi, 2008
- 3. Wolfgang Linden, "Stress Managemen"t, Sage Publication, 1st Edition 2005.
- 4. Daniel Girdano, Dorothy Dusek and George S. Everly, "Controlling Stress and Tension", 8th Edition, Pearson Education, 2009.
- 5. Brian Luke Seaward, "Essentials of managing Stress", 1st edition, Jones & Bartlett Publishers, 2013.

	ECONOMICS FOD ENCINEEDS	L	Т	Р	С
HSS18R006	ECONOMICS FOR ENGINEERS	3	0	0	3
Prerequisite	Nil				
Course	Humanities Elective				
Category					
Course	Theory				
Туре					
Objective(s)	This course provides an introduction to a broad ratheories and analytical techniques. It considers that analysis of choices made by individual decision-mathematical techniques of the equation of the equatio	both making u conomy evel. N ney at a lress m	nicroecon units (ho as a wh Aacroeco un aggreg	omics usehold ole. De nomic gate leve	- the ls and emand issues el will
Course Outco	Identify and learn economic concepts into market eco	nomio	C.		
CO2	Understand the pricing methods, interpret the mark price for products or services and to making decision	ket fac	tors to d		
CO3	Understand the major characteristics of different implications for the behavior of the firm				
CO4	Measure living standards, inflation, and unemploy indicators.	ment	for use	as eco	nomic
CO5	Analyze the determinants of the relative strength	hs of	monetar	y polic	y for

	sustainable growth of our nation and International Trade.												
Mapping of	Mapping of COs with POs												
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1						Η		Μ		Μ		Μ	
CO2							L	Μ			Н	Μ	
CO3						Η			Μ			L	
CO4							L	Μ			L	Μ	
CO5						L		Μ		М		Μ	

DEFINITION AND SCOPE OF ECONOMICS

Definitions by A. Smith, A. Marshal and L. Robbins, P.Samuels on and their critical examination - Nature and scope of Economics - Micro-economics in relation to other branches of Economics.

PRICING AND LAW OF DEMAND

Demand, Factors influencing demand, Elasticity of demand - price, income and cross, concepts and measurement - Break Even Analysis – Law of Demand - Price, income and substitution effects - Giffen goods- Pricing Methods.

MARKET STRUCTURE

Definition of market. Concepts of product and factor markets. Different types of market: perfect competition, monopoly, imperfect competition, monopolistic, competition and oligopoly. Demand and Supply schedules. Price determination under perfect competition in long and short run. Price determination under monopoly. Discriminating monopoly.

MACRO-ECONOMICS

Meaning, Macro-economic Policy and Its Objectives and Instruments - National Income and Social Accounting - Concepts, components, and measurement - Basic circular flow of income model, Unemployment, trade cycle, Inflation - causes, types, effects and control.

COMMERCIAL AND CENTRAL BANKS

Credit creation, monetary policy and tools - Balance of payments - Items in the balance of payments account, equilibrium in the balance of payments.

TEXT BOOKS

- 1. Gupta, S.B., "Monetary Economics", S. Chand & Co., New Delhi, 2nd Edition, 2009.
- 2. Ruddar Datt and K.P.M.Sundharam, "Indian Economy", 70th Edition, S.Chand & Company Ltd., New Delhi, 2013.

REFERENCES

- 1. D.N.Dewedi, "Managerial Economics", 8th Edition, S.Chand & Company Ltd., New Delhi, 2005.
- 2. Gupta, G.S. "Macroeconomics, Theory and Applications", 2nd edition, Tata McGraw-Hill publishing company Ltd., New Delhi, 2004.
- 3. "Macroeconomic –Theory and polic", 3rd Edition, Tata McGraw-Hill publishing company Ltd., New Delhi, 2010."Micro Economic", Mas Colell, 1st edition, Oxford Press, Delhi, 2012.

HSS18R007	HUMAN RESOURCE MANAGEMENT	L	Т	Р	С
H5516K00 /	AND LABOUR LAW	3	0	0	3
Prerequisite	Nil				

Course	Huma	anities	Electiv	'e										
Category														
Course	Theor	ry												
Туре		5												
Objective (s)	This	his course aims at exploring key issues related to the management,												
-	perfo	erformance, and development of human resources in the workplace. It places												
	specia	pecial emphasis on making decisions and developing plans that will enable												
	mana	nanagers to make the best possible use of their human resources, and covers												
		reas such as: manpower planning, analysis and evaluation, recruitment and												
		election, wages and salaries, training and management development,												
		erformance appraisal, and industrial relations.												
Course Outco														
CO1							evelopi	ng the	e empl	oyment	relation	ns and		
		ledge t												
CO2	-							f HR	specia	list for	implen	nenting		
		an Reso		<u> </u>										
CO3										n in the				
CO4		-	-		lity of	empl	oyer a	and le	gal sy	stem to	o mana	ge the		
	-	oyment												
CO5			-	-	-	-	•			on vari	ious fun	ctional		
				n enha	nces a	strong	human	relatio	on.					
Mapping of C	COs wi													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1						Н	L		L	L	L			
CO2							L	Μ	Н	Н	L			
CO3		H M												
CO4		L L M												
CO5									Н	Μ		L		
Course Tonic	•(c)													

FUNDAMENTALS OF HRM

Human Resource Development Systems-HR environment in India-Functions and Operations of a Personnel Office - Emerging HR Trends - HR information system

HRM FUNCTIONS

Job analysis and job design - HR planning – Recruitment - selection and induction- Staff Training and Development-Career planning and Development- Job Evaluation-Performance Appraisal and Potential Evaluation-Wage determination; salary structure-Wage policies and Regulations-Employee benefits and services

MOTIVATING HUMAN RESOURCES

Team and Team work - Collective Bargaining Employee Morale – Participative Management – Quality Circle – Empowerment –counseling and mentoring.

MAINTENANCE OF WORKERS

Compensation Management- Reward system – Labour relations –Employee Welfare, Safety and Health – Employee benefits and services – Promotion, Transfers and separation – Ethical issues in HR Management and International Human Resource Management - Legal Aspect of Labour **BUSINESS LAW**

Factories Act, 1948 - Industrial Dispute Act, 1947 - Industrial employment - Standing Orders

Act, 1946 – Trade Union Act, 1926 - Workmen Compensation Act, 1923, Employees State Insurance Act, 1948, Employees Provident Fund and Miscellaneous Provision Act, 1952, Payment of Gratuity Act, 1972. Payment of Wages Act 1936, Minimum wages Act, 1948– Payment of Bonus Act, 1965. Tamil Nadu Shops and Establishments Act.

TEXT BOOKS

- 1. Decenzo and Robbins, "Human Resource Manageme"t, Wilsey, 12th edition, 2015.
- 2. Prasad L.M., "Human Resource Managemen", 3rd edition, Sultan Chand, New Delhi, 2014.

REFERENCES

- 1. Biswajeet Pattanayak, "Human Resource Manageme"t, 3rd edition, Eastern Economy Edition, New Delhi, 2010.
- 2. C.B. Gupta, "Human Resource Managemen", 13th Edition, Sultan Chand, New Delhi 2011.
- 3. V.S.P. Rao, "Human Resource Managemen", 3rd edition, Excel Books, New Delhi, 2010.
- 4. Frank B. Cross and Roger LeRoy Miller, "The Legal Environment of Business Text and case", 9th Edition, Cengage Learning, 2015.

	ENTREPRENEURSHIP	L	Т	Р	С
HSS18R008	DEVELOPMENT	3	0	0	3
Prerequisite	Nil			•	
Course	Humanities Elective				
Category					
Course Type	Theory				
Objective(s)	This course focuses on the entrepreneurial process entrepreneurial outcomes. Topics covered include through analysis of industry niches, skills needed in into reality, business plans, launch decisions, and course deals with the problems and challenges businesses in raising funds, marketing products effectiveness and flexibility, and achieving growth.	e oppo order t obtain facing	ortunity at to turn an ing risk the man	identifient oppor capital. nageme	cation tunity This ent of
Course Outco					
CO1	It provides more insights into the concept of entrepr leads to think creatively for new business opportun well as social goals.		-		
CO2	It provides and promotes entrepreneurial spirit an successful business world with relation to agenci opportunities.	-			
CO3	It focuses on women entrepreneurship and prom models and explains operational implementations for				siness
CO4	It provides the role of government in promoting the individuals and organizations as a whole	entrep	reneurshi	ip amoi	ng the
CO5	Understand emerging concepts of marketing in the e provide more insights into project management and v	0	00		ts and

Mapping of COs with POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						Η		Η		Н		Η
CO2						Μ	L	Η		L	Μ	L
CO3						L	L	Μ	Н	L		Н
CO4						Μ		Μ			М	Н
CO5										L		
Course Ton	io(a)											-

INTRODUCTION

Concepts of entrepreneur, entrepreneurship and entrepreneur - Characteristics and competencies of a successful entrepreneur - General functions of an entrepreneur - Type of entrepreneurs - Role of entrepreneur in economic development - Distinction between an entrepreneur and a manager - Entrepreneur and Intrepreneur.

GROWTH OF ENTREPRENEURSHIP

Emergence of entrepreneurship - Economic and non economic factors for stimulating entrepreneurship development - Obstacles to entrepreneurship development in India - Growth of entrepreneurship in India.

WOMEN AND ENTREPRENEURSHIP

Concept of women entrepreneurship - Reasons for growth of woman entrepreneurship - Problems faced by them and remedial measures.

ROLE OF THE GOVERNMENT IN ENTREPRENEURSHIP DEVELOPMENT

Concept and meaning of entrepreneurship development - Need for entrepreneurship development programmes (EDPs) - Objectives of EDPs - Organizations for EDPs in India; NIESBUD, SISI – their roles and activities.

VENTURE PROMOTION AND PROJECT FORMULATION

Concept of projects classification of projects and project report - Project identification and selection - Constraints in project identification - Techniques of Project Identification, Significance – contents - formulation of project report - Need for Project Formulation - Elements of project Formulation

TEXT BOOKS

- 1. Michael H Morris, "Corporate Entrepreneurship and Innovation in Corporation", 7th Edition, CENGAGE Learning, Delhi, 2010
- 2. Jerry Katz, "Entrepreneurship Small Busines", 5th edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007.

REFERENCES

- 1. Khanka S.S." Entrepreneurial Developmen", 1st edition, S.Chand and Company Limited, New Delhi, 2013.
- 2. Prasama Chandra, "Projects: Planning, Analysis, Selection, Implementation and Review", 2nd edition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 1996.
- **3.** Robert D. Hisrich, "Entrepreneurship", 10th edition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2017.

HSS18R009	COST ANALYSIS AND CONTROL	L	Т	Р	С
		3	0	0	3

Prerequisite	Nil												
Course	Huma	anities	Electiv	ve									
Category													
Course	Theor	ry											
Туре		-											
Objective (s)	This	course	e in m	eant t	o exhi	bit the	e conc	epts o	n cost	ing by	describ	ing its	
		•	-							mpasses		•	
								-		Iarginal	-		
	•				-		-			make de			
										like star	ndard c	costing,	
<u> </u>		ty base	ed costi	ing, etc	to mai	nage ai	nd con	trol cos	st effec	tively.			
Course Outco		. 1	.1 1	·	<u> </u>	1			0	1 /			
<u>CO1</u>				sics of								1 (1	
CO2				y apply	ing too	ois like	Margi	nal cos	sting, C	CVP anal	lysis and	d other	
CO3		applications. Enabled to use Budgets for controlling cost in Manufacturing or Production											
005	Centr		150 DU(igets I		oning	COSt III	iviallu	racturi	ng or Pro	Junctio	11	
CO4		Defining cost standards and critically examining the application of Standard											
COT		costing in a Production Centre.											
CO5		Understanding the application of various strategic cost alternatives including											
000	Activity based costing.												
Mapping of C		•		8:									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1						М		Η			L	Н	
CO2							Μ		Н			L	
CO3						L				Н		Μ	
CO4						Μ		Н			L	Н	
CO5							Μ		Н			L	
Course Topic													
INTRODUC													
Costing, Elem		f costin	ig, Typ	es of c	ost, Pre	eparatio	on of c	ost she	et.				
COST ANAL			- 1	D	4 1-		1. E.		1	D	F	Cleart	
Marginal cost Applications.	ing, Co	DSL - V	olume	- Proli	it analy	/SIS, BI	еак-Е	ven- A	narysis	, Break	-Even -	· Charl,	
CONTROL 7	FCH	NIOU	FS										
Budgeting and		~		Types	s of Bu	idgets	Prepa	ration	of pur	chase Bi	idget. F	lexible	
budgets, Cash	U	· •				U	· •		-		0		
STANDARD	-		L L	, ,		0	,		0 /		0	0	
Types of Stan	dards,	Settin	g up o	f stand	lards, A	Advant	ages a	nd Crit	ticism	of Stand	lard Co	sting –	
Control throug													
ACTIVITY F													
Transfer Pricing	ng, Tar	get cos	sting, I	Life Sty	vle Cos	ting, A	ctivity	Based	Costir	ng (only	theory)		
TXT BOOKS	5												
1. K.Saxe		C.D. V	ashist.	"Adva	anced (Cost A	ccount	ing and	d Cost	Systems	s", 2 nd E	Edition.	
				ublishe				0	~	<i>J</i>	,	.	
		7											

 S.P. Jain & K. L. Narang, "Advances Cost Accounting", Kalyani Publishers, 1st Edition, 2017.

- 1. J. Blocher, K. H. Chen, G. Cokins and T. W. Lin., "Cost Management: A Strategic Emphasis", Irwin/McGraw-Hill, 3d edition, 2008
- 2. Don R. Hansen, Maryanne M. Mowen, "Cornerstones of Cost Management", 6th Edition, Cengage Learning, 2015
- 3. Roger Hussey, Audra Ong, "Strategic Cost Analysis", Business Expert Press, 2012

HSS18R010			PR	ODUC	CT DE	SIGN	AND		L	Т	Р	С	
				DEV	ELOP	MENI			3	0	0	3	
Prerequisite	Nil												
Course	Huma	anities	Electiv	ve									
Category													
Course	Theor	ry											
Туре		-											
Objective (s)	This	course	aims t	o clari	fy the	princip	oles an	d basic	conce	pts of F	Product	Design	
											ts produ		
		aims		0			-				Design		
	0			-					0	0	l requir		
											study		
											nd proc		
	-		0				-				the p		
				-							tunity, c		
	-									testing,	modifyi	ng and	
	1	nizing t	ne pro	auct un	111 1t 1s	ready	for pro	ductio	n.				
Course Outco		(s) arn basic concepts related to design and development of New product											
C01				•		<u> </u>		-		<u> </u>		1	
CO2					a appr	oach t	owards	s incor	poratir	ig quali	ty, safet	y, and	
CO3		oility in			a to ai	mulati		lust no	forma	noo ond	manufa	aturina	
005			oncepts	relatin	ig to si	mulatii	ig proc	iuci pe	riorina	nce and	manura	cturing	
CO4	proce		tha taa	hnolog	tog rold	tad to	aamnu	toroid	ad area	ıp techn	ology		
C04 C05		implio									ology		
Mapping of (1			inges it		0 ECOI		ularysis	5.			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	101	102	105	104	105	H	<u>10</u> / M	100 L	<u>M</u>	1010	M	L	
CO1 CO2						H	H	L	H	М	IVI	M	
CO2 CO3						H	M		11	111		H	
CO4						11	M					M	
CO4 CO5							M	Н		L		M	
Course Topic	·(s)			I			141	11	I	-	1	TAT	
NEW PROD		DEA											
Definition – D			lution	and by	Innov	ation -	factors	to he	conside	ered for	product	design	
– Production-	0	•									-	0	
Troduction	Consu	mption	5,010	1110	morp			51811	1 11110		5.1 I IIU	und und	

flowcharting. Role of Allowance, Process Capability, and Tolerance in Detailed Design and Assembly Product strategies, Market research – identifying customer needs – Analysis of product – locating ideas for new products, Selecting the right product, creative thinking, curiosity, imagination and brain storming - product specification.

NEW PRODUCT DESIGNING

Task - Structured approaches – clarification – search – external and internal – systematic exploration – conception, selection - methodology benefits. The value of appearance - principles and laws of appearance – incorporating quality, safety, and reliability into design. Man-machine considerations – Designing for ease of maintenance.

ROLE OF TECHNOLOGY IN DESIGNING

Integrating CAE, CAD, CAM tools – Simulating product performance and manufacturing process – Needs for industrial design-impact – Industrial design process – Technology driven products - user driven products – assessing the quality of the product.

METHODS AND PRINCIPLES OF DESIGNING

Methodologies and tools - Design axioms - Design for assembly and evaluation - Minimum part assessment - Taguchi Method - Robustness assessment - Manufacturing process rules -Designer's tool kit - Computer aided group process rules - Designer's tool kit - Computer aided group technology - Failure Mode Effective Analysis – Design for minimum number of parts – Development of modular design – Minimising part variations – Design of parts to be multifunctional, multi-use, ease of fabrication – Poka Yoka principles.

FEASIBILITY ANALYSIS

Estimation of manufacturing cost – cost procedures – Value Engineering - reducing the component cost and assembly cost – minimizing the system complexity – Basics and Principals of prototyping – Economic Analysis: Break even analysis. Classes of exclusive rights – Patents – Combination versus aggregation – Novelty and Utility – Design patents – Paten disclosure – Patent application steps - Patent Office prosecution - Sales of paten rights - Trade marks – copy rights.

TEXT BOOKS:

- 1. Karl.T.Ulrich, Steven D.Eppinger, Product Design and Development, McGraw Hill International, 6th Edition, 2016.
- 2. A.K.Chitale and R.C.Gupta, "Product Design and Manufacturing", 3rd edition, Prentice Hall of India Private Limited, New Delhi, 2005.

- 1. Richard Crowson, "Product Design and Factory Development", 2nd Edition, crc Press, 2005.
- 2. Thomke, Stefan, and Ashok Nimgade. "IDEO Product Development." Boston, MA: Harvard Business School Case 9-600-143, June 22, 2000.
- 3. George E.Dieter, Linda C.Schmidt, "Engineering Design", McGraw-Hill Higher Education, 4th Edition, 2012.
- 4. Kevin Otto, Kristin Wood, "Product Design", Indian Reprint 2004, Pearson Education

HSS18R011	BUSINESS PROCESS REENGINEERING	L 3	T 0	P 0	C 3
Prerequisite	Nil				
Course	Humanities Elective				
Category					

Course	Theor	ry													
Туре		-													
Objective (s)	Engir skills impro objec mana	This course aims to clarify the principles and basic concepts of Business Process Engineering. This course focuses on both quantitative and qualitative analytical kills and models essential to operations process design, management, and mprovement in both service and manufacturing oriented companies. The main objective of the course is to prepare the student to play a significant role in the management of a world class company which serves satisfied customers through empowered employees, leading to increased revenues and decreased costs.													
Course Outco															
CO1	Learn	the ba	sic cor	ncepts 1	related	to Bus	iness F	Process	Reeng	gineering	5.				
CO2	Unde	Inderstand the methodologies and tools used for Business Process Reengineering.													
CO3	Learn	Learn the concepts relating to benefit/cost analysis and its impact on the business organizations.													
CO4		rstand ibuting				ment (of busi	ness re	e-engin	eering a	and the	factors			
CO5	illustı	rations	from c				Busir	ness P	rocess	Reeng	gineering	g with			
Mapping of (
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1						Н	Μ		L	Μ	L	Μ			
CO2						L		L	Μ	Μ	Н	Н			
CO3							Н	L	L	L					
CO4						Н	L			М					
CO5						Н	Μ	L	Μ	Μ	Μ	L			
Course Tonic															

BASIC CONCEPTS

Introduction to BPR Definition; the paradigm shifts in production; the positioning concept; the re-engineering visions; the benefits of business re-engineering.

METHODOLOGIES FOR BPR

Methodologies and Tools for BPR, Process management; dynamic business re-engineering change framework; steps to reengineer the process.

MODELLING THE BUSINESS

Tools used in Modelling the Business: flow-charting, business activity maps, relational diagrams, benefit/cost analysis. The enabling role of information technology in business re-engineering.

CHANGE MANAGEMENT

Change Management, Planned changes in business re-engineering projects; challenges of business change; business change development. Success factors in re-engineering. The assessment of business re-engineering.

BEST PRACTICES IN BPR

Best Practices in BPR, Case studies: Bell Atlantic, Nissan, Chrysler, Xerox, and Hewlett Packard etc.

TEXTBOOKS:

- Ali K. Kamrani, Maryam Azimi (2011). "New Methods in Product Design: New Strategies in Reengineering (Engineering and Management Innovation)". CRC Press. 1st ed.
- 2. Bassam Hussein (2008). PRISM: "Process Reengineering Integrated Spiral Model. VDM Verlag Dr. Mueller e.K.

REFERENCES:

1. Harmon, P. (2007), Business Process Change : A Guide for Business Managers and BPM and Six Sigma Professionals, Elsevier/Morgan Kaufmann Publishers.

2. R. Anupindi et al. (2006), Managing Business Process Flows: Principles of Operations Management, Pearson Education Inc.

HSS18R012		POL	ITICA	AL EC	ONON	ΛY			L	Т	Р	С		
H5510KU12									3	0	0	3		
Prerequisite	Nil													
Course	Huma	anities	Electiv	'e										
Category														
Course	Theor	ry												
Туре														
Objective (s)			-					-		econom	•			
					1					f the ke				
	-		0					-		istributi				
										politics				
										emes dis		in this		
			inction	is of in	stitutio	ns, rig	nts, Pai	rty Sys	tems a	nd challe	enges.			
Course Outco						0 1								
CO1	-		•		+	-		econor	ny an	alyse t	he sigr	inficant		
		elopments in the political ideologies. Accribe the salient features of the constitution of India and its functions and												
CO2														
		lso interpret, integrate and critically analyse the fundamental rights duties and esponsibilities.												
CO3	-			itiool m	outre or	vatam t	haimar	alution	ond m	la in the		~~~		
CO3		rstand								ole in the	econor	пу		
04	Unde	rstand	the var	ious iu	eologi		naran	Politica	a mot	ignts				
CO5	have	a deep	unders	standin	g and a	appreci	ation of	of India	under	going m	najor eco	onomic		
		ocial tr			-	11				0 0	5			
Mapping of (COs wi	ith PO	5											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1						Н	Η		L	М	Μ	L		
CO2						Н				Н				
CO3						L	Н	Η	L	Η	Μ	L		
CO4						Н	Н		L	Μ	Μ	L		
CO5						Н				Η				
Course Topic														
INTRODUC														
Political Econ	•		· .	-			-							
and Social Op	portun	ity, Po	litics of	f Rent	Seekin	g -Evo	lution	of Stat	e in Ind	lia: Hist	orical R	oots of		

planning, Redistribution.

INDIAN CONSTITUTION

The Pre-ample- Fundamental rights and duties, Directive Principles- Offices of the President, Prime Minister, Cabinet Government, Chief Election Commissioner, and Governor – Parliamentary system and Procedures - The Judiciary system.

PARTY SYSTEM

National and regional political parties, ideological and social bases of parties; patterns of coalition politics; Pressure groups, trends in electoral behaviour; changing socio- economic profile of Legislators.

INDIAN POLITICAL THOUGHT:

Political Ideologies: Liberalism, Socialism, Marxism, Fascism, Gandhism and Feminism - Dharamshastra, Arthashastra and Buddhist traditions; Sir Syed Ahmed Khan, Sri Aurobindo, M.K. Gandhi, B.R. Ambedkar, M.N. Roy.

CHALLENGES TO INDIAN DEMOCRACY

Uneven Development of Regions in India – Communalism – Regionalism – Violence – Corruption – environmental degradation- illiteracy – Population.

TEXT BOOKS

- 1. Charles Sackrey, Geoffrey Schneider, Janet Knoedler, Introduction to Political Economy, Dollars & Sense, 8th Edition, 2016.
- 2. Robert.S.Dimand, Review of Political Economy: An Introductory Text, 1st Edition, Routledge, 2008.

- **1.** Barry R. weingast and Donald a.Wittman, Handbook of Political Economy, 1st Edition, Oxford University Press, New York, 2006.
- 2. Ed. Sanjay Ruparelia; Sanjay Reddy; John Harriss & Stuart Corbridge, Understanding India's New Political Economy: A Great Tranformation, Routledge 1st Edition edition 2011.
- 3. M.Laxmikanth, Indian Polity, 4th Edition, McGraw Hill Education, New Delhi,2017.
- **4.** Niraja Gopal Jayal, Pratap Bhanu Mehra, The Oxford Companion to Politics in India: Student Edition, Oxford Press, 2011.

HSS18R013	PROFESSIONAL ETHICS	L	Т	Р	С
1155101015	I KOFESSIONAL ETHICS	3	0	0	3
Prerequisite	Nil				
Course	Humanities Elective				
Category					
Course	Theory				
Туре					
Objective(s)	It is essential for professionals in any field to have an problems and principles in their field. The genera ethics will be examined, as well as the distinctiv presented in three parts: theory; case studies; and Theory includes ethics and philosophy of engineerin primarily from the scholarly literatures on engineer cases are written by students. It will allow students	al princ e prob l resear ag. Hist ring eth	iples of lems. Th ch and orical ca ics, and	profesnis cou present ses are hypoth	sional rse is ation. taken etical

										al theor				
	makır	ng to er	ngineei	ing iss	ues en	counte	red in a	icadem	ic and	professi	ional cai	reers.		
Course Outc	ome(s)													
CO1	Identi	ify the	multip	le ethic	cal inte	rests at	stake	in a rea	al-worl	d situati	on or pr	actice		
CO2	assess	s their (own et	hical v	alues a	nd the	social	contex	t of pro	oblems				
CO3	Deve	lop cri	tical t	hinkin	g skill	ls and	profes	ssional	judge	ement a	nd und	erstand		
	practi	ical dif	ficultie	s of br	inging	about	change							
CO4	demo	nstrate	knowl	edge o	f ethic	al valu	es in no	on-clas	sroom	activitie	es, such	as		
	servic	service learning, internships, and field work												
CO5		Manage differing opinions on complex ethical scenarios. It's important for those												
		confronted with ethical challenges to be able to hold multiple conflicting points of view, without necessarily adhering to any of them.												
Mapping of (COs wi	th PO:	8											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1						L		Н	Μ	М		L		
CO2									Н	М	М	L		
CO3		M L L												
CO4							Н			М				
CO5								М		М				

ENGINEERING ETHICS

Functions of Being a Manager – Stock holder and stakeholder management – Ethical treatment of employees - ethical treatment of customers- supply chain management and other issues.

ENGINEERING AS SOCIAL EXPERIMENTATION

Senses of Ethics – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Professional and Professionalism – Professional ideals and virtues – Theories about right action – Self-interest – Customs and religion – Use of Ethical Theories.

ENGINEER RESPONSIBILTY FOR SAFETY

Corporate social responsibility - Collegiality and loyalty – Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Discrimination.

RESPONSIBILITY AND RIGHTS

Moral imagination, stake holder theory and systems thinking - One approach to management Decision – making Leadership.

GLOBAL ISSUES

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership – Sample code of conduct.

TEXT BOOKS

1. Mike Martin and Roland Schinzinger, Introduction to Engineering Ethics, 2nd Edition, McGraw Hill Higher Education, New Delhi, 2010.

2. Charles D Fledderman, Engineering Ethics, 4th Edition, Pearson Education, Delhi, 2011. **REFERENCES**

1. R.S.Naagarazan, Text book on Professional Ethics and Human Values, New Age

International, 2007.

- 2. Gail Baura, Engineering Ethics- An Industrial Perspective, 1st Edition, Academic Press, 2006.
- 3. Charles e. Harris , Michael s. Pritchard and Michael J. Rabins Texas , Engineering Ethics-Conecpts and Cases, 4th Edition, Cengage Learning, 2009.
- 4. Charles Byms Fleddermann, Engineering Ethics, 3rd Edition, Pearson Prentice Hall, 2008.
- 5. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2013.
- 6. Dr.V.Jeyakumar, Professional Ethics in Engineering, Lakshmi Publication, Chennai, 2014.

HSS18R014			OPF	CRATI	ONS F	RESEA	RCH		L	Т	Р	C	
	Nil								3	0	0	3	
Prerequisite		•,•											
Course	Huma	anities	Electiv	/e									
Category Course	Theor												
Type	Theor	l y											
Objective(s)	This	subjec	t will	provi	de ctu	dente	with a	bility	to un	deretand	and a	naluze	
Objective(s)											urces (ca		
											provid		
											ve analy		
											of Ope		
											n indust		
Course Outco					1			<u> </u>	1				
CO1	Identi	ify and	develo	op oper	ational	resear	ch mo	dels fro	om the	verbal d	lescripti	on of	
	the re	e real System.											
CO2	Be ab	e able to build and solve Transportation Models and Assignment Models											
CO3	Use n	nathem	atical	softwa	re to sc	lve the	e propo	sed mo	odels.	0			
CO4	Deve	lop a re	eport th	nat dese	cribes t	he mo	del and	the so	lving t	echniqu	e, analys	se the	
	result	s and p	oropose	e recon	nmenda	ations i	n langı	lage ur	ndersta	ndable t	o the de	cision	
		ng proc											
CO5	Be ab	le to d	esign n	iew sin	nple m	odels, l	ike: Cl	PM, M	SPT to	improv	e decisi	on –	
	makii	ng and	develo	p critic	al thin	king aı	nd obje	ective a	nalysis	s of deci	sion pro	blems.	
Mapping of (COs wi	th PO	5										
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1						Н	Μ		Н			Н	
CO2						L		L		Η		L	
CO3						Μ				Η		L	
CO4						Н	Μ		Н	Н		М	
CO5						Н	Μ		Η			Н	
Course Topic													
INTRODUC													
Introduction t			-							0			
Programming	- form	ulatior	i, solut	ion by	graphi	cal and	d simp	lex me	thods (Primal	- Penalt	y, Two	

Phase), Special cases - Dual simplex method.

TRANSPORTATION MODELS AND ASSIGNMENT MODELS

Transportation Models (Minimising and Maximising Cases) – Balanced and unbalanced cases – Initial Basic feasible solution by N-W Corner Rule, Least cost and Vogel's approximation ethods - Check for optimality - Solution by MODI / Stepping Stone method - Cases of degeneracy - Transshipment Models - Assignment Models (Minimising and Maximising Cases) – Balanced and Unbalanced Cases - Solution by Hungarian and Branch and Bound Algorithms -Travelling Salesman problem - Crew Assignment Models.

INTEGER LINEAR PROGRAMMING AND GAME THEORY

Solution to pure and mixed integer programming problem by Branch and Bound and cutting plane algorithms - Game Theory - Two person Zero sum games - Saddle point, Dominance Rule, graphical and LP solutions.

REPLACEMENT MODELS AND DECISION THEORY

Replacement Models-Individuals replacement Models (With and without time value of money) – Group Replacement Models - Decision making under risk – Decision trees – Decision making under uncertainty.

PROJECT MANAGEMENT METHOD AND SIMULATION

PERT / CPM – Drawing the network, computation of processing time, floats and critical path. Resource leveling techniques - Application of simulation techniques for decision making.

TEXT BOOKS

- 1. Kalavathy S, Operations Research, Vikas Publishing House, 4TH Edition, 2013.
- 2. Paneerselvam R., Operations Research, Prentice Hall of India, 2ND Edition, 2006.
- 3. Tulsian P.C, Vishal Pandey, Quantitative Techniques (Theory and Problems), Pearson Education, Asia, First Indian Reprint 2002.

- 1. D.S.Hira, Problems in Operations Research, Kindle Edition, S.Chand, 2010.
- 2. Prem Kumar Gupta and D.S. Hira, Operations Research, S.Chand, 2016.
- 3. R.C.Mishra, Principles of Operations Research, 1st Edition, New Age International 2011.
- 4. Kanti Swarup, P.K.Gupta and Man Mohan, Operations Research, 15th Edition, Sultan Chand and Sons 2010.

HSS18R015	TOTAL QUALITY MANAGEMENT	L	Т	P	С
115516K015	IOTAL QUALITT MANAGEMENT	3	0	0	3
Prerequisite	Nil				
Course	Humanities Elective				
Category					
Course	Theory				
Туре					
Objective (s)	This subject provides students with the knowledge t			1	1 2
	and core values of Total Quality Management (TQI	,	-		
	voice of the customer and the impact of quality on		-		
	long-term business success of an organization; apply			-	
	for the attainment of total quality. Students who com	1			
	to critically appraise management techniques, ch				
	techniques for improving processes and write report	ts to ma	anageme	nt desc	ribing

	proce	sses an	d reco	mmenc	ling wa	ays to i	mprov	e them	•			
Course Out	come(s)											
CO1	Unde	rstand	the role	e and n	ature o	of quali	ty in e	volving	g interr	ational	econom	ic
	condi	tions				-	-	-	-			
CO2	Appl	y the P	rinciple	es of Q	uality	Manag	ement	for rea	l time j	oroblem	s.	
CO3	-	uality rement		-		, inclu	ding s	support	ing fa	cilities	and cu	stomer
CO4	-	Classify quality measurement methods and continuous improvement process										
CO5	Fram	Frame Management strategy methods, including identification, development,										
	imple	implementation and feedback processes										
Mapping of	COs wi	th PO	5									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L					Н				L	L	
CO2	М						L			L		Μ
CO3						Μ	М	L	L	L	L	
CO4	Н	L							Н	L	М	Н
CO5							М	L	L	L	L	L
Course Top	ic(s)	•			•	•	•	•	•	•	•	•

INTRODUCTION TO QUALITY MANAGEMENT

Definitions - TOM framework, benefits, awareness and obstacles - Quality - vision, mission and policy statements - Customer Focus - customer perception of quality, Translating needs into requirements, customer retention. Dimensions of product and service quality. Cost of quality.

PRINCIPLES AND PHILOSOPHIES OF QUALITY MANAGEMENT

Overview of the contributions of Deming, Juran Crosby, Masaaki Imai, Feigenbaum, Ishikawa, Taguchi, Shingeo and Walter Shewhart - Concepts of Quality circle, Japanese 5S principles and 8D methodology.

STATISTICAL PROCESS CONTROL AND PROCESS CAPABILITY

Meaning and significance of statistical process control (SPC) – construction of control charts for variables and attributed - Process capability - meaning, significance and measurement - Six sigma concepts of process capability - Reliability concepts - definitions, reliability in series and parallel, product life characteristics curve - Business process re-engineering (BPR) - principles, applications, reengineering process, benefits and limitations.

TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT

Quality functions development (QFD) – Benefits, Voice of customer, information organization, House of quality (HOQ), building a HOQ, QFD process. Failure mode effect analysis (FMEA) requirements of reliability, failure rate, FMEA stages, design, process and documentation.

TAGUCHI TECHNIQUES

Taguchi techniques – introduction, loss function, parameter and tolerance design, signal to noise ratio - Seven old (statistical) tools - Seven new management tools - Bench marking and POKA YOKE.

TEXT BOOKS:

- 1. Poornima M.Charantimath., Total quality management, Pearson Education, 2ND Edition, 2011.
- 2. Dale H.Besterfield et al, Total Quality Management, Perarson Education, Thrid edition, (First Indian Reprints 2004).

REFERENCES

1. Shridhara Bhat K, Total Quality Management – Text and Cases, Himalaya Publishing House, First Edition, 2002.

2. Jams R. Evans, Total Quality: Management, Organisation and strategy, 4th Edition, South-Western College, 2004.

3. Vincent K.Omachonu, Joel E.Ross, Principles of Total Quality, 3rd Edition, CRC Press, 2004.

4. S.Rajaram, M.Sivakumar, Total Quality Management, Wiley Publishers, 1st Edition, 2008.

HSS18R016ADVANCED SOFTSKILLSLIPrerequisiteNil30CourseHumanities Elective	P	С
	0	3
Course Humanities Elective		
Category		
Course Theory		
Туре		
Course Topic(s)		

EFFECTIVE COMMUNICATION

Comprehending Ability, Business Vocabulary, Speed Reading, Non-Verbal Communication, Cross Cultural Communication, Meeting Management, Technology trend awareness

QUANTITATIVE ABILITY

Time & Work, Time-Speed-Distance, Permutation & Combination Probability, Geometry & Mensuration, Number Properties, Ratio & Proportion, Mixtures & Alligation, Percentages, Profit-Loss-Discount, Averages, Progression, Higher Mathematics

LOGICAL ABILITY

Non-Verbal Reasoning, Deductive & Inductive Reasoning, Binary Logic, Number Series, Clocks, Calendars

VERBAL ABILITY

Reading Comprehension, Parajumbles, Critical Reasoning, Subject-Verb Agreement, Synonyms & Antonyms, Grammar Reading Comprehension & Logic Miscellaneous Verbal questions

DATA INTERPRETATION

Line Charts, Bar Charts, Pie Charts, Venn diagrams, Caselets, Data tables.

BASIC ENGINEERING

EEE18R172	BASIC ELECTRICAL ENGINEERING	L	Т	Р	С
EEEIONI/2	DASIC ELECTRICAL ENGINEERING	3	1	2	5
Prerequisite	Nil				
Course	Basic Engineering				
Category					
Course	Integrated Course				
Туре					
Objective	To focus the fundamental ideas of the Electrical Engi	neering	g by pro	oviding	wide
	exposure to the basic concepts of Electrical Engineerir	ng such	as DC	Circuits	, AC

	Circu	its, ele	ctrical	machi	nes, an	d Elect	rical ir	istallat	ions et	с.		
CO1	Appl	y basic	laws o	of elect	ricity i	n DC c	ircuits					
CO2	Appl	y the ba	asic lav	ws of e	lectrici	ty in A	C circ	uits				
CO3	Study	the co	onstruct	tion an	d work	ting pri	inciple	s of DC	C Mach	ines and	d Transf	ormers
CO4	Study	the co	onstruct	tion an	d work	ting pri	inciple	of AC	Machi	nes		
CO5	Study	the ba	sic con	npone	nts of I	Low Vo	oltage l	Electric	cal Inst	allation	s	
Mapping of C	COs											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Η	L				L	Η					L
CO2	Η	L										
CO3						М						
CO4							Н					
CO5	L									L		

UNIT 1: DC CIRCUITS

DC Circuits: Electrical quantities – Electric Circuit Elements - Resistors - Inductors - Ccapacitors - Ohm's Law - Kirchhoff's Laws - Series and Parallel circuits - Analysis of DC circuits – Mesh - Nodal – Superposition - Thevenin - Norton Theorems - Simple problems UNIT II: AC CIRCUITS

Sinusoidal functions - Phasor representation - Real power - Reactive power - Aapparent power - Power factor - RMS value - Average value - Form and Peak factors - Analysis of single-phase AC series circuits consisting of RL, RC, RLC combinations – Problems - concept of three phase system.

UNIT III: DC MACHINES AND TRANSFORMERS

DC Machines: Construction and working principle of DC Generator and DC Motor - EMF equation – Torque equation - Related problems

Transformer: Construction - working and types - Ideal and practical transformer - Equivalent circuit - Losses in transformers - Regulation and Efficiency – problems

UNIT IV: AC MACHINES

Synchronous machine: Construction - working of alternator - EMF Equation - Problem - Working principle of synchronous motor

Three phase induction motor: Constructional details - Principle of operation – Types - Torqueslip characteristics - Starting torque - Relation between torque and slip - Losses and efficiency.

Single phase induction motor: Construction – Working principle - Types of single phase induction motor

UNIT V: ELECTRICAL INSTALLATIONS

Components of LT Switchgear - Switch Fuse Unit (SFU) – MCB – ELCB – MCCB - Domestic wiring - accessories - types - Staircase wiring - Fluorescent tube circuits – Earthing - Types of Batteries - Important Characteristics for Batteries - Elementary calculations for energy consumption - power factor improvement and battery Backup

LIST OF EXPERIMENTS

- 1. Verification of Kirchoff's Laws.
- 2. Verification of Mesh and Nodal analysis
- 3. Verification of Thevinin's and Norton's theorems

4. Measurement of electrical quantities-voltage current, power & power factor in RL and RC series circuits 5. Determine the power and power factor of RLC series circuit 6. Open circuit and load characteristics of Separately excited DC Generator 7. Open circuit and load characteristics of Self excited DC Generator 8. Draw the characteristic between output power versus efficiency of DC shunt motor 9. Verification of turns ratio on single phase transformer 10. Load test on single phase transformer 11. Load test on three phase squirrel cage induction motor. 12. Load test on single phase induction motor. 13. Load test on Alternator 14. Study of basic electrical installation components for LT switchgear 15. Residential house wiring using fuse, two way switches and lamp 16. Wiring layout for Fluorescent lamp 17. Experiment for Calculation of charging and discharging current of battery TEXT BOOK(S): 1. V.K. Mehta, "Principles of Electrical Engineering and Electronics", S. Chand & Company Ltd, 2012 2. Kothari D P and Nagrath I J, "Basic Electrical Engineering", McGraw Hill, 2009. 3. Mithal G K, Electronic Devices & Circuits, Khanna Publications, 1997 **REFERENCE(S)**: 1. T. Thyagarajan, "Fundamentals of Electrical and Electronics Engineering", SciTech publications (Ind.) Pvt. Ltd., 3rd Edition, 2015.

- 2. Muraleedharan K.A, Muthususbramanian R and Salivahanan S, "Basic Electrical, Electronics and Computer Engineering" Tata McGraw Hill, 2006.
- 3. Sunil S.Rao., Switchgear Protection and Power system, Khanna Publishers, New Delhi, 13th Edition, 1999.
- 4. Ravindranath B., Chander, N., Power Systems Protection and Switch Gear, Wiley Eastern (P) Ltd., Second Edition, 2011.

MEC18R151	ENGINEERING GRAPHICS & DESIGN	L	Т	Р	C
MECIONISI	ENGINEERING GRAI IIICS & DESIGN	3	0	2	3
Prerequisite	Nil				
Course	Basic Engineering				
Category					
Course	Theory with Practical				
Туре					
Objective	This course aims to introduce the concept of graphic c drawing skills for communicating concepts, ideas a products, Demonstrate skills in interpreting, and produ accurately and to give exposure to national standar drawing.	nd desi	igns of ngineeri	engined ng draw	ering vings
CO1	Create the projection of points in all quadrants and stra	aight lir	nes		

CO2	Construct the projections of planes and solid objects with refer to reference
	planes
CO3	Illustrate the true shape of truncated solids in both the manual and computerized
	manner
CO4	Develop surfaces of truncated solids in both the manual and computerized man
CO5	Apply orthographic and isometric projections in both the manual and
	computerized man
Mapping of	COs

Mapping of C	JUS											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	М							L	Н		
CO2	L	Μ							L	Н		
CO3	Н											
CO4	Μ											
CO5	М											
Course Topic	(s)											

I OPIC(S)

Unit 1: Projection of Points and Straight Lines

Importance of graphics – use of drafting instruments – BIS conventions and specifications – size, layout and folding of drawing sheets - lettering dimensioning and scales - Projection of points, located in all quadrants - projection of straight lines located in the first quadrant, determination of true lengths and true inclinations

Unit 2: Projection of Planes and Solids

Projection of polygonal surface and circular lamina located in first quadrant inclined to one or both reference planes-Projection of solids like prisms, pyramids, cylinder and cone when the axis is inclined to one reference plane by change of position method

Unit 3: Section of Solids

Section of simple solids like prisms, pyramids, cylinder and cone in vertical position by cutting planes inclined to any one of the reference planes, obtaining true shape of section

Unit 4: Development of Surfaces

Development of lateral surfaces of simple and truncated solids - prisms, pyramids, cylinders and cones

Unit 5: Orthographic and Isometric Projection

Orthographic principles - missing view - free hand sketching in first angle projection from pictorial views. Principles of isometric projection – isometric view and projections of simple solids, truncated prisms, pyramids, cylinders and cones. Introduction to CAD software – menus and tools – drafting platform demonstration

Practical Modules

- 1. Construction of conic sections using CAD software
- 2. Construction of simple planes using exclusive commands like extend, trim etc.,
- 3. Construction of 3D model solids and sectional views
- 4. Generating 2D orthographic blue prints from 3D part models
- 5. Vectorization of simple building plan and elevation

Text Book(s):

1. Basant Aggarwal and C. Aggarwal, Engineering Drawing, McGraw-Hill, 2013.

- 2. N.S. Parthasarathy, Vela Murali, Engineering Drawing, Oxford University Press, 2015.
- 3. K. Venugopal, Engineering Drawing + AutoCAD, New Age; Fifth edition, 2011.

Reference(s):

- 1. Shah, M.B., and Rana, B.C., Engineering Drawing, Pearson 2009
- 2. Natarajan, K.V., A Text Book of Engineering Graphics, 21st Edition, Dhanalakshmi Publishers, Chennai, 2012.
- 3. Paul Richard, Jim Fitzgerald., Introduction to AutoCAD 2017: A Modern Perspective, Pearson, 2016.
- 4. Bhatt, N.D., Engineering Drawing, Charotar publishing House, New Delhi, 53trd Edition, 2014.
- 5. Luzadder and Duff, "Fundamentals of Engineering Drawing", Prentice Hall of India Pvt. Ltd., 2009.
- 6. Venugopal, K., Engineering Graphics, New Age International (P) Limited, 2009.

CSE18R171	PR		MMIN	IC FO	R PR()RL FI		LVING	L			С
		JUNA		010		JDLLLI	1 501	2 1 11 10	3	1	2	5
Prerequisite	Nil											
Course	Basic	Engin	eering									
Category	-											
Course	Integ	rated C	Course									
Туре	T	1 .1	. 1		1 .	1.1	1 .				• 1	
Objective								-	-	-	ming la	
	rules	to be f	ollowe	d while	e writii	ng a pr	ogram	and ho	w to c	ompile a	and exec	cute C
	progr	ams.										
	1											
CO1						-				C lang		
CO2		-		code us	sing po	inters,	arrays	and dy	namic	memor	y alloca	tion
	Tech	iniques										
CO3					• 1				e give	n proble	ems.	
CO4	Desig	gn an ei	fficient	t algori	thm fo	r a giv	en prol	blem				
CO5	Build	lefficie	ent cod	e to so	lve the	real w	orld pi	roblem				
CO6	Eluci	date th	e prog	rammiı	ng cons	structs	of C d	uring ir	ntervie	WS		
Mapping of C	COs											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Η	L	L									
CO2	Н	Н	Μ									
CO3	Н				M							
CO4			Μ		M	M	M					
CO5								L			L	
CO6			L						Μ			
Course Topic							<u> </u>					
UNIT 1: INT												
Introduction to												
stored and exe												
and numerical From algorith	-		-			-						-
rioni algorith		prograi	.115, 50		Jue, va	inables	(with	uata l	ypes)	variable	s anu n	iemory,

locations, Syntax and Logical Errors in compilation, object and executable code, Arithmetic expressions and precedence, Conditional Branching and Loops, Writing and evaluation of conditionals and consequent branching, Iteration and loops.

UNIT 2: ARRAYS AND STRINGS

Arrays (1-D, 2-D), Character arrays and Strings,

UNIT 3: BASIC ALGORITHMS

Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of equations, notion of order of complexity through example programs (no formal definition required)

UNIT 4: FUNCTION

Functions (including using built in libraries), Parameter passing in functions, call by value,

Passing arrays to functions: idea of call by reference, Recursion, Recursion, as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort.

UNIT 5: STRUCTURE, POINTERS & FILE HANDLING

Structures, Defining structures and Array of Structures, Idea of pointers, Defining pointers, Use of Pointers in self-referential structures, notion of linked list (no implementation), File handling (only if time is available, otherwise should be done as part of the lab)

TEXT BOOKS

(i) Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill

(ii) E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill

REFERENCE BOOKS

(i) Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India

LIST OF EXPERIMENTS

Tutorial 1: Problem solving using computers:

Lab1: Familiarization with programming environment

Tutorial 2: Variable types and type conversions:

Lab 2: Simple computational problems using arithmetic expressions

Tutorial 3: Branching and logical expressions:

Lab 3: Problems involving if-then-else structures

Tutorial 4: Loops, while and for loops:

Lab 4: Iterative problems e.g., sum of series

Tutorial 5: 1D Arrays: searching, sorting:

Lab 5: 1D Array manipulation

Tutorial 6: 2D arrays and Strings

Lab 6: Matrix problems, String operations

Tutorial 7: Functions, call by value:

Lab 7: Simple functions

Tutorial 8 &9: Numerical methods (Root finding, numerical differentiation, numerical integration):

Lab 8 and 9: Programming for solving Numerical methods problems

Tutorial 10: Recursion, structure of recursive calls

Lab 10: Recursive functions

Tutorial 11: Pointers, structures and dynamic memory allocation

Lab 11: Pointers and structures

Tutorial 12: File handling: Lab 12: File operations

MEC18R152		E	ENGIN	EERI	NG PH	RACTI	CE		L			2	C
	Nil			-					3	0	4	2	3
Prerequisite Course		Engin	aarina										
Course	Dasic	: Engin	eening										
Course	Theo	ry with	Practi	cal									
Туре	THCO.	i y wien	i i iucti	cui									
Objective	manu	1	ng pro	cesses	which	are cor	nmonl	y empl		wledge 1 the ind			ent
CO1		on comp					ırse, st	udents	will be	e able to) fabric	ate	
CO2										accurac ng proc			
CO3		ssembli eir inter		ferent c	compor	nents, t	hey wi	ll be at	ole to p	roduce	small c	levice	es
Mapping of C	COs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	D12
CO1	L	Μ							L	Н			
CO2	L	Μ							L	Н			
CO3	Η												
Course Topic	1 1												
Lectures & vi Detailed conto 1. Manufacturi methods (3 lec 2. CNC machi 3. Fitting opera 4. Carpentry (1 5. Plastic moul 6. Metal castim 7. Welding (ar Suggested Tex (i) Hajra Chou	ents ing Me etures) ning, A ations of lectu lding, g og (1 le c weld c weld c weld c kt/Refe	Additiv & pow re) glass cu ecture) ing & g erence S.K., F	e manu er tools utting (gas we Books Iajra C	ifacturi s (1 lect 1 lectu lding), :: houdhu	ing (1 l eture) ure) brazin ury A.H	ecture g (1 lec K. and) c ture) Nirjhan	r Roy S	5.K., "F	Element		ιg	
Workshop Tec publishers priv (ii) Kalpakjian 4th edition, Pe	ate lin S. An	nited, N d Steve	Aumba en S. S	i. chmid,	"Man	ufactur		•			ology",		

(iii)Gowri P. Hariharan and A. Suresh Babu, "Manufacturing Technology – I" Pearson Education, 2008.
(iv) Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice F.

(iv) Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998.

(v) Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGrawHill House, 2017.

(ii) Workshop Practice:

- 1. Machine shop (10 hours)
- 2. Fitting shop (8 hours)
- 3. Carpentry (6 hours)
- 4. Welding shop (8 hours (Arc welding 4 hrs + gas welding 4 hrs)
- 5. Casting (8 hours)
- 6. Smithy (6 hours)
- 7. Plastic moulding & Glass Cutting (6 hours)

*Examinations could involve the actual fabrication of simple components, utilizing one or more of the techniques covered above.

	DD						01100		L	T	P	С
ECE18R220	PR	INCIE	LES (JF SI	SNAL	S AND	SYSI	EMS	3	0	0	3
Prerequisite	Nil									•		
Course	Basic	Engin	eering									
Category												
Course	Theorem	ry										
Туре												
CO1	Ident	ify diff	erent t	ypes of	f contin	nuous t	ime an	d discr	ete tim	e signal	ls.	
CO2	Ident	ify diff	erent t	ypes of	f contir	nuous t	ime an	d discr	ete tim	e syster	ns.	
CO3	Analy	yze sig	nals us	ing Z 🛛	Fransfo	orm and	l FT.					
CO4	Analy	yze sig	nals us	ing DF	FT and	FFT						
CO5	Appr	eciate o	lifferei	nt Digi	tal Filt	er struc	ctures					
Mapping of C	COs											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Η	Н										
CO2	L	Μ	Н									
CO3	L	Μ	Н									
CO4	М	Μ										L
CO5	Н	М	L				L	Μ				М
Course Topic	(s)											
UNIT 1: BA	SICS	OF SI	GNAL	S								
Basic operation	ons on	signal	s, cont	tinuous	s time	and d	iscrete	time s	signals	: step,	impulse	, ramp,
exponential an	d sinus	soidal f	unctio	ns								

UNIT 2: BASICS OF SYSTEMS

Continuous time and discrete time systems, properties of systems: linearity, causality, time invariance, memory, stability, invertibility. Linear time invariant systems, convolution

UNIT 3: Z-TRANSFORM

Z-transform, region of convergence, properties of Z-transform, inverse Z-transform.

UNIT 4: FOURIER TRANSFORM

Fourier transform (FT) of discrete time signals, properties of FT, relation between Z-transform and FT.

Unit 5: DFT

Discrete Fourier transform (DFT), Properties of DFT, inverse DFT, Fast Fourier transform (FFT), Radix-2 FFT algorithms, butterfly structure

Text Book(s):

1. Tarun Kumar Rawat, "Signals and Systems", Oxford University Press, 2010.

2. V. Krishnaveni, A. Rajeswari, "Signals and Systems", Wiley, 2012

Reference(s):

1. Michael J Roberts and Govind Sharma, "Signals and Systems", McGraw Hill, 2010

2. M. N. Bandyopadhyaya, "Introduction to Signals and Systems and Digital Signal Processing", PHI, 2008

		D	GITA	L PRI	NCIPI	LES A	ND		L	Т	Р	C
INT18R171			-		DESI				3	1	2	5
Prerequisite	Basic	Electr	ical an	d Elect	ronics	Engine	ering	(EEE17	R151)			_
Course	Basi	c Engii	neering	5								
Category		-	-									
Course	Integ	grated (Course									
Туре												
Objective (s)	•	To unc	lerstan	d diffe	erent n	nethods	s used	for the	ne simj	plificatio	on of B	oolean
]]	Functio	ons.									
	• 7	To desi	ign and	l imple	ment c	ombina	ational	circuit	s.			
	• 7	To desi	ign and	l imple	ment s	ynchro	nous a	nd asy	nchron	ous sequ	uential c	ircuits.
	• 7	To stuc	ly the f	undam	ental c	of VHD	L/Ve	rilog H	DL.			
Course Outco	ome(s)											
CO1	Able	to dest	ign Lo	gic gat	tes wit	h mult	i funct	ionality	y imple	ementati	on of B	oolean
	functi	ions										
CO2		0					seque	ntial ci	rcuits	like Mu	ltiplexe	rs, Flip
		Count		<u> </u>		<u> </u>						
CO3		ze and										
CO4	Analy	ze and	l Desig	n Asyr	nchron	ous Sec	quentia	l circu	its			
CO5			-	0					ts) wit	h CMO	S/Memo	ory and
	Imple	ementa	tion of	Progra	mming	g logics	s conce	epts				
Mapping of C	COs wi	th PO:	<u>s</u>									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н		L	Н								
CO2		Н								М		
CO3			М	Н							Η	

CO4	L	Н	М	Н		
CO5	Н					

UNIT 1: BOOLEAN ALGEBRA AND LOGIC GATES

Number System-Code Conversion-Boolean algebra & theorems-Binary Arithmetic-Simplification of Boolean functions using Theorem, Karnaugh map and Tabulation method-Logic gates-Multilevel NAND & NOR Circuits implementations.

UNIT 2: COMBINATIONAL LOGIC

Combinational Circuits-Analysis and design procedure-Adder/Subtractor-Serial/Parallel Adder & Subtractor-Decoder & Encoder-Multiplexer& Demultiplexer-Design of Code Conversion Circuits-HDL for Combinational Logic.

UNIT 3: SEQUENTIAL LOGIC

Sequential Circuits-Analysis and design procedure-Flip Flops-Realization of one Flip Flop using other Flip Flops-Shift Registers & Counters-State Reduction & Assignment-HDL for Sequential Logic Circuits.

UNIT 4: ASYNCHRONS SEQUENTIAL LOGIC

Asynchronous Circuits-Analysis and design procedure-Primitive State/Flow table-Minimization of Primitive State table-State Assignment-Excitation table-Excitation map cycles-Races-Hazards.

UNIT 5: MEMORIES AND LOGICAL PROGRAMMING

Memory Classification-RAM-ROM-memory decoding- Error detection and correction -Programmable Logic Array (PLA)-Programmable Array Logic (PAL) - Application Specific Integrated Circuits.

LIST OF EXPERIMENTS

1. Verification of Boolean theorems using digital logic gates

2. Design and implementation of combinational circuits using basic gates for arbitrary functions, code converters, etc.

3. Design and implementation of 4-bit binary adder / subtractor using basic gates and MSI devices.

4. Design and implementation of parity generator / checker using basic gates and MSI devices.

- 5. Design and implementation of magnitude comparator
- 6. Design and implementation of application using multiplexers
- 7. Design and implementation of Flip-flops
- 8. Design and implementation of Shift registers
- 9. Design and implementation of Synchronous and Asynchronous counters

10. Coding combinational circuits using Hardware Description Language (HDL software required)

11. Coding sequential circuits using HDL (HDL software required)

TEXT BOOK

1. Morris Mano M, "Digital Design", Pearson Education, 5th edition, 2013.

- 1. Charles H.Roth, Jr., "Fundamentals of Logic Design", Jaico Publishing House, 7th Edition, 2014.
- 2. Donald D.Givone, "Digital Principles and Design", Tata McGraw-Hill, 2003.

PROGRAM CORE

		COMP					E AN	D	L	Т	Р	С
CSE18R174			OF	RGAN	IZATI	ON			3	0	2	4
Prerequisite	Nil											
Course Category	Progr	am Co	re									
Course Type	Integ	rated C	ourse									
Objective(s)										of comp ce issue	outer and s.	d how
Course Outco	ome(s)											
CO1		nine fur	nctiona	l units	of com	nputer,	bus str	ructure	and ad	dressing	g mode	
CO2						-				probler	-	
CO3											oncepts	
CO4										concept		
CO5	Evalu	ate the	variou	ıs I/O i	nterfac	es						
Mapping of C	COs wi	ith Pos										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М				Н							L
CO2	Н	Н	L		Н							
CO3	Н		М	Н			Μ					Н
CO4	Μ	Н	Η					Н				Н
CO5	Η	Μ					Η					L
Course Topic	c(s)											
UNIT 1: Functional Un Memory Loca Sequencing – Queues. UNIT 2: Addition and S Positive Num Floating Point UNIT 3: Fundamental O Hardwired Co – Instruction H Superscalar O	its - B tions a Addre ARIT Subtrac bers - Numb Concep ntrol – Hazard peratic	and Ac essing N CHME7 ction of Signed bers and bers and b	eration Idresse Modes FIC U Signe Opera I Opera I Opera PROC Accutio Progra uence	nal Cor es – M – Asse NIT d Num and Mu ations. CESSI on of a ammed on Ins	ncepts lemory mbly I lbers – iltiplica NG UN Compl Contr tructio	- Bus S Operation Langua Design ation at NIT ete Instol - Pip	Structur ations ge – B n of Fa nd Fast truction	res - So – Inst asic I/C st Addo t Multij n – Mu g – Bas	ruction O Oper ers – M plicatio ltiple I sic Con	and Ir ations – Iultiplica on – Inte Bus Orga cepts –	astructio Stacks a ation of ger Div anization Data Ha	and ision – n – zards
UNIT 4: Basic Concept		IEMO				- Snee	d - Siz	e and (⊂ost	Cache N	/lemorie	s -
Performance (-						5 -

Secondary Storage.

UNIT 5 : I/O ORGANIZATION

Accessing I/O devices – Interrupts – Direct Memory Access – Buses – Interface Circuits – Standard I/O Interfaces (PCI, SCSI, USB).

List of Practical Components

- 1. Implementation of booth algorithm
- 2. Implementation of sequential circuit binary multiplier
- 3. Implementation of bit pair recording
- 4. Implementation of carry save addition
- 5. Implementation of Integer restoring division
- 6. Implementation of Integer Non restoring division
- 7. Implementation of twos complement addition
- 8. Implementation of twos complement subtraction

TEXT BOOK:

1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, Computer Organization, McGraw-Hill, 5th Edition 2012

REFERENCE BOOKS:

- 1. William Stallings, Computer Organization and Architecture Designing for Performance, PHI pvt Ltd, 4th Edition, 2012.
- 2. David A.Patterson and John L.Hennessy, Computer Organization and Design: The hardware software interface, Morgan Kaufmann, 3rd Edition, 2007.
- 3. John P.Hayes, Computer Architecture and Organization, McGraw Hill, 3rd Edition, 1998

CCE10D252	OPERATING SYSTEMS	L	Т	Р	C
CSE18R273		3	0	2	4
Prerequisite	Computer Architecture and Organization (CSE18R17	(4)			
Course	Program Core				
Category					
Course	Integrated Course				
Туре					
Objective (s)	 To learn the mechanisms of OS to handle processes Communication To learn the mechanisms involved in memory m OS To gain knowledge on distributed operating system architecture, Mutual exclusion algorithms, deadlock agreement protocols To know the components and management management 	anagem 1 concep k detec	ent in c ots that in tion alg	ontemp ncludes orithms	s and
Course Outco					
CO1	Interpret Operating System Structure, Operations, Ser	vices a	nd Proce	SS	

CO2	Elabo	Elaborate Multithreaded Programming, Process Scheduling and Synchronization													
CO3	Evalu	ate dif	ferent	memor	y mana	agemer	nt schei	mes							
CO4	Desig	Design and implement File system functionalities													
CO5	Expe	Experiment with various disk management schemes													
Mapping of	COs with Pos														
CO	PO1														
CO1	Η	Μ										L			
CO2		Μ	Μ	Н								L			
CO3		Μ	Μ			Η						L			
CO4		Μ	Μ				Н					L			
CO5		Μ	Μ								Н	L			

UNIT 1: INTRODUCTION TO OPERATING SYSTEMS

Introduction: Concept of Operating Systems, Generations of Operating systems, Types of Operating Systems, OS Services, System Calls, Structure of an OS - Layered, Monolithic, Microkernel Operating Systems, Concept of Virtual Machine. Case study on UNIX and WINDOWS Operating System

UNIT 2: PROCESS SCHEDULING

Processes: Definition, Process Relationship, Different states of a Process, Process State transitions, Process Control Block (PCB), Context switching **Thread:** Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads,

Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and EDF.

UNIT 3: PROCESS SYNCHRONIZATION AND DEADLOCK

Operations on Processes, Cooperating Processes, Inter-process Communication: Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The Producer Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem etc. **Deadlocks:** Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery.

UNIT 4: MEMORY MANAGEMENT

Memory Management: Basic concept, Logical and Physical address map, Memory allocation: Contiguous Memory allocation – Fixed and variable partition–Internal and External fragmentation and Compaction; Paging: Principle of operation – Page allocation – Hardware support for paging, Protection and sharing, Disadvantages of paging.

Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU).

UNIT 5: FILE AND SECONDARY STORAGE MANAGEMENT

I/O Hardware: I/O devices, Device controllers, Direct memory access Principles of I/O Software **Disk Management:** Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk formatting, Boot-block, Bad blocks

File Management: Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed), Free-space management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and performance.

List of Practical Components:

- 1. Windows and UNIX Commands
- 2. Simulation of System calls
- 3. Implementation of CPU Scheduling algorithms
- 4. Simulation of IPC in UNIX
- 5. Implementation of deadlock avoidance algorithms
- 6, Implementation of Page replacement algorithms
- 7. Implementation of memory management functions
- 8. Implementation of disk scheduling algorithms

TEXT BOOKS :

1. Abraham Silberschatz, Peter Galvin, Greg Gagne, "Operating System Concepts and Essentials", 9th Edition, Wiley Asia Student Edition.

2. William Stallings, "Operating Systems: Internals and Design Principles", 5th Edition, ,

Prentice Hall of India.

REFERNCE BOOKS

- 1. Charles Crowley, "Operating System: A Design-oriented Approach", 1st Edition by, Irwin Publishing.
- 2. Gary J. Nutt, "Operating Systems: A Modern Perspective", 2nd Edition, Addison-Wesley.
- 3. Design of the Unix Operating Systems, 8th Edition by Maurice Bach, Prentice-Hall of India
- 4. Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reilly and Associates

INT18R201	WEB TECHNOLOGY	L	Т	P	С
111101201	WED TECHNOLOGI	3	1	0	4
Prerequisite	Nil				
Course	Program Core				
Category					
Course	Theory				
Туре					
Objective(s)	 To learn the theoretical and practical concepts o To introduce the programming languages f applications. To make students to understand about the arc deployment of web site To teach methodologies useful for the imple applications To efficiently design and implement web approgramming languages 	or dev hitectur	eloping re of we ion of d	simple b serve lynamic	er and
Course Outco	ome(s)				
CO1	Understand the theoretical and practical concepts	(interr	net basic	s) to d	esign,
	implement and maintain a typical web page, to un	Iderstan	nd differe	ent pro	tocols

	1		1	4	4 14	•	1 1	1 1	•	1		• •
			ne inte	ernet,	to obt	ain go	od Ki	nowled	ige in	web pr	ogramm	iing in
	JavaS											
CO2	Deve	lop and	l incor	porate	dynam	nic cap	abilitie	s in W	eb pag	ges using	g DHTN	IL and
	JavaS	avaScript.										
CO3	Unde	Jnderstand the basic concepts of client-server architecture, features, web										
	applie	applications, web servers to deploy web site, to include multimedia contents										
CO4			-		+						plicatio	
		y XML						rJ		·····	r	
CO5		pply advanced web development programming to design and implement server-										
000		side software that interacts with a database for the purposes of querying the										
		database, test and debug the software, deploy the software, to design and										
		implement interactive web pages										
M				Ive we	u page	5						
Mapping of												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Μ	Η		Η							L
CO2		Μ	Η	L	Η							
CO3		Н										
CO4		Н	L		Н							Н
CO5		Μ	Н	L	Н							Н
Course Ton			•							•	•	•

UNIT 1: INTRODUCTION

History and basic idea of Internet; Internet services: telnet, e-mail, ftp, WWW- HTML- List, Tables, Images, Forms, Frames, XML- Document type definition, XML Schemas,* Document Object model - Web page design: Designing web pages with HTML5 – New elements added - semantic elements -attributes of form -graphic elements- multimedia elements-APIs-CSS-javascript-Jquery-AJAX

UNIT 2: DYNAMIC HTML

Introduction – Object refers, Dynamic style, Dynamic position, frames, navigator, Event Model – On check – On load – On error – Mouse related – Form process – Event Bubblers – Filters – Transport with the Filter – Creating Images – Adding shadows – Creating Gradients – Creating Motion with Blur – Data Binding – Simple Data Binding – Moving with a record set – Sorting table data – Binding of an Image and table.

UNIT 3: MULTIMEDIA

Audio and video speech synthesis and recognition – Electronic Commerce – E-Business Model – E- Marketing – Online Payments and Security – Web Servers – HTTP request types – System Architecture – Client Side Scripting and Server side Scripting – Accessing Web servers – IIS – Apache web server.

UNIT 4 : ASP

ASP – Working of ASP – Objects –File System Objects – Session tracking and cookies – ADO – Access a Database from ASP –Server side Active-X Components – Web Resources – XML – Structure in Data – Name spaces– DTD – Vocabularies – DOM methods

UNIT 5: DATABASE CONNECTIVITY

Database Connectivity - ADO.NET- SqlConnection- SqlCommand- Reading Data with the SqlDataReader - Working with Disconnected Data - Adding Parameters to Commands - Using Stored Procedures

TEXT BOOK

1. Deitel & Deitel, Goldberg, "Internet and World Wide Web 5th Edition – How to Program", Pearson Education Asia, 2012.

- 1. Eric Ladd, Jim O' Donnel, "Using HTML 4, XML and JAVA1.2", Prentice Hall of India, QUE, 1999.
- 2. Aferganatel, "Web Programming: Desktop Management", PHI, 2004.
- 3. Rajkamal, "Web Technology", Tata McGraw-Hill, 2001.

Prerequisite Programming for Problem Solving (CSE18R171) Course Program Core Category Program Core Course Integrated Course Type To learn the systematic way of solving problems. Objective(s) • To learn the systematic way of solving problems. • To understand the different methods of organizing large amounts of data. • To introduce the practical and formal aspects of data structures • To teach methodologies useful for the implementation and empirical evaluation of sorting and searching algorithms. • To efficiently implement the solutions for specific problems using data structures Course Outcome(s) CO1 CO1 Examine and implement general tree data structures, including binary tree, both array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with POs PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H M<	INT18R271		Ι			CTUR		ND			T	P	C		
Course Category Program Core Course Type Integrated Course Objective(s) To learn the systematic way of solving problems. To understand the different methods of organizing large amounts of data. To introduce the practical and formal aspects of data structures To etach methodologies useful for the implementation and empirical evaluation of sorting and searching algorithms. To efficiently implement the solutions for specific problems using data structures CO1 Examine and implement different data structures such as: arrays, linked lists, stacks, queues, both array and linked list representation. CO2 Examine and implement general tree data structures, including binary tree, both array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of CO8 with PO8 CO CO2 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques.		D	•						171)	3	1	2	5		
Category Integrated Course Type Integrated Course Objective(s) To learn the systematic way of solving problems. To understand the different methods of organizing large amounts of data. To introduce the practical and formal aspects of data structures To teach methodologies useful for the implementation and empirical evaluation of sorting and searching algorithms. To efficiently implement the solutions for specific problems using data structures CO1 Examine and implement different data structures such as: arrays, linked lists, stacks, queues, both array and linked list representation. CO2 Examine and implement general tree data structures, including binary tree, both array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with POs CO3 L M H M H <		-		-	roblen	n Solvi	ng (CS	EI8R	1/1)						
Course Type Integrated Course Objective(s) To learn the systematic way of solving problems. To understand the different methods of organizing large amounts of data. To introduce the practical and formal aspects of data structures To teach methodologies useful for the implementation and empirical evaluation of sorting and searching algorithms. To efficiently implement the solutions for specific problems using data structures Course Outcome(s) Image: structures CO1 Examine and implement different data structures such as: arrays, linked lists, stacks, queues, both array and linked list representation. CO2 Examine and implement general tree data structures, including binary tree, both array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of Cos with POs PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3 L M H Implement Implement		Progr	am Co	re											
Type • Objective(s) • To learn the systematic way of solving problems. • To understand the different methods of organizing large amounts of data. • To introduce the practical and formal aspects of data structures • To teach methodologies useful for the implementation and empirical evaluation of sorting and searching algorithms. • To efficiently implement the solutions for specific problems using data structures Course Outcome(s) Examine and implement different data structures such as: arrays, linked lists, stacks, queues, both array and linked list representation. CO2 Examine and implement general tree data structures, including binary tree, both array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of CO8 with POS PO6 CO3 Identify, M H CO3 Identify CO5 Design and implements CO5 Design and implement the various algorithms design techniques.		-													
Objective(s) To learn the systematic way of solving problems. To understand the different methods of organizing large amounts of data. To introduce the practical and formal aspects of data structures To teach methodologies useful for the implementation and empirical evaluation of sorting and searching algorithms. To efficiently implement the solutions for specific problems using data structures Course Outcome(s) CO1 Examine and implement different data structures such as: arrays, linked lists, stacks, queues, both array and linked list representation. CO2 Examine and implement general tree data structures, including binary tree, both array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of CO8 with PO5 CO3 IL M H H IM I <liim i<<="" td=""><td></td><td>Integ</td><td>rated C</td><td>ourse</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></liim>		Integ	rated C	ourse											
 To understand the different methods of organizing large amounts of data. To introduce the practical and formal aspects of data structures To teach methodologies useful for the implementation and empirical evaluation of sorting and searching algorithms. To efficiently implement the solutions for specific problems using data structures CO1 Examine and implement different data structures such as: arrays, linked lists, stacks, queues, both array and linked list representation. CO2 Examine and implement general tree data structures, including binary tree, both array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with POs CO3 L M H M H CO4 H M M H CO5 L M H M CO5 L M M CO5 L M CO5 L M															
 To introduce the practical and formal aspects of data structures To teach methodologies useful for the implementation and empirical evaluation of sorting and searching algorithms. To efficiently implement the solutions for specific problems using data structures Course Outcome(s) Examine and implement different data structures such as: arrays, linked lists, stacks, queues, both array and linked list representation. CO2 Examine and implement general tree data structures, including binary tree, both array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with PO5 CO4 IM IM	Objective(s)				•		•	01							
 To teach methodologies useful for the implementation and empirical evaluation of sorting and searching algorithms. To efficiently implement the solutions for specific problems using data structures Course Outcome(s) Examine and implement different data structures such as: arrays, linked lists, stacks, queues, both array and linked list representation. CO2 Examine and implement general tree data structures, including binary tree, both array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with POs CO4 IM IM									-	-	-		ata.		
evaluation of sorting and searching algorithms. To efficiently implement the solutions for specific problems using data structures Course Outcome(s) Course Outcome(s) Examine and implement different data structures such as: arrays, linked lists, stacks, queues, both array and linked list representation. CO2 Examine and implement general tree data structures, including binary tree, both array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with POs CO PO1 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO4 H M H Identify Identify Identify Identify Identify Identify Identify Identify Identif					-										
To efficiently implement the solutions for specific problems using data structures Course Outcome(s) CO1 Examine and implement different data structures such as: arrays, linked lists, stacks, queues, both array and linked list representation. CO2 Examine and implement general tree data structures, including binary tree, both array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with POs CO1 H M H H I I I I I I I I I I I I I I I I											ntation	and en	pirical		
structures Course Outcome(s) CO1 Examine and implement different data structures such as: arrays, linked lists, stacks, queues, both array and linked list representation. CO2 Examine and implement general tree data structures, including binary tree, both array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with POs CO PO1 PO1 PO11 PO12 CO PO1 PO1 PO11 PO12 CO PO1 PO1 PO11 PO12 CO PO3 PO6 PO7 PO8 PO10 PO11 PO12 CO <th <<="" colspan="2" td=""><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						-	-							
Course Outcome(s) CO1 Examine and implement different data structures such as: arrays, linked lists, stacks, queues, both array and linked list representation. CO2 Examine and implement general tree data structures, including binary tree, both array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with POs CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO4 H M H Identify				-	y impl	ement	the so	olution	s for s	specific	proble	ems usir	ig data		
CO1 Examine and implement different data structures such as: arrays, linked lists, stacks, queues, both array and linked list representation. CO2 Examine and implement general tree data structures, including binary tree, both array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with POs PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3 L M H I				res											
stacks, queues, both array and linked list representation. CO2 Examine and implement general tree data structures, including binary tree, both array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with POs CO2 M M CO4 PO3 PO6 PO9 PO10 PO11 PO12 CO4 PO5 PO8 PO9 PO10 PO11 PO12 CO PO3 PO6 PO7 PO						11.00							1 11		
CO2 Examine and implement general tree data structures, including binary tree, both array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with POs CO1 H M H CO3 L M M H I CO5 L M H CO2 H M H I CO3 L M H I I I CO4 H M H I I I I	COI			-							is: array	vs, linke	d lists,		
array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with POs CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO5 H M H H		stack	s, queu	es, bot	h array	and li	nked li	st repro	esentat	10n.					
array based and reference based implementations. CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with POs CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO5 H M H H	CO2	Exam	nine an	d impl	ement	genera	l tree	data st	ructure	s inch	uding bi	nary tre	e both		
CO3 Demonstrate understanding of various operations of heap and sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort and quick sort. CO4 Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with POs PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H M I Image: Cost of the cost	001												,		
Including bubble sort, insertion sort, selection sort, heap sort and quick sort.CO4Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphsCO5Design and implement the various algorithms design techniques.Mapping of COs with POsCO6PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12CO1HMII <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Γ</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							Γ								
CO4Identify, model, solve and develop code for real life problems like shortest path, network flow, and minimum spanning using graphsCO5Design and implement the various algorithms design techniques.Mapping of COs with POsDO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12CO1HMIIIIIIIPO1PO12CO2PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12CO2HMHIII	CO3					0		-		-		0 0			
network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H M I		inclu	ding bu	ibble so	ort, ins	ertion	sort, se	lection	ı sort, l	neap so	rt and qu	uick sort			
network flow, and minimum spanning using graphs CO5 Design and implement the various algorithms design techniques. Mapping of COs with POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H M I	<u> </u>	Idant	fr, me	dal aa	luo on	d dava	100 00	de for		o nuch	ama lile	acharta	at math		
OBESIGN AND STREET OF S	C04		•				-			e prob	lems nk	e snorte	si pain,		
Mapping of COs with POs CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H M - - - - - - - - - - - PO10 PO11 PO12 CO1 H M -	CO5									taahn	auaa				
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H M I <t< td=""><td></td><td></td><td></td><td>_</td><td></td><td>e vario</td><td>us argo</td><td>11111115</td><td>desigi</td><td>i tecim</td><td>iques.</td><td></td><td></td></t<>				_		e vario	us argo	11111115	desigi	i tecim	iques.				
CO1 H M I					DO1	PO5	PO6	DO7	DU8	DO0	PO10	D O11	PO12		
CO2 H M H Image: Colored constraints of the second consecond consecond constraints of the second consecond co				105	104	105	100	107	108	109	1010	1011	1012		
CO3 L M H H Image: Cost of the state of th		11	101	н	М	н									
CO4 H M Image: Model of the second sec		T	М			11									
CO5 M H L Course Topic(s) UNIT 1: LINEAR STRUCTURES Image: Construct of the second secon				11											
Course Topic(s) UNIT 1: LINEAR STRUCTURES			11		111	М		н					T.		
UNIT 1: LINEAR STRUCTURES		<u>ר</u> י(ג)		1	1	141	I	11	1		1	I			
	-		STRI	CTU	RES										
Abstract Data Types (ADT)-List ADT- Array based implementation- linked list implementation-						Arrav F	pased in	nnlem	entatio	n- link	ed list i	npleme	itation-		
Cursor based linked lists-Doubly linked lists- Applications of lists- stack ADT- Queue ADT-		~ 1	•	·		-		1				1			

Circular queue implementation- Applications of stacks and queue.

UNIT 2: TREE STRUCTURES

Tree ADT- Tree Traversals Binary Tree ADT – Express trees Application of trees- binary search tree ADT- Threaded Binary Trees. AVL Trees – Splay Trees – B – Tree – heaps – Binary heaps – Applications of binary heaps

UNIT 3: HASHING AND SORTING

Hashing- Separate chaining – open addressing – rehashing – extendible hashing – Sorting – Insertion Sort – Selection Sort – Heap Sort – Merge Sort – Quick Sort

UNIT 4: GRAPHS

Graph Definitions and types, Graph Representation -topological sorting – breadth first traversal – shortest path algorithm – minimum spanning tree – Prims and Kruskal's algorithm – Depth first traversal- biconnectivity- Euler circuits – Applications of graphs

UNIT 5: ALGORITHM DESIGN TECHNIQUES

Introduction – Greedy Method- Divide and Conquer – Dynamic Programming- Back Tracking-Branch and Bound.

PRACTICE COMPONENTS

- 1. Write a program to implement Stack Using Array and Linked list.
- 2. Write a program to implement Queue Using Array and Linked list.
- 3. Write a program to create a singly linked list.
- 4. Develop a date structure for trees, Include addition, deletion, access procedures. Apply this to problems like students list, passengers list, and polynomial representations.
- 5. Write a program to implement Binary Search Tree.
- 6. Write a program to implement Conversion of Infix Expression to Postfix Expression.
- 7. Write a program to implement Conversion of Postfix Expression to Infix Expression.
- 8. Write a program to implement Postfix Expression Evaluation.
- 9. Write an algorithm to convert a tree into a binary tree. Also traverse the tree.
- 10. Write a program to check for balanced parentheses of an expression using array implementation of stack.
- 11. Write a program to check for balanced parentheses of an expression using linked list implementation of stack.
- 12. Write a program to sort a set of elements using bubble sort, insertion sort, shell sort, heap sort, merge sort and quick sort.
- 13. Write a C program to implement the Dijkstra's Algorithm
- 14. Write C program for the implementation of minimum spanning using Kruskal

Write C program for the implementation of minimum spanning using Prims algorithm

TEXT BOOK

1. M.A.Weiss, "Data Structures and Algorithm Analysis in C", 4th Edition, Pearson Education, 2013.

- 1. A.V.Aho, J.E.Hopcroft and J.D.Ullman, "Data Structures and Algorithms", Pearson Education, 2005.
- 2. R.F.Gilberg, B.A.Forouzan, "Data Structures", Second Edition, Thomson India Edition, 2005.

INT18R272	ANALOC AND DICITAL COMMUNICATION	L	Т	Р	С
IN I 18K272	ANALOG AND DIGITAL COMMUNICATION	3	0	2	4

Prerequisite	Nil											
Course	Progr	am Co	re									
Category												
Course	Integr	rated C	ourse									
Туре												
Objective (s)	•	in an	alog a	nd digi	tal con	nmunic	ations.		1	les and t		
	•									niques, o		
						0				d pass o		
			-		coding	g techi	iques,	noise	analy	vsis, and	d multij	plexing
			niques.								C	C
	•					cal teo	chnique	es to	evaluat	the the p	erforma	nce of
<u> </u>		com	munica	tion sy	vstems							
Course Outco	1			•								
CO1	Desig	•		0		0			0	amplit		dulated
										d Signal		
CO2	-		-			gital c	ommui	ncatio	n syster	m in teri	ms of er	ror rate
002		andwic				1 .	1.	. 1	1.1	τ.		
<u>CO3</u>										ne Intern		
CO4					ncepts	of Info	ormatio	on and	Codin	g Theor	nes and	design
<u> </u>		correct			1.	•	•			• •		
CO5				analyz	e data s	service	s in ce	llular c	ommu	nication		
Mapping of (DOL	D O 7	DOC	D O T	DOO	D 00	DO10	DO11	D010
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	H	Н				-					
CO2	L	Η					L					Ŧ
CO3	Μ									Н	Μ	L
CO4	L	H	Η									
CO5	L	Н										
Course Topic												
UNIT 1: A	NALO	G COI	MMUN	NICAT	TION							

Noise: Source of Noise - External Noise- Internal Noise- Noise Calculation. Introduction to Communication Systems: Modulation – Types - Need for Modulation. Theory of Amplitude Modulation - Evolution and Description of SSB Techniques - Theory of Frequency and Phase Modulation – Comparison of various Analog Communication System (AM - FM - PM).

UNIT 2: DIGITAL COMMUNICATION

Amplitude Shift Keying (ASK) – Frequency Shift Keying (FSK) Minimum Shift Keying (MSK) –Phase Shift Keying (PSK) – BPSK – QPSK – 8 PSK – 16 PSK - Quadrature Amplitude Modulation (QAM) – 8 QAM – 16 QAM – Bandwidth Efficiency– Comparison of various Digital Communication System (ASK – FSK – PSK – QAM).

UNIT 3: DATA AND PULSE COMMUNICATION

Data Communication: History of Data Communication - Standards Organizations for Data Communication- Data Communication Circuits - Data Communication Codes - Error Detection and Correction Techniques - Data communication Hardware - serial and parallel interfaces. Pulse Communication: Pulse Amplitude Modulation (PAM) – Pulse Time Modulation (PTM) – Pulse

code Modulation (PCM) - Comparison of various Pulse Communication System (PAM – PTM – PCM).

UNIT 4: SOURCE AND ERROR CONTROL CODING

Entropy, Source encoding theorem, Shannon fano coding, Huffman coding, mutual information, channel capacity, channel coding theorem, Error Control Coding, linear block codes, cyclic codes, convolution codes, viterbi decoding algorithm.

UNIT 5: MULTI-USER RADIO COMMUNICATION

Advanced Mobile Phone System (AMPS) - Global System for Mobile Communications (GSM) -Code division multiple access (CDMA) – Cellular Concept and Frequency Reuse - Channel Assignment and Hand off - Overview of Multiple Access Schemes - Satellite Communication -Bluetooth.

TEXT BOOK

1. Wayne Tomasi, "Advanced Electronic Communication Systems", 6th Edition, Pearson Education, 2014.

REFERENCES

- 1. Simon Haykin, "Communication Systems", 4th Edition, John Wiley & Sons, 2004.
- 2. Rappaport T.S, "Wireless Communications: Principles and Practice", 2nd Edition, Pearson Education, 2007.
- 3. H.Taub, D L Schilling and G Saha, "Principles of Communication", 3rd Edition, Pearson Education, 2007.

LIST OF EXPERIMENTS

- 1. Generation and detection of Amplitude Modulation
- 2. Generation of Frequency modulation and its detection
- 3. Generation and detection of PAM
- 4. Generation and detection of PCM
- 5. Generation and detection of PDM
- 6. Generation of ASK Modulators and demodulators
- 7. Generation of FSK Modulators and demodulators
- 8. Generation of PSK Modulators and demodulators
- 9. Pseudo Random Noise sequence generation with digital IC's.
- 10. Generation of Line Code Encoding
- 11. Characteristics of Mixer.
- 12. Sampling theorem verification
- 13. Delta modulation and demodulation
- 14. QPSK modulation and demodulation
- 15. DPSK modulation and demodulation

INT18R273	OBJECT ORIENTED PROGRAMMING	L	Т	P	С
IN 1 10K275	OBJECT ORIENTED PROGRAMMING	3	0	2	4
Prerequisite	Programming for Problem Solving (CSE18R171)				
Course	Program Core				
Category					
Course	Integrated Course				
Туре					
Objective (s)	• To study the object oriented programming pri	nciples,	tokens,	expres	sions,
	control structures and functions.				

						•				structors e and		rphism
		concep			1			0,			1 1	r ··
Course Outco		1										
CO1	Have	a soun	d unde	rstandi	ing of t	he fun	damen	tal con	cepts o	f the OC	OP parac	ligm
CO2	Deve	lop the	progra	ım and	projec	ts in O	ops co	ncepts.				
CO3	Exam	ine and	d imple	ement t	he inh	eritanc	e and v	virtual	functio	n conce	pts in re	al time
	projec	cts.										
CO4	Solve	Solve real-life problems using File concepts and stream classes.										
CO5	Unde	rstand	and in	nplem	ent the	e temp	late ar	nd exc	eption	handlin	ng conce	epts in
	progr	ams										
Mapping of C	COs wi	th PO	5									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Μ				L				Μ		
CO2			Μ	Н		L				Μ		
CO3			М	Н		Н				Μ		
CO4				Н		L				Μ		Н
CO5			Μ	Н								
Course Tonic	(-)											

UNIT 1: INTRODUCTION

Need of OOP, History, Development, Concepts, and Benefits of OOP. Object-oriented paradigm - elements of object oriented programming - Merits and demerits of OO methodology – Structure of a C++ program - tokens, keywords, identifiers, data types, expressions, control structures, declaration and initialization of variables, operators, expressions and implicit conversions. Functions in C++.

UNIT 2: OBJECT ORIENTED PROGRAMMING IN C++

Classes and objects - member functions - constructors and destructors - operator overloading and type conversions – Inheritance - virtual functions and polymorphism.

UNIT 3: FILE HANDLING

Managing console I/O operations: C++ streams, C++ Stream classes, formatted and unformatted I/O operations - File handling in C++: classes for file stream operations, Opening, closing, and updating files, file pointers and their manipulations - Templates and exception handling: class and function templates

UNIT 4 : JAVA INTRODUCTION

An overview of Java - data types - variables and arrays, operators, control statements, classes, objects, methods – Inheritance.

UNIT 5: JAVA PROGRAMMING

Packages and Interfaces- Exception handling - Multithreaded programming - Strings, Input /Output

PRACTICAL COMPONENTS

- 1. Programs Using Functions
 - Functions with default arguments
 - Implementation of Call by Value, Call by Address and Call by Reference
- 2. Simple Classes for understanding objects, member functions and Constructors

	- Classes with primitive data members
	- Classes with arrays as data members
	- Classes with pointers as data members – String Class
	- Classes with constant data members
	- Classes with static member functions
3.	Compile time Polymorphism
	- Operator Overloading including Unary and Binary Operators.
	- Function Overloading
4.	Runtime Polymorphism
	- Inheritance
	- Virtual functions
	- Virtual Base Classes
	- Templates
5.	File Handling
	- Sequential access
	- Random access
6.	Simple Java applications
	- for understanding reference to an instance of a class (object), methods
	- Handling Strings in Java
7.	Simple Package creation.
	- Developing user defined packages in Java
8.	Interfaces
	- Developing user-defined interfaces and implementation
	- Use of predefined interfaces
9.	Threading
	- Creation of thread in Java applications
	- Multithreading
10). Exception Handling Mechanism in Java
	- Handling pre-defined exceptions
	- Handling user-defined exceptions
ТЕХТ	Г BOOKS
1.	Robert Lafore,"Object Oriented Programming in C++" Sams Publishing copyright 2002,
-	fourth edition.
-	Venugopal, R., Rajkumar Buyya, Ravishankar, Mastering C++, TMH, 2003
3.	, I , , , ,
	ERENCE
-	Ira Pohl, Object oriented programming using C++, Pearson Education Asia, 2003
2.	Herbert Schildt, The Java 2 : Complete Reference, Fourth edition, TMH, 2002.
3.	Rajaraman, Object Oriented Programming and C++, New Age International, 2007.

INT18R274	PRINCIPLES OF DIGITAL SIGNAL PROCESSING	L 3	Т 0	P 2	C 4
Prerequisite	Principles of Signals and Systems (ECE18R220)				
Course	Program Core				
Category					

Course	Integ	rated C	ourse									
Type Objective(s)	• '	The ba	sic con	cents a	nd tec	hnique	s for n	ocessi	no sior	als on a	comput	er
	•	Signals with th To pro implem discrete To stue also un The m	e, syste e math vide a nentatio e time s ly vari- derstar nost in	ms, tin ematic thoror on, ana signals ous sar nd Basi nportar	ne and al tools ugh un lysis a mpling c princ nt met	freque s (i.e.) iderstan nd con techni ciples o hods	ncy do fundan nding a npariso ques a of Estin in DS	main c nental f and we on of d n of d nd diff nation P, inc	concept to all D orking igital f erent t Theory luding	ts which OSP tech knowle ilters for ypes of	are asso niques. dge of r proces filters a	design, sing of nd will
Course Outco		u ansio	IIII-uoi	nam pi	000551	ing and	mpor		n Signa		55015.	
CO1		ze and	proce	ss sign	als in t	he disc	rete do	main				
CO2		ze sig		<u> </u>								
CO3								ts for s	pecific	applica	tions	
CO4										applica		
CO5		gn and								rithms to		pecific
Mapping of (COs wi	th PO	5									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н										
CO2	L	Μ	Н									
CO3	L	Μ	Н									
CO4	Μ	Μ										L
CO5	Н	Μ	L				L	Μ				Μ
Course Topic	c(s)											

UNIT 1: SIGNALS AND SYSTEMS

Basic elements of digital signal Processing – Concept of frequency in continuous time and discrete time signals – Sampling theorem – Discrete time signals, Discrete time systems – Analysis of Linear time invariant systems – Z transform –Convolution and correlation - MATLAB programs for signals and systems.

UNIT 2: FAST FOURIER TRANSFORMS

Introduction to DFT – Efficient computation of DFT Properties of DFT – FFT algorithms – Radix-2 and Radix-4 FFT algorithms – Decimation in Time – Decimation in Frequency algorithms –Use of FFT algorithms in Linear Filtering.

UNIT 3: IIR FILTER DESIGN

Structure of IIR – Analog filter design - Discrete time IIR filter from analog filter – IIR filter design by Impulse Invariance, Bilinear transformation, Approximation of derivatives – Design of IIR filter in the Frequency domain.

UNIT 4 : FIR FILTER DESIGN

Structure for FIR systems - Symmetric & Anti-symmetric FIR filters – Linear phase FIR filter – Filter design using windowing techniques (Rectangular Window, Kaiser Window), Frequency sampling techniques - Finite word length effects in digital Filters: Errors, Limit Cycle, Noise Power Spectrum.

UNIT 5: APPLICATION OF DSP

Multirate signal processing: Decimation, Interpolation, Sampling rate conversion by a rational factor –Application of DSP: Model of speech wave form – Vocoder – Musical sound processing, Digital music synthesis.

TEXT BOOK

1. John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principles, Algorithms & Applications", Fourth Edition, Pearson Education / Prentice Hall, 2007.

REFERENCES

- 1. Alan V Oppenheim, Ronald W Schafer and John R Buck, "Discrete Time Signal Processing", PHI/Pearson Education, 2010.
- 2. Sanjit K. Mitra, "Digital Signal Processing A Computer Based Approach", Tata Mc Graw Hill, 2007.
- 3. Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.

PRACTICAL EXPERIMENTS

- 1. Generation of input Signals.
- 2. Analysis of linear system [with convolution and de-convolution operation]
- 3. FIR filters design by Rectangular window using MATLAB Programming.
- 4. FIR filters design by Kaiser Window using MATLAB Programming.
- 5. IIR Butterworth filters design using MATLAB Programming.
- 6. IIR Chebyshev filters design using MATLAB Programming.
- 7. Implementation of FFT
- 8. Implementation of Interpolation and decimation
- 9. Estimation of power spectral density using MATLAB Programming
- 10. Spectral analysis using MATLAB Programming
- 11. Verification of linear phase characteristics of FIR filters .

	MICROCONROLLERS AND EMBEDDED	L	Т	Р	С
INT18R251	SYSTEMS	3	0	1	3.5
Prerequisite	Nil				
Course	Program Core				
Category					
Course	Theory with Practice				
Туре					
Objective (s)	• To have an in depth knowledge of the archite	ecture a	nd progr	ammin	g of 8
	bit and 16 bit microcontrollers				
	• To study the interface of various peripheral d	evices			
Course Outco	ome(s)				
CO1	Understand basic structure microcontroller.				
CO2	Ability to program microcontroller				
CO3	Understand basic structure embedded systems				
CO4	Understand fundamentals of real time operating syste	em			
CO5	Create some embedded products				
Mapping of (COs with POs				

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Η		L			Н						
CO2		L	Η	Μ	Н							
CO3		Н	М									
CO4											Н	
CO5				Η								

UNIT 1: MICROCONTROLLER ARCHITECTURE

Introduction to Microprocessor – Architecture, Memory Organization, Pin configuration. Introduction to 8051 Microcontroller, Architecture, Pin configuration, Memory organization, Input /Output Ports, Counter and Timers, Serial communication, Interrupts.

UNIT 2: ASSEMBLY LANGUAGE PROGRAMMING OF 8051

Instruction set, Addressing modes, Development tools, Assembler Directives, Programming based on Arithmetic & Logical operations, I/O parallel and serial ports, Timers & Counters, and ISR.

UNIT 3: INTRODUCTION TO EMBEDDED SYSTEMS

Overview of Embedded System Architecture, Application areas, Categories of embedded systems, specialties of embedded systems. Recent trends in embedded systems. Brief introduction to embedded microcontroller cores CISC, RISC, ARM, DSP and SoC.

UNIT 4: EMBEDDED / REAL TIME OPERATING SYSTEM

Architecture of kernel, Task and Task scheduler, Interrupt service routines, Semaphores, Mutex, Mailboxes, Message queues, Event registers, Pipes, Signals, Timers, Memory management, Priority inversion problem. Off-the-Shelf Operating Systems, Embedded Operating Systems, Real Time Operating System (RTOS) and Handheld Operating Systems.

UNIT 5: EMBEDDED SYSTEM - DESIGN CASE STUDIES

Digital clock, Battery operated smart card reader, Automated meter reading system, Digital camera.

TEXT BOOKS

- 1. M. A. Mazidi, J. G. Mazidi, R. D, "The 8051 microcontroller & Embedded systems", McKinlay, Pearson Edition. 2010
- 2. Kenneth J. Ayala, Dhananjay V, Gadre "The 8051 microcontroller & Embedded systems", Cengage Learning, 2010

3. Dr. K. V. K. K. Prasad, "Embedded / real – time systems: concepts, design & programming", Black Book, Dreamtech press, Reprint edition 2013

REFERENCES

- 1. Shibu K. V "Introduction to embedded systems", McGraw Hill, 2011
- 2. Ray A.K, and Burchandi K.M, "Intel Microprocessors Architecture Programming and Interfacing", McGraw Hill International Edition, 2004.
- 3. Rafi Quazzaman M., "Microprocessors Theory and Applications: Intel and Motorola", Prentice Hall of India, Pvt. Ltd., New Delhi, 3rd edition, 2008.
- 4. Doughlas V.Hall, "Microprocessors and Interfacing, Programming and Hardware", TMH, 2012.

PRACTICAL EXPERIMENTS

- 1. Arithmetic Operations with 8051
- 2. Finding sum of elements in an array
- 3. Number Conversions

- 4. To find the largest number in a data array
- 5. To write a program to initiate 8251 and to check the transmission and reception of character.
- 6. To interface 8253 programmable interval timer.
- 7. Stepper Motor Interfacing with 8051
- 8. Data transfer programs using 8051
- 9. Timers and Interrupts
- 10. Serial Communication
- 11. Interfacing with Traffic Generator ,DAC, ADC
- 12. Basic and Interfacing Programs Using Embedded C
- 13. Real time system programs (Embedded C)
- 14. KEIL software example programs
- 15. ARM/Atom based Application Development:
 - i. Programs to practice data processing instructions.
 - ii. Interfacing programs
 - iii. Program that uses combination of C and ARM/Atom assembly code.

INT18R311		AR	TIFIC	IAL I	NTEL	LIGEN	NCE		L 3	T 0	P 0	C 3	
Prerequisite	Nil									v	v		
Course	Program Core												
Category													
Course	Theory												
Туре													
Objective (s)	• To Understand different planning problems												
	• To have the basic knowledge how to design and implement AI planning												
	systems												
	• To know how to use AI planning technology for projects in different												
	application domains												
Ability to make use of AI planning literature													
Course Outco													
CO1	Learn the basics of the theory and practice of Artificial Intelligence as a												
	discipline about intelligent agents capable of deciding what to do, and do it												
CO2	Understand the strengths and limitations of various state-space search algorithms												
	and choose the appropriate algorithms for a problem									•			
CO3	Apply knowledge representation techniques and problem solving strategies to												
	common AI applications												
CO4	Design simple software to experiment with various AI concepts and analyze results												
CO5	Build self-learning and research skills to be able to tackle a topic of interest on												
	his/her own or as part of a team												
Mapping of COs with POs													
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	L	Н											
CO2		Н	Μ		Η								

CO3	Η	Μ	Μ	Η			L
CO4	Μ		Μ			Η	L
CO5					Н	Η	

UNIT 1: INTRODUCTION

Intelligent Agents – Agents and environments - Good behavior – The nature of environments – structure of agents - Problem Solving - problem solving agents – example problems – searching for solutions – uniformed search strategies - avoiding repeated states – searching with partial information.

UNIT 2: SEARCHING TECHNIQUES

Informed search and exploration – Informed search strategies – heuristic function – local search algorithms and optimistic problems – local search in continuous spaces – online search agents and unknown environments - Constraint satisfaction problems (CSP) – Backtracking search and Local search for CSP – Structure of problems - Adversarial Search – Games – Optimal decisions in games – Alpha – Beta Pruning.

UNIT 3: KNOWLEDGE REPRESENTATION

First order logic – representation revisited – Syntax and semantics for first order logic – Using first order logic – Knowledge engineering in first order logic - Inference in First order logic – prepositional versus first order logic – unification and lifting – forward chaining – backward chaining - Resolution

UNIT 4: LEARNING

Learning from observations - forms of learning - Inductive learning - Learning decision trees - Ensemble learning - Knowledge in learning - Logical formulation of learning -Explanation based learning - Learning using relevant information - Inductive logic programming - Statistical learning methods - Learning with complete data - Learning with hidden variable - EM algorithm- Instance based learning - Neural networks

UNIT 5: APPLICATIONS

Communication – Communication as action – Formal grammar for a fragment of English – Syntactic analysis – Augmented grammars – Semantic interpretation – Ambiguity and disambiguation – Discourse understanding – Grammar induction - Probabilistic language processing - Probabilistic language models – Information retrieval – Information Extraction – Machine translation.

TEXT BOOK

1. Stuart Russell, Peter Norvig, "Artificial Intelligence – A Modern Approach", 2nd Edition, Pearson Education / Prentice Hall of India, 2004.

- 1. Nils J. Nilsson, "Artificial Intelligence: A new Synthesis", Harcourt Asia Pvt. Ltd., 2000.
- 2. Elaine Rich and Kevin Knight, "Artificial Intelligence", 2nd Edition, Tata McGraw-Hill, 2003.
- 3. George F. Luger, "Artificial Intelligence-Structures and Strategies for Complex Problem Solving", Pearson Education / PHI, 2002.

CSE18R371	COMPUTER NETWORKS	L	Т	Р	С
		3	1	2	5
Prerequisite	Operating Systems (CSE18R273)				

Course	Drogr	om Co	*0									
	Flogi	am Co	le									
Category	T .	1.0										
Course	Integr	rated C	ourse									
Туре												
Objective (s)		-							oncept	s and fu	ındamer	ntals of
		ata co				-						
	2.	To intr	oduce	studen	ts to lo	ocal, m	etropo	litan a	nd wid	le area 1	network	s using
	th	e stanc	lard OS	SI refe	rence r	nodel a	is a fra	mewor	k and	to the In	ternet p	rotocol
	su	ite ar	nd net	work	tools	and p	orogran	nming	using	g variou	is netw	orking
	te	chnolo	gies.									
Course Outco	ome(s)											
CO1	Inspe	ct the b	oasics o	of data	comm	unicati	on and	variou	is categ	gories of	networ	ks
CO2	Identi	ify the	techno	logies	for erro	or free	transm	ission	of data	over in	ternet	
CO3	Apply	y vario	us rout	ing pro	otocols	to sele	ct opti	mal pa	th and	relate ad	ldressin	g
	entitie	es in N	etwork	Layer								
CO4	Imple	ement o	lifferer	nt trans	port a	nd app	icatior	ı layer	protoc	ols whic	ch enabl	es data
	comn	nunicat	ion ov	er inter	met			-	-			
CO5	Confi	igure ir	ntermed	liate de	evices	used in	netwo	orks				
Mapping of C		-										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	М	Н							Н		
CO2	Η	Μ								Н		
CO3		Н	Н	L								L
CO4		Μ	Н		Η		Н					L
CO5				Н		Η						
Course Topic	c(s)	•			•	•					•	
LINIT 1.			TTO		TTT	ODVG		DUVG	TCAT	IAVE	D	

UNIT 1: INTRODUCTION TO NETWORKS AND PHYSICAL LAYER

Introduction: Networks, Uses of Networks, Network Topology, Transmission Modes - Network Hardware - Transmission technology - Categories of Networks - Network Software - Protocol Hierarchy - Design issues for the layers – Services - Reference Model: TCP/IP and OSI - Internet: Architecture of Internet - Physical Layer: Need and Issues, Data Communication, Guided transmission media, Wireless Transmission, Communication Satellites, Multiplexing and Switching.

UNIT 2 : DATA LINK LAYER

DLL: Need and Issues - Error Detection and Correction - Protocol Verification and Data Link Layer protocols - MAC Sub layer - Channel Allocation Problem - Multiple Access Protocols – Ethernet - Wireless LANs and VLAN - Data Link Layer Switching - Connectivity Devices -Configuration of Switches.

UNIT 3: NETWORK LAYER

Network Layer - Need and Issues - Routing algorithms - Congestion Control Algorithms - QOS - Network Layer in Internet - Network Addressing - Configuration of Router - ARP and RARP.

UNIT 4: TRANSPORT LAYER

Transport Layer - Need and Issues - Transport service - Elements of Transport Protocols - Simple Transport Protocol - TCP and UDP.

UNIT 5: APPLICATION LAYER

Application Layer - Need and Issues - DNS - Electronic Mail - FTP - HTTP - WWW - RPC -

RMI.

List of Experiments:

- 1. Study of Socket Programming
- 2. Socket Programming for Client-Server Communication
- 3. Configuration of Switch
- 4. Implementation of ARP
- 5. Implementation of RARP
- 6. Configuration of Router
- 7. Enable Client Server Communication using TCP Protocol
- 8. Implementation of Client Server communication using UDP Protocol
- 9. Implementation of FTP client
- 10. Download a File from HTTP Server
- 11. Implementation of Port Scanning

TEXT BOOKS:

1. Andrew S Tenenbaum, David J. Wetherall, "Computer Networks", Fifth Edition Pearson Education, 2011

REFERENCE BOOKS:

- 1. Behrouz A. Forouzan, "Data Communications and Networking", Fifth Edition, McGraw-Hill, 2012
- **2.** Larry Peterson, Bruce Davie, Morgan Kaufmann, "Computer Networks A Systems Approach", Fifth Edition, 2011
- 3. Todd Lammle, "CCNA Cisco Certified Network Associate Study Guide", 7th Edition, 2011
- **4.** B. S. Manoj, C. Siva Ram Murthy , "Ad Hoc Wireless Networks Architectures and Protocols", Prentice Hall, 2004

INFORMATION TECHNOLOGY

Curriculum and Syllabus

Diffen							001			Curricun	ann and Sy	nuous
INT18R371		Ι	DATAE				ENT				P	C
				SYS	TEMS	•			3	0	2	4
Prerequisite	Nil											
Course	Progr	am Co	re									
Category												
Course Type	Integ	rated C	ourse									
Objective(s)	To le	arn the	princip	oles of	system	atically	^v design	ning an	d using	large so	ale data	base
	Mana	ngemen	t syster	ns for	various	applic	ations	C	C	U		
Course Outco		0	2			••						
CO1	Basic	ability	v to und	lerstand	the co	ncepts	of File	systen	n and st	ructure	of datab	ase.
CO2	1					-				en RDE		
CO3								<u> </u>	-		thods an	d query
		essing		1		1		U		0		1 2
CO4			tion of	Trans	action	manage	ement	and giv	ve the	solution	for trai	isaction
	failur							0				
CO5	Unde	erstand	the late	st DBN	AS Tec	hnique	s and t	ools.				
Mapping of C						1						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н				Н							
CO2		Н	Н				Н					
CO3			М	Μ	Н							L
CO4			M	Μ				Н				
CO5										Н		L
Course Topic	(s)	1	1	1	1		1	1	1	I		
	<u> </u>											

UNIT 1: INTRODUCTION

Introduction to File Systems - Introduction to Database Systems - Database System Structure – Views of Data - Data Models - Types of Data Models – Database Languages - Database Users and Administrator— ER Model - E-R Diagrams.

UNIT 2: RELATIONAL MODEL

Relational Model – Catalog – Types – Keys - Relational Algebra- Domain - Tuple Relational Calculus - SQL – Data Definition - Queries In SQL – Updates - Views – Integrity and Security – Sub Queries - Correlated Sub Queries - Relational Database Design – Functional Dependences And Normalization For Relational Databases (up to BCNF).

UNIT 3: DATA STORAGE AND QUERY PROCESSING

Record storage and Primary file organization- Secondary storage Devices- Operations on Files -Heap File - Sorted Files- Hashing Techniques – Index Structure for files –Different types of Indexes – B-Tree - B+Tree – Database Tuning - Query Processing.

UNIT 4: TRANSACTION MANAGEMENT

Transaction Concepts – Transaction Recovery – ACID Properties –Need for Concurrency Control - Schedule and Recoverability- Serializability and Schedules – Concurrency Control – Types of Locks- Two Phases locking- Deadlock- Time Stamp based Concurrency Control – Recovery Techniques – Concepts - Immediate Update - Deferred Update - Shadow Paging.

UNIT 5: DATABASE SECURITY AND ADVANCED DATABASES

Data Classification - Threats and Risks – Database Access Control – Types of Privileges – Cryptography - Statistical Databases - Distributed Databases – Architecture - Transaction Processing - Relevance Ranking - Crawling and Indexing Web-Object Oriented Databases - XML Databases.

PRACTICAL COMPONENTS

- 1. Implementation of DDL commands in RDBMS.
- 2. Implementation of DML and DCL commands in RDBMS.
- 3. Implementation of Date and Built in Functions of SQL.
- 4. Implementation of Simple Programs.
- 5. Implementation of High-level language extension with Cursors.
- 6. Implementation of High level language extension with Triggers
- 7. Implementation of stored Procedures and Functions.
- 8. Embedded SQL.
- 9. Database design using E-R model and Normalization.
- 10. Database Connectivity using ADO
- 11. Database Connectivity using ODBC
- 12. Database Connectivity using JDBC

TEXT BOOK

1. Abraham Silberschatz, Henry F., Korth and Sudarshan S, "Database System Concepts", McGraw-Hill, Sixth Edition, 2010.

- 1. Ramez Elmasri and Shamkant B. Navathe, "Fundamental Database Systems", Pearson Education, Fifth Edition 2008.
- 2. Raghu Ramakrishnan, "Database Management System", Tata McGraw-Hill Publishing Company, 2003.
- **3.** Hector Garcia–Molina, Jeffrey D.Ullman and Jennifer Widom, "Database System Implementation", Pearson Education, Second Edition, 2009

DIT 10D 250		L	Т	Р	С
INT18R359	SOFTWARE ENGINEERNG	3	0	1	3.5
Prerequisite	Nil				
Course	Program Core				
Category					
Course	Theory with Practice				
Туре					
Objective (s)	• This course helps to understand theories, method	s, and	technolo	ogies ap	plied
	for professional software development.				
	• To define software engineering and explain its	s impo	rtance		
	To discuss the concepts of software products and	l softw	are proc	cesses	
Course Outco	pme(s)				
CO1	Analyze and identify an appropriate process model for	a give	n projec	t	
CO2	Understand the principles at various phases of software	e devel	opment		
CO3	Understand the software project estimation models an			e work	to be
	done, resources required and the schedule for a softwar				
CO4	Translate specifications into design, and identify the				
	architecture for a given problem, all using an approp	oriate s	oftware	engine	ering
	methodology				
CO5	Define a Project Management Plan and tabulate ap		ate Test	ing Pla	ns at
	different levels during the development of the software	•			

Mapping of COs with POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 | PO11 | PO12 CO CO1 L Η Η CO₂ М Η Μ Η Η CO3 Η L Η CO4 Η Η CO5 Η Η **Course Topic(s) UNIT 1 : SOFTWARE ENGINEERING CONCEPTS** Software and Software Engineering - Project Management Concepts - Software Engineering Paradigms - Generic Process Models, Assessment and Improvement - Water Fall Life Cycle Model - Prototype Model - RAD Model - Spiral Model - Incremental Model - Requirements Engineering **UNIT 2: MANAGING SOFTWARE PROJECTS** Metrics : Metrics in Process and Project Domains - Software Measurement - Metrics for Software Quality - Integrating Metrics in a Software Engineering Process - Estimation, Scheduling – Risk Management – Review Techniques - Software Quality Assurance **UNIT 3 : DESIGN CONCEPTS** Design Process - Design Principles - Design Concepts - Software Architecture - Architectural Style, Design and Mapping - User Interface Design **UNIT 4: SOFTWARE TESTING AND DEBUGGING** Testing Fundamentals and Strategies - White-box and Black-box testing - Basis Path Testing - Data Flow Testing - Testing for Special Environments - Unit Testing, - Integration Testing - Validation Testing - System Testing – Debugging - Software Maintenance – Software **Configuration Management UNIT 5 : ADVANCED TOPICS** Computer Aided Software Engineering - Clean room software engineering - Reengineering -**Reverse Engineering** PRACTICAL COMPONENTS 1. Introduction to UML (Unified Modeling Language) b) Visualizing c) Specifying d) Constructing e) Documenting 2. Program Analysis and Project Planning : Study of Problem definition – Identification of project Scope, Objectives, Infrastructure 3. Preparation of System Requirement Specification (SRS) and related analysis documents as Per the guidelines in ANSI/IEEE Std 830-1984. 4. Create UML Diagrams (Use diagrams, Activity diagrams, Class diagrams, Sequence diagrams) 5. Software Development (Implementation) 6. Software Testing and Prepare test plan, 7. Execution of Test cases.

8. Debugging and demonstration.

TEXTBOOK

1. Roger S. Pressman, "Software Engineering: A Practitioner's Approach", seventh Edition, Mc-

Graw Hill, 2014. **REFERENCE BOOKS**

- 1. Steve McConnell, "Code Complete", Second Edition, Microsoft Press.2004
- 2. Ian Somerville, "Software Engineering", Addison-Wesley, Ninth edition, 2011.
- 3. Richard E. Fairley, "Software Engineering Concepts", Second Edition McGraw-Hill, 1985.

PROFESSIONAL ELECTIVES

COMPUTER PROGRAMMING

INT10D251			avar		OFTU				L	Т	Р	C
INT18R351			9191	EN S	OFTW	AKE			3	0	1	3.5
Prerequisite	Com	puter A	Archite	cture a	nd Org	anizati	ion (CS	SE18R	174)			
Course		ssiona										
Category												
Course Type	Theo	ry with	n Pract	ice								
Objective (s)	•	To	introdu	ice the	essent	ial con	cepts c	of Syste	em Pro	grammi	ing	
	•						-	-		d macro	-	sors.
Course Outcon	ne(s)										•	
CO1	Know	w the b	ackgro	und K	nowled	lge of S	System	Softw	vare			
CO2	Desig	gn a sir	nple A	ssemb	ler	•	•					
CO3	Ident	ify the	use of	Linke	rs and	Loader	S					
CO4	Unde	erstand	Machi	ine Ind	epende	ent Mae	cro Pro	cessor				
CO5	Form	ulate v	various	Comp	ilers a	nd Inte	erprete	rs				
Mapping of C	Os wit	h POs										
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	Н					Μ					
CO2		L					Н			Μ		Η
CO3		Н					Μ			Н		
CO4		Н					Μ					
CO5		L					L			Η		
Course Topic (s)											
UNIT 1: BA	CKGR	ROUN	D									
Introduction – S												
Computer (SIC											g mode	s -
instruction sets		-	-	ning. P	ractica	l: Basi	c syste	m prog	gramm	ing		
UNIT 2: ASS												
Basic Assemble	er Fund	ctions -	 Macł 	nine De	epende	nt Asse	embler	Featur	res – N	f achine	Indepe	ndent

Basic Assembler Functions – Machine Dependent Assembler Features – Machine Independent Assembler Features - Program relocation - Machine independent assembler features - Literals -Symbol-defining statements - Expressions - One pass assemblers and Multi pass

assemblers - Implementation example - MASM assembler. Practical: Assembly language programming

UNIT 3: LOADERS AND LINKERS

Basic loader functions - Design of an Absolute Loader – A Simple Bootstrap Loader -Machine dependent loader features - Relocation – Program Linking – Algorithm and Data Structures for Linking Loader - Machine-independent loader features - Automatic Library Search – Loader Options - Loader design options - Linkage Editors – Dynamic Linking – Bootstrap Loaders - Implementation example - MSDOS linker. Practical: Dynamic link programming

UNIT 4: MACRO PROCESSORS

Basic macro processor functions - Macro Definition and Expansion – Macro Processor Algorithm and data structures - Machine-independent macro processor features -Concatenation of Macro Parameters – Generation of Unique Labels – Conditional Macro Expansion – Keyword Macro Parameters-Macro within Macro-Implementation example -MASM Macro Processor – ANSI C Macro language. Practical: Macro implementation

UNIT 5: SYSTEM SOFTWARE TOOLS

Text editors - Overview of the Editing Process - User Interface – Editor Structure. -Interactive debugging systems - Debugging functions and capabilities – Relationship with other parts of the system – User-Interface Criteria. Practical: User interface design

TEXT BOOK

1. Leland L. Beck, "System Software – An Introduction to Systems Programming", 3rd Edition, Pearson Education Asia, 2006.

REFERENCES

1. J. Nithyashri, "System Software", Tata McGraw Hill, 2nd Edition, 2010.

2. A.A. Puntambekar, I. A. Dhotre, "System Programming", McGraw Hill, 2008.

INTT10D201	OBJECT ORIENTED ANALYSIS	L	Т	Р	С
INT18R301	AND DESIGN	3	0	0	3
Prerequisite	Nil				
Course	Professional Elective				
Category					
Course	Theory				
Туре					
Objective (s)	• To know about OOAD method				
	• To know about software design steps				
Course Outco	ome(s)				
CO1	Pointing out the importance and function of each	UML n	nodel the	rougho	ut the
	process of object-oriented analysis and design and	l explai	ining the	e notati	on of
	various elements in these models				
CO2	Highlighting the importance of object-oriented analysis	sis and	design p	atterns	
CO3	Providing students with the necessary knowledge	and sk	tills in u	ising o	bject-
	oriented CASE tools				
CO4	Applying Design Patterns in software development p	rocess			
CO5	Familiar with various coding and testing process				
Mapping of C	COs with POs				

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Н	Н							М		L
CO2		Н	Μ		Н							
CO3		Н	Н		Μ							
CO4					Н	Н						L
CO5		М	Μ				Н			L		

UNIT 1 : UML DIAGRAMS

Introduction to OOAD – Unified Process - UML diagrams – Use Case – Class Diagrams– Interaction Diagrams – State Diagrams – Activity Diagrams – Package, component and Deployment Diagrams

UNIT 2 : DESIGN PATTERNS

GRASP: Designing objects with responsibilities – Creator – Information expert – Low Coupling – High Cohesion – Controller - Design Patterns – creational - factory method - structural – Bridge – Adapter -behavioral – Strategy – observer

UNIT 3 : CASE STUDY

Case study – the Next Gen POS system, Inception -Use case Modeling - Relating Use cases – include, extend and generalization - Elaboration - Domain Models - Finding conceptual classes and description classes – Associations – Attributes – Domain model refinement – Finding conceptual class Hierarchies - Aggregation and Composition

UNIT 4 : APPLYING DESIGN PATTERNS

System sequence diagrams - Relationship between sequence diagrams and Logical architecture and UML package diagram – Logical architecture refinement - UML class diagrams - UML interaction diagrams - Applying GoF design patterns

UNIT 5: CODING AND TESTING

Mapping design to code – Testing: Issues in OO Testing – Class Testing – OO Integration Testing – GUI Testing – OO System Testing

TEXT BOOK

1. Craig Larman, "Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development", fourth Edition, Pearson Education, 2013.

- 1. Simon Bennett, Steve Mc Robb and Ray Farmer, "Object Oriented Systems Analysis and Design Using UML", Fourth Edition, Mc-Graw Hill Education, 2010.
- 2. Erich Gamma, and Richard Helm, Ralph Johnson, John Vlissides, "Design patterns: Elements of Reusable Object-Oriented Software", Addison-Wesley, 1995.
- 3. Martin Fowler, "UML Distilled: A Brief Guide to the Standard Object Modeling Language", Third edition, Addison Wesley, 2003.

INT18R352	DESIGN AND ANALYSIS OF ALGORITHM	L	Т	Р	С
11N 1 10K352	DESIGN AND ANAL ISIS OF ALGORITHM	3	0	1	3.5
Prerequisite	Data Structures and Algorithms (INT18R271)				
Course	Professional Elective				
Category					

Course	Theorem	ry with	Practi	ce								
Туре												
Objective(s)		Analyz		• •	-			-				
		Write r	U			-	0					
	•	Demon	istrate a	a famil	iarity v	vith ma	ajor alg	gorithm	is and o	lata stru	ctures.	
	•	Apply	import	ant alg	orithm	ic desig	gn para	digms	and m	ethods o	of analys	sis.
	•	Synthe	size eff	ficient	algorit	hms in	comm	on eng	ineerin	ıg desigi	n situati	ons
Course Outco	ome(s)											
CO1	Appl	y the	basic	concep	ots of	algori	thms a	and a	analyze	the p	erforma	nce of
	algor	ithms										
CO2	Ident	ify vari	ious alg	gorithm	n desig	n techr	iques t	for dev	eloping	g algorit	hms	
CO3	Analy	ysis vai	rious se	earchin	g, sort	ing and	l graph	traver	sal algo	orithms		
CO4	Unde	rstand	NP cor	npletei	ness an	d iden	ify dif	ferent]	NP con	nplete p	roblems	
CO5	Form	ulate th	ne adv	anced t	topics	on algo	rithms					
Mapping of (COs wi	ith PO	S									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	Η										
CO2		Η	Η									L
CO3		Η	Η	Μ								
CO4	L	Η	Μ				Н					
CO5		Μ	L	Н								Н
Course Topic	c(s)											
UNIT 1: BA	ASIC (CONC	EPTS	OF AI	GOR	ITHM	S					
Introduction	– Noti	ion of	Algor	ithm -	- Fund	lament	als of	Algor	ithmic	Solving	g – Im	portant
Problem types	s – Fun	Idamen	tals of	the Ar	nalysis	of Alg	orithm	Efficie	ency -	Analysi	s Frame	work –
Asymptotic N												
UNIT 2: M												
Mathematical												
Algorithm –										gorithm	s – Alg	gorithm
Visualization.					-			-				
UNIT 3: AN												
Brute Force							-					0
matching – D			-		-	-			-			•
Traversal and		-				nd Cor	iquer –	Insert	ion So	rt – Dep	oth first	Search
and Breadth F					0	I						
		ITHM			-		al tur	• •	VI Ta	II		d II.e.e.
Transform and sort – Dynam												
trees – Knap		-	-				-	-		-	•	
Kruskal's Alg	-			-			•		-		s Aigu	. Iuiiii —
UNIT 5: Al		-		-			ii uces	. 1 1 act	ical. 11	663		
Backtracking							[¬] ircuit	nrohla	- s	uheet_9	um pro	hlem _
Branch and be	-							-			-	
NP and NP-C		-	-			-	-			-	-	
Knapsack pro	-	~ P1001		· Philo	amati	JII I LIG	JITTIII	5 101 11	. 11a	14 1 1001		uviivai.
Ishapsack pro												
												81

TEXT BOOK

- 1. Anany Levitin, "Introduction to the Design and Analysis of Algorithm", 3rd Edition, Pearson Education India, 2013.
- 2. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, "Introduction to Algorithms", PHI Learning Private Limited, 2012..

- 1. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, "Introduction to Algorithms", PHI Pvt. Ltd., 2001.
- 2. Sara Baase and Allen Van Gelder, "Computer Algorithms Introduction to Design and Analysis", 2nd Impression, Pearson Education India, 2008.
- 3. A.V.Aho, J.E. Hopcroft and J.D.Ullman, "The Design and Analysis of Computer Algorithms", Pearson Education Asia, 2003.

INT18R360		рат,		IVSI	e tieti	NG PY	TUON	J	L	Т	Р	С
111100300		DATA	A AINA	L 1 51	5 0511	IG F I	INU	N	3	0	1	3.5
Prerequisite	Progr	ammin	g for F	Problem	n Solvi	ng (CS	E18R1	171)				
Course	Profe	ssional	Electi	ve								
Category												
Course	Theor	ry with	Practi	ce								
Туре												
Objective(s)	The s	tudent	will be	e able to	o learn							
	•	Fund	lament	als and	Data s	structur	es of p	ythons	s progra	amming	languag	e.
	•	Obje	ct orie	nted co	oncepts	in pytl	hon pro	ogramr	ning la	nguage.		
	•	Retri	eving,	proces	sing, s	toring	and vis	ualizat	tion of	data usi	ng pytho	on.
Course Outco	ome(s)											
CO1	Explo	ore Pyt	hon la	nguage	e funda	amenta	ls, inc	luding	basic	syntax,	variable	es, and
	types											
CO2	Use f	unction	ns, crea	ate and	manip	ulate r	egular	Pythor	n lists b	y using	data str	uctures
	conce	1										
CO3	Unde	rstand	the bas	sic obje	ect orie	nted co	oncepts	in pyt	hon			
CO4		tively ı										
CO5	Creat	e and c	ustomi	ize plot	ts on re	eal data	and su	upercha	arge yo	ur scrip	ts with c	ontrol
		and ge		ow the	Panda	s Data	Frame					
Mapping of C								1				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	Н			Μ							<u> </u>
CO2	L	Н			Μ					Μ		
CO3	L	Н		Μ	Μ		L				Н	
CO4		Н	Н	Н	Μ		L			Μ	Н	
CO5		Н	Η	Μ	Μ					Μ		L
Course Topic												
UNIT I: INT												
Brief history				• •		-			-			
keywords, var	iables,	namin	g conv	vention	. Oper	ators –	Types,	Prece	dence	& Assoc	ciativity,	Input,

Output, file handling, Control Statements.

UNIT II: FUNCTIONS AND DATA STRUCTURES IN PYTHON

Functions-basics of functions, functions as objects, recursive functions, List -methods to process lists, Shallow & Deep copy, Nested lists, lists as matrices, lists as stacks, Queues, -De-queues, Tuples -basic operations on tuples, nested tuples, Dictionaries -operations on dictionary, ordered dictionary, iteration on dictionary, conversion of lists & strings into dictionary, Sets & frozen sets, looping techniques on lists & dictionaries, Lamda, filter, reduce, map, list comprehension, iterators and generators.

UNIT III: OBJECTS IN PYTHON

Class and instance attributes, inheritance, multiple inheritance, methos resolution order, magic methods and operator overloading, meta classes, abstract and inner classes, exception handling, modular programs and packages.

UNIT IV: NUMERICAL ANALYSIS IN PYTHON

Introduction to NumPy, NumPy array object, Creating a multidimensional array, NumPy numerical types -Data type objects, Character codes, dtype constructors. dtype attributes. Onedimensional slicing and indexing. Manipulating array shapes --Stacking arrays, Splitting NumPy arrays, NumPy array attributes, Converting arrays, Creating array views and copies. Indexing with a list of locations. Indexing NumPy arrays with Booleans. Broadcasting NumPy arrays.

UNIT V: DATA MANIPULATION AND VISUALIZATION IN PYTHON

Data frames in panda, Creating dataframes from .csv and excel files, Lists of tuples, Dataframes aggregation and concatenation, plotting data using matplotlib & panda

TEXT BOOK(S):

- 1. Ivan Idris, Python Data Analysis, Packt Publishing, UK, 2014 (freely available online)
- 2. Fabio Nelli, Python Data Analytics with Pandas, NumPy and Matplotlib, 2nd Edition, Apress, 2018.

- 1. Wesley J Chun, Core Python Programming, Prentice Hall, Second Edition, 2006
- 2. Wes McKinney, Python for Data Analysis, O'Reilly -2013

INT10D2/1	DATA COUNCE LICING D DDOOD AMMING	L	Т	Р	С
INT18R361	DATA SCIENCE USING R PROGRAMMING	3	0	1	3.5
Prerequisite	Database Management Systems (INT18R371)				
Course	Professional Elective				
Category					
Course	Theory with Practice				
Туре					
Objective (s)	The student will be able to learn				
	• Students will develop relevant programming abilit	ies.			
	• Students will develop the ability to build and asses	ss data-l	based m	odels.	
	• Students will demonstrate skill in data management	nt.			
	• Students will apply data science concepts and met	hods to	solve pr	oblems	s in
	real-world contexts and will communicate these so	olutions	effectiv	ely	
Course Outco	ome(s)				
CO1	Examine the data, generate hypothesis and quickly tes	st them			
CO2	Transform the dataset into a form convenient for anal	ysis			

CO3	Learn	Learn powerful R tools for solving data problems with greater clarity and ease											
CO4	Provi	rovide a low-dimensional summary that capture true signals in the dataset											
CO5	Learn	R Ma	rkdowi	n for in	tegrati	ng pros	se, cod	e and r	esults				
Mapping of C	COs wi	earn R Markdown for integrating prose, code and results s with POs											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Н				Н								
CO2		Н	Н				Н						
CO3			Μ	Μ	Н							L	
CO4			Μ	Μ				Н					
CO5													

Unit I - Explore

Introduction to Data Science - **Data Visualization with ggplot2**- Introduction – First steps - Aesthetic Mappings – Common Problems – Facets – Geometric objects- Statistical Transformations – Positional Adjustments - **Data Transformation with dplyr:** Introduction – Filter Rows with filter() –Arrange Rows with arrange() – Select Columns with select() –Add New Variables with mutate() - **Exploratory Data Analysis:** Introduction- Questions-Variations- Missing values- Covariation – Patterns and Models – ggplot2 Calls.

Unit II - Wrangle

Tibbles with tibble – Introduction - Creating Tipples - Tibbles Vs data.frame - Data Import with readr- Introduction - Parsing a vector - Parsing a file – writing to a file – **Tidy Data with tidyr** – Introduction – Tidy Data – Spreading and Gathering – Separating and Pull – Missing Values – Nontidy Data – **Relational Data with dplyr** – Introduction – nycflights13 – Keys- Mutating Joins – Filtering Joins – Join Problems – Set Operations – Strings with stringr – String Basics – Matching Patterns with Regular Expressions.

Unit III - Program

Pipes with magrittr – Introduction – Piping Alternatives – When Not to use the Pipe – other tools from magrittr – **Functions** – Introduction – Function are for Humans and Computers – Conditional Execution – Function Arguments – Return Values – Environment – **Vectors** – Introduction – Vector Basics – Important types of Atomic Vector – Using Atomic Vectors – Recursive Vectors (Lists) – Attributes – Augmented Vectors – Iteration with purr – Introduction – For Loops – For Loop Variations – For Loop Vs Functionals – The Map Functions – Mapping over Multiple Arguments.

Unit IV - Model

Model Basics with modelr – Introduction – A simple model – Visualizing Models – Formulas and Families – Missing Values – Other Model Families – **Model Building** – Introduction – Why are Low-Quality Diamonds More Expensive? – What Affects the Number of Daily Flights? – Learning more about Models – **Many Models with purr and broom** – Introduction – gapminder – List-Columns – Creating List-Columns – Simplifying List-columns – Making Tidy Data with broom.

Unit V - Communicate

R Markdown – Introduction – R Markdown Basics – Text Formatting with Markdown – Code Chunks – Troubleshooting – YAML Header – **Graphics for Communication with ggplot2** – Introduction – Label – Annotations – Scaling – Zooming – Themes – Saving your plots – **R Markdown Formats** – Introduction – Output options – Documents – Notebooks – Presentations – Dashboards – Interactivity – Websites – Other Formats

TEXT BOOK(S):

1. Hadley Wickham, Garrett Grolemund, "R for Data Science Import, Tidy, Transform, Visualize and Model Data", O'Reilly, 2017.

- 1. Matthias Templ, "Simulations for Data Science with R", Packt Publisher, 2016.
- 2. Yu-Wei, David Chiu, "R for Data Science Cookbook", Packt Publisher, 2016

INT18R451			COM	PONE	ENT B	ASED			L	Т	Р	C
IN I 10K451			T	ECHN	OLO	GΥ			3	0	1	3.5
Prerequisite	Objec	ct Oriei	nted Pr	ogram	ming (I	INT181	R273)					
Course	Profe	ssional	Electi	ve								
Category												
Course	Theor	ry with	Practi	ce								
Туре												
Objective(s)		archite	cture a	nd mid	dlewar	e.	-		-	nents, to		
	•	Java Bo To imp	eans, E	JB and owled	l RMI. ge on o	Ū			•	uch as (C	
	• ′	To intr	oduce	COM,	DCOM			echnolo and its	-	pment		
Course Outco	ome(s)											
CO1								key to throug		ssful so e	ftware	design,
CO2	Famil		with th	•						ding Jav	a Bean	s, EJB,
CO3	Expe	rtise wi	ith the	CORB	A reali	zation	of con	nponen	ts			
CO4					ation a onents				ect sys	tems and	d master	ing the
CO5									ks & i	ts devel	opment	
Mapping of (COs wi	th PO	S									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			Н				Н					
CO2		L										Н
CO3		L		Η								
CO4		Μ			Н							
CO5					Н						Н	L
Course Topic												
Software Com – interfaces –	INTRODUCTION Components – objects – fundamental properties of Component technology – modules ces – callbacks – directory services – component architecture – components and re. Practical: Development of simple com components in VB and use them in											
muulewale.	ractic	ai. De	veropn	ient 0	i simp			ponent	5 111 1	D and	use in	

applications.

UNIT 2 : JAVA BASED COMPONENT TECHNOLOGIES

Threads – Java Beans – Events and connections – properties – introspection – JAR files – reflection – object serialization – Enterprise Java Beans – Distributed Object models – RMI and RMI-IIOP. Practical: Deploying EJB for simple arithmetic operator.

UNIT 3 : CORBA COMPONENT TECHNOLOGIES

Java and CORBA – Interface Definition language – Object Request Broker – system object model – portable object adapter – CORBA services – CORBA component model – containers – application server – model driven architecture. Practical: SIMPLE APPLICATION USING CORBA

. UNIT 4: NET BASED COMPONENT TECHNOLOGIES

COM – Distributed COM – object reuse – interfaces and versioning – dispatch interfaces – connectable objects – OLE containers and servers – Active X controls – .NET components - assemblies – appdomains – contexts – reflection – remoting. Practical: Sample applications.

UNIT 5: COMPONENT FRAMEWORKS AND DEVELOPMENT

Connectors – contexts – EJB containers – CLR contexts and channels – Component Frameworks- Object-Oriented Frameworks (OOFW) - Black Box component framework – directory objects – cross-development environment – component-oriented programming – Component design and implementation tools – testing tools - assembly tools. Practical: Distributed objects deployment-EJB and CORBA

TEXT BOOK

1. Clemens Szyperski, "Component Software: Beyond Object-Oriented Programming", Pearson Education publishers, 2003.

- 1. Ed Roman, "Mastering Enterprise Java Beans", John Wiley & Sons Inc., 2002.
- 2. Mowbray, "Inside CORBA", Pearson Education, 2003.
- 3. Freeze, "Visual Basic Development Guide for COM & COM+", BPB Publication, 2001.

INT18R401	PRINCIPLES OF COMPILER DESIGN	L	Т	Р	С
IN I 18K4U1	PRINCIPLES OF COMPILER DESIGN	3	1	0	4
Prerequisite	Programming for Problem Solving (CSE18R171)				
Course	Professional Elective				
Category					
Course	Theory				
Туре					
Objective (s)	• To understand the basics of computation				
	• To understand the process in compilation of a particular of the process in compilation of a particular of the process in the process of the	rograms	5		
	• To understand the computer's way of generating	g code.			
	• To understand the optimization techniques in co	ode gene	eration		
Course Outco	ome(s)				
CO1	Understand the basics of compilation(computing)				
CO2	Understand grammar of compilers				
CO3	Understand the intermediate form of codes in compil	ers			
CO4	Understand the code generation technique(Machine c	code)			

CO5	Unde	rstand	the opt	imizati	ion of a	code in	compi	lers				
Mapping of COs with POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	Η			L	Μ						
CO2	L	Н			L	Μ						
CO3	L	Н			L	Μ						L
CO4	L	Н	Μ		L							L
CO5	L	Н	Μ		L							L

UNIT 1: INTRODUCTION TO COMPILING

Compilers – Analysis of the source program – Phases of a compiler – Cousins of the Compiler – Grouping of Phases – Compiler construction tools - Lexical Analysis - Role of Lexical Analyzer – Input Buffering – Specification of Tokens - Recognition of tokens.

UNIT 2: SYNTAX ANALYSIS

Role of the parser –Writing Grammars –Context-Free Grammars – Top Down parsing -Recursive Descent Parsing - Predictive Parsing – Bottom-up parsing - Shift Reduce Parsing – Operator Precedent Parsing - LR Parsers - SLR Parser - Canonical LR Parser - LALR Parser.

UNIT 3: INTERMEDIATE CODE GENERATION

Intermediate languages – Declarations – Assignment Statements – Boolean Expressions – Case Statements – Back patching – Procedure calls.

UNIT 4: CODE GENERATION

Issues in the design of code generator – The target machine – Runtime Storage management – Basic Blocks and Flow Graphs – Next-use Information – A simple Code generator – DAG representation of Basic Blocks – Peephole Optimization.

UNIT 5: CODE OPTIMIZATION AND RUN TIME ENVIRONMENTS

Introduction– Principal Sources of Optimization – Optimization of basic Blocks – Introduction to Global Data Flow Analysis – Runtime Environments – Source Language issues – Storage Organization – Storage Allocation strategies – Access to non-local names – Parameter Passing. **TEXT BOOK**

1. Alfred Aho, Ravi Sethi, Jeffrey D Ullman, "Compilers Principles, Techniques and Tools", Pearson Education Asia, 2011.

- 1. Allen I. Holub "Compiler Design in C", Prentice Hall of India, 2003.
- 2. C. N. Fischer and R. J. LeBlanc, "Crafting a compiler with C", Benjamin Cummings, 2003.
- 3. J.P. Bennet, "Introduction to Compiler Techniques", Second Edition, Tata McGraw-Hill, 2003.

INT18R402	GAME PROGRAMMING	L	Т	P	С
IN I 10K4U2	GAME FROGRAMMINING	3	1	0	4
Prerequisite	Programming for Problem Solving (CSE18R171)				
Course	Professional Elective				
Category					
Course Type	Theory				
Objective (s)	• To know the mechanics and logic of Game desig	gn			

	• [Го traiı	n the st	udents	to acq	uire kn	owledg	ge in ga	ame m	odeling	techniqu	ies
	• [Го acq	uire kn	owledg	ge aboi	it the is	ssues in	n game	design	1		
	• [Го gair	n skill i	n game	e engin	e deve	lopmer	nt				
Course Outcon	ne(s)											
CO1	Have	knowl	edge o	n the c	oncepts	s and te	echniqu	ies use	d in Ga	ame desi	ign	
CO2	Desig	n and i	model	interac	tive ga	me.						
CO3	Desig	n and i	implen	nent alg	gorithm	ns and t	techniq	lues ap	plied to	o Game	design	
CO4	Analy	ze the	variou	s Gam	ing pla	tforms	and No	etwork	S			
CO5	Devel	lop son	ne gam	ing ap	plicatio	ons						
Mapping of CO)s witl	n POs										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					L							
CO2				Н				Н				
CO3	Η											
CO4					Н							
CO5				Н			М	Н		Н	Μ	

UNIT 1: 3D GRAPHICS FOR GAME PROGRAMMING

Coordinate Systems, Ray Tracing, Modeling in Game Production, Vertex Processing Rasterization, Fragment Processing and Output Merging, Illumination and Shaders, Parametric Curves and Surfaces, Shader Models, Image Texturing, Bump Mapping, Advanced Texturing, Character Animation, Physics-based Simulation

UNIT 2 : GAME DESIGN PRINCIPLES

Character development, Story Telling, Narration, Game Balancing, Core mechanics, Principles of level design, Genres of Games, Collision Detection, Game Logic, Game AI, Path Finding

UNIT 3 : GAMING ENGINE DESIGN

Renderers, Software Rendering, Hardware Rendering, and Controller based animation, Spatial Sorting, Level of detail, collision detection, standard objects, and physics

UNIT 4: GAMING PLATFORMS AND FRAMEWORKS

Flash, DirectX, OpenGL, Java, Python, XNA with Visual Studio, Mobile Gaming for the Android, iOS, Game engines - Adventure Game Studio, DX Studio, Unity

UNIT 5: GAME DEVELOPMENT

Developing 2D and 3D interactive games using OpenGL, DirectX – Isometric and Tile Based Games, Puzzle games, Single Player games, Multi Player games.

TEXT BOOK

- 1. David H. Eberly, "3D Game Engine Design, Second Edition: A Practical Approach to Real-Time Computer Graphics"Morgan Kaufmann, 2 Edition, 2006.
- 2. Jung Hyun Han, "3D Graphics for Game Programming", Chapman and Hall/CRC,1st edition, 2011.

- 1. Mike Mc Shaffrfy, "Game Coding Complete", Third Edition, Charles River Media, 2009.
- 2. Jonathan S. Harbour, "Beginning Game Programming", Course Technology PTR, 3 edition, 2009.
- 3. Ernest Adams and Andrew Rollings, "Fundamentals of Game Design", Prentice Hall 1st edition, 2006.

INT18R452	PF	ROGR	AMMI	ING W	ITH ()PEN	SOUR	CE	L	Т	P	С
1111101452				SOFT	WARI	£			3	0	1	3.5
Prerequisite			ig for P		n Solvi	ng (CS	E18R1	71)				
Course	Profe	ssional	Electi	ve								
Category												
Course Type	Theor	ry with	Practi	ce								
Objective (s)	• '	To lear	n abou	t the va	arious	Linux o	listribu	tions.				
	• '	To lear	n the p	rogran	nming	practic	es in F	OSS				
	• '	To exp	lore Li	nux en	nbedde	d devic	e					
					wledge	e of op	en sou	urce pr	ogram	ming us	sing em	beddeo
		Linux o	device.									
Course Outco	<u>``</u>											
CO1	Work	in the	linux e	environ	ment a	and con	tribute	to free	e and o	pen soui	ce softw	vare
CO2	-		content		-	-						
CO3	Instal	l and c	onfigu	re linuz	x opera	ting sy	stem d	istribu	tion in	embedd	ed devid	ces that
		ort linu										
CO4		_	e hardv	_	-	_				ces		
CO5	Creat	e web	prograi	nming	using	embed	ded lin	ux dev	ice			
Mapping of C	Os wit	h POs										
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Η						L					
CO2								Η				
CO3		L		Н	М		L			Μ		
CO4											Н	
CO5				L								
Course Topic (s)											
UNIT 1: INT												
Philosophy - l												and fil
systems - Partit										mmands		
UNIT 2 : PR	OGRA	MMI	NG TE	CHNI	QUES	AND	PRAC	TICE	S			
Programming u												
dialog - widge		-		ractices	s - Do	cumen	tation	- use	of vers	sion cor	itrol sys	stem 11
FOSS. Practica					DDED	T TNITI	VDE	WICE				
UNIT 3: OV Peripherals - 0									a fil	as and	file ave	toma
configuration -								iiiiaiiu	5 - 111	es allu	The sys	stems
-	E B PR	-	-			•		LINU	X DFV	VICE		
Web server - L											g contei	nt - tex
- images - com												
Practical: Myse	-	, 11100	u	P148	40	Pii		. Sull	r			
UNIT 5: INT	-	CE W	ITH (THE	R HAF	RDWA	RE					
								n - inst	alling	and tast	ing GPI	O wit
Basic Inputs a	na out	puis -	Scheut	ning C	omman	100 111	II CIUI	1 11150	annig	and test	ing Or i	
Basic Inputs a python- Expans												O with
	sion bo											O wit

REFERENCES

- 1. Simon Monk, "Programming the Raspberrypi: Getting started with python", McGraw Hill, 2013
- 2. Stephen Burge, Joomla! 3 Explained: Your step-by-step guide, Pearson education, 2014.

INT18R453		MU	LTIM	EDIA .	AND C	COMP	UTER		L	Т	Р	С
IN I 18K455				GRA	PHICS	5			3	0	1	3.5
Prerequisite	Data	Structu	res and	l Algo	rithm (INT18	R271)				-	
Course	Progr	am Co	re									
Category												
Course	Theor	ry with	practio	cal								
Туре												
Objective(s)	• 7	To pro modeli To Ur standar	vide in ng of 3 ndersta ds, alg perienc	-depth D appl nd ba orithm	knowl ication sic co s and s elopme	ledge of ncepts oftwar nt of 1	of disp relate e multim	lay sys	tems, i Multi	s with m image sy media i e by uti	ynthesis ncludin	, shape g data
Course Outco		1014110	5 una			i uigoi	1011115					
CO1		rstand	the pro	ficienc	y in 3I) com	outer g	raphics	API p	rogramr	ning	
CO2										modelin		sis and
	interp	retatio	n of 2E) and 3	D visu	al info	rmatio	n				
CO3	Unde	rstand	differe	nt reali	zations	s of mu	ltimed	ia tool	8			
CO4		lop inte										
CO5	Unde	rstand	the kno	owledg	e of dif	fferent	media	stream	is in m	ultimedi	a transn	nission
Mapping of C	COs wi	th POs	5									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	М	Н									
CO2		Н	М				Н					
CO3		М	Н					Н				
CO4			Н		Н				Н			
CO5		М	Н				Н					
Course Topic	z(s)											

UNIT 1: MULTIMEDIA SYSTEMS DESIGN

An Introduction – Multimedia applications – Multimedia System Architecture – Evolving technologies for Multimedia – objects used in Multimedia systems – Multimedia Data interface standards – Multimedia Databases

UNIT 2: MULTIMEDIA FILE HANDLING

Compression & Decompression Algorithms– Data & File Format standards – Multimedia I/O technologies - Digital voice and audio – video image and animation – Full motion video – Storage and retrieval Technologies.

UNIT 3: HYPERMEDIA

Multimedia Authoring & User Interface - Multimedia Messaging - Hypermedia messaging -

Hypermedia message component – creating Hypermedia message – Integrated multimedia message standards – Integrated Document management – Distributed Multimedia Systems.

UNIT 4: OUTPUT PRIMITIVES

Introduction - Line - Curve and Ellipse Algorithms – Attributes –Two-Dimensional Geometric Transformations – Two-Dimensional Viewing.

UNIT V : THREE-DIMENSIONAL CONCEPTS

Three-Dimensional Object Representations – Three-Dimensional Geometric and Modeling Transformations – Three-Dimensional Viewing – Color models – Animation

TEXT BOOKS

- 1. Prabat K Andleigh and Kiran Thakrar, "Multimedia Systems and Design", PHI, 2013.
- 2. Donald Hearn and M.Pauline Baker, "Computer Graphics C Version", Pearson Education, 2009.

REFERENCES

- 1. Judith Jeffcoate, Multimedia in practice technology and Applications, PHI, 2007.
- 2. Foley, Vandam, Feiner, Huges, 'Computer Graphics: Principles & Practice', Pearson Education, second edition 2003.

PRACTICAL EXPERIMENTS

- 1. To implement Bresenham's algorithms for line, circle and ellipse drawing
- 2. To perform 2D Transformations such as translation, rotation, scaling, reflection and sharing.
- 3. To implement Cohen-Sutherland 2D clipping and window-view port mapping
- 4. To perform 3D Transformations such as translation, rotation and scaling.
- 5. To visualize projections of 3D images.
- 6. To convert between color models.
- 7. To implement RLE compression algorithm
- 8. To implement image compression algorithm
- 9. To perform animation using any Animation software.
- 10. To perform basic operations on image using any image editing software

INT18R454	C# AND .NET PROGRAMMING	L	Т	P	С
111110K454	C# AND .NET PROGRAMMING	3	0	1	3.5
Prerequisite	Object Oriented Programming (INT18R273)				
Course	Program Core				
Category					
Course	Theory with practical				
Туре					
Objective (s)	• To understand .NET framework and C#.				
	• To understand Object oriented concepts of C#.				
	• To understand and design Application using C#				
	• To understand Web based application development	ent.			
	• To understand in depth concepts of .NET framew	vork			
Course Outco	ome(s)				
CO1	Understand the C# programming model				
CO2	Understand Object oriented concepts of C#				
CO3	Model and sole Data base applications using C#				
CO4	Understand and Design web based design				

CO5	Unde	rstand	the .NI	ET wor	kflow	in deta	il						
Mapping of COs with POs													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	L	Η			Μ								
CO2	L	Н			М					М			
CO3	L	Η		Μ	Μ		L				Н		
CO4		Η	Η	Η	Μ		L			Μ	Н		
CO5		Н	Н	Μ	М					М			
Commo Tomi	a(a)												

UNTI 1: INTRODUCTION TO C#

Introducing C#, Understanding .NET, overview of C#, Literals, Variables, Data Types, Operators, checked and unchecked operators, Expressions, Branching, Looping, Methods, implicit and explicit casting, Constant, Arrays, Array Class, Array List, String, String Builder, Structure, Enumerations, boxing and unboxing.

UNIT 2: OBJECT ORIENTED ASPECTS OF C#

Class, Objects, Constructors and its types, inheritance, properties, indexers, index overloading, polymorphism, sealed class and methods, interface, abstract class, abstract and interface, operator overloading, delegates, events, errors and exception, Threading.

UNIT 3: APPLICATION DEVELOPMENT ON .NET

Building windows application, Creating our own window forms with events and controls, menu creation, inheriting window forms, SDI and MDI application, Dialog Box(Modal and Modeless), accessing data with ADO.NET, DataSet, typed dataset, Data Adapter, updating database using stored procedures, SQL Server with ADO.NET, handling exceptions, validating controls, windows application configuration.

UNIT 4: WEB BASED APPLICATION DEVELOPMENT ON .NET

Programming web application with web forms, ASP.NET introduction, working with XML and .NET, Creating Virtual Directory and Web Application, session management techniques, web.config, web services, passing datasets, returning datasets from web services, handling transaction, handling exceptions, returning exceptions from SQL Server.

UNIT 5: CLR AND .NET FRAMEWORK

Assemblies, Versoning, Attributes, reflection, viewing meta data, type discovery, reflection on type, marshalling, remoting, security in .NET

TEXT BOOKS:

- 1. Herbert Schildt, "The Complete Reference: C# 4.0", 4th Edition Tata McGraw Hill, 2012.
- 2. Christian Nagel et al. "Professional C# 2012 with .NET 4.5", Wiley India, 2012.

REFERENCES:

- 1. Andrew Troelsen, "Pro C# 2010 and the .NET 4 Platform", Fifth edition, A Press, 2010.
- 2. Ian Griffiths, Matthew Adams, Jesse Liberty, "Programming C# 4.0", Sixth Edition, O"Reilly, 2010.

PRACTICAL COMPONENTS

- 1. To write a C# program using Branching and Looping statements
- 2. To write a C# program using Arrays and Strings methods.
- 3. To write a C# program using Structures and enumerations
- 4. To write a C# program using inheritance concepts.
- 5. To write a C# program using Polymorphism.
- 6. To write a C# program using interfaces.

- 7. To write a C# program by using operator overloading
- 8. To write a C# program using delegates, events, errors and exceptions.
- 9. To write a C# program using Errors and Exceptions.
- 10. To build a calculator widget in windows application using C#.

Software Management

INIT 10D 252			DATA	WAF	REHO	USING	ſ		L	Т	Р	C
INT18R353			A	AND N	AININ	G			3	0	1	3.5
Prerequisite	Datab	base M	anagen	nent Sy	ystems	(INT1	8R371)				
Course		ssional		•		`		/				
Category												
Course	Theor	ry with	Practi	ce								
Туре		•										
Objective (s)	•	То	know	the c	oncept	s and	techr	niques	of da	ata min	ing an	d data
-			housin		1			1			U	
	•			-	system	ns for c	lata wa	arehous	sing an	d/or data	a mining	ŗ
Course Outco	ome(s)				2				0			·
CO1	Learr	once	pts in	Data V	Vareho	uses ar	nd imp	lement	ation o	f archite	ectures	
CO2	Learr	n data p	preproc	essing.	, langu	age, ar	chitect	ures, co	oncept	descript	ion	
CO3	1	to use							•	1		
CO4		n Classi					echniqu	ues				
CO5		Rece										
Mapping of (COs wi	ith PO:	s									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	Н	Μ		Η	Н						
CO2	L	Н										
CO3	L	Н	Μ		Η							L
CO4	L	Η										
CO5	L	Н				Н	Η					Μ
Course Topic	c(s)			-	-				-			
UNIT 1: IN	TROD	UCTI	ON TO) DAT	'A WA	REHO	DUSIN	G				
Introduction -	Data V	Vareho	ouse - N	Multidi	mensic	onal Da	ta Moo	del - D	ata Wa	rehouse	Archite	cture -
Implementatio	on - Fi	urther	Develo	opment	- Dat	a War	ehousi	ng to 1	Data N	lining.	Practica	l: Data
Model										-		
UNIT 2:	DATA	PREI	PROC	ESSIN	IG. LA	NGU	AGE.	ARCI	HTEC	TURE	S. CON	СЕРТ

UNIT 2: DATA PREPROCESSING, LANGUAGE, ARCHITECTURES, CONCEPT DESCRIPTION

Why Pre processing - Cleaning, Integration – Transformation – Reduction – Discretization - Concept Hierarchy Generation, Data Mining Primitives, Query Language, Graphical User Interfaces – Architectures - Concept Description - Data Generalization - Characterizations - Class Comparisons - Descriptive Statistical Measures. Practical: Query Language

UNIT 3: ASSOCIATION RULES

Association Rule Mining - Single-Dimensional Boolean Association Rules from Transactional Databases - Multi-Level Association Rules from Transaction Databases. Practical: Association Rules

UNIT 4: CLASSIFICATION AND CLUSTERING

Classification and Prediction – Issues - Decision Tree Induction - Bayesian Classification - Association Rule Based - Other Classification Methods – Prediction - Classifier Accuracy - Cluster Analysis - Types of data - Categorization of methods - Partitioning methods - Outlier Analysis. Practical: Categorization of methods

UNIT 5 : RECENT TRENDS

Multidimensional Analysis and Descriptive Mining of Complex Data Objects -Spatial Databases - Multimedia Databases - Time Series and Sequence Data - Text Databases - relationless databases- World Wide Web -Applications and Trends in Data Mining. Practical: Spatial Databases - Multimedia Databases

TEXT BOOK

1. J. Han, M. Kamber, "Data Mining: Concepts and Techniques", Harcourt India Morgan Kauffman, 2011.

- 1. Margaret H.Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education 2006.
- 2. Sam Anahory, Dennis Murry, "Data Warehousing in the real world", Pearson Education 2009.
- 3. David Hand, Heikki Manila, Padhraic Symth, "Principles of Data Mining", PHI 2004.

INT18R354					ED D	BWS			L	Т	Р	С
1111101334			AD	ANC	ED D	DIVIS			3	0	1	3.5
Prerequisite	Datab	base Ma	anagen	nent Sy	vstems	(INT1	8R371)				
Course	Profe	ssional	Electi	ve								
Category												
Course	Theor	ry with	Practi	ce								
Туре												
Objective (s)	•]	Learn c	lifferer	nt types	s of dat	abases	•					
	•]	Be exp	osed to	query	langua	ages.						
	•	Be fan	niliar w	vith the	index	ing tecl	hnique	s.				
Course Outco												
CO1	To un	Idersta	nd the	underly	ying pr	inciple	s of Re	elationa	al Data	base Ma	inageme	nt
	Syste	m.										
CO2	To un	Idersta	nd and	impler	nent th	e adva	nced fo	eatures	of DB	MS.		
CO3	To de	velop	databas	se mod	els usi	ng dist	ributed	databa	ases.			
CO4	ToU	ndersta	nd tha	Quary	Droco	nina						
04	10 0	nucista		Query	FICES	sing						
CO5	To in	pleme	nt and	mainta	in an e	fficien	t datab	ase sys	stem us	sing eme	erging tro	ends
Mapping of (COs wi	th POs	5									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н		Н									
CO2	L	Н				Н					Н	

CO3	L			Н		Н		М		L
CO4	L	Η	Μ	Н			Н			
CO5	L	Н	М						Н	

UNIT 1: PARALLEL AND DISTRIBUTED DATABASES

Inter and Intra Query Parallelism – Architecture – Query evaluation – Optimization – Distributed Architecture – Storage – Catalog Management – Query Processing – Transactions – Recovery – Large-scale Data Analytics in the Internet Context – Map Reduce Paradigm – runtime system for supporting scalable and fault-tolerant execution – paradigms: Pig Latin and Hive and parallel databases versus Map Reduce. Practical: DDL, DML, TCL commands

UNIT 2: ACTIVE DATABASES

Syntax and Sematics (Starburst, Oracle, DB2) – Taxonomy – Applications – Integrity Management – Workflow Management – Business Rules – Design Principles – Properties – Rule Modularization – Rule Debugging – IDEA methodology – Open Problems. Practical: DB2 AULibrary.com

UNIT 3: TEMPORAL AND OBJECT DATABASES

Overview – Data types – Associating Facts – Temporal Query Language – TSQL2 – Time Ontology – Language Constructs – Architecture – Temporal Support – Object Database and Change Management – Change of Schema – Implementing Database Updates in O2 – Benchmark Database Updates – Performance Evaluation. Practical: SQL

UNIT 4: COMPLEX QUERIES AND REASONING

Logic of Query Languages – Relational Calculi – Recursive rules – Syntax and semantics of Data log – Fix point semantics – Implementation Rules and Recursion – Rule rewriting methods – Compilation and Optimization – Recursive Queries in SQL – Open issues. Practical: SQL

UNIT 5: SPATIAL, TEXT AND MULTIMEDIA DATABASES

Traditional Indexing Methods (Secondary Keys, Spatial Access Methods) – Text Retrieval – Multimedia Indexing – 1D Time Series – 2d Color images – Sub pattern Matching – Open Issues – Uncertainties. Practical: SQL Programs

TEXT BOOK:

1. Raghu Ramakrishnan "Database Management System", Mc Graw Hill Publications, McgrawHill Publications, 2014 reprint.

- 1. Carlo Zaniolo, Stefano Ceri "Advanced Database Systems", Morgan Kauffmann Publishers. 2007
- 2. Abraham Silberschatz, Henry F. Korth and S. Sudharshan, "Database System Concepts", Sixth Edition, Tata McGraw Hill, 2011

INT18R302	INFORMATION STORAGE MANAGEMENT	L	Т	Р	С
111110K302	INFORMATION STORAGE MANAGEMENT	3	1	0	4
Prerequisite	Database Management Systems (INT18R371)				
Course	Professional Elective				
Category					
Course Type	Theory				
Objective (s)	Understand Storage Area Networks characteristics	and co	ompo	nents.	
	• Describe the challenges associated with data cente	r netw	/orkir	ng and	l the

		nee	ed for s	witch no	etwork	converg	gence.							
		• Sto	orage A	rea Ne	etworks	includ	ling sto	rage a	rchitect	ures, lo	ogical	and		
		ph	ysical	compoi	nents o	of a s	torage	infrast	ructure	, mana	iging	and		
		ma	onitoring	g the da	ta cente	er.								
		• De	scribe	the bus	siness c	continui	ty and	disaste	r recov	very in	a sto	rage		
			rastruct											
		• De	scribe t	he diffe	erent ba	ckup a	nd reco	very top	ologie	s and th	neir ro	le in		
		pro	oviding	disaster	recove	ery and	busines	s contir	nuity ca	pabiliti	es.			
		• Ide	ntify k	ey areas	s to mo	nitor in	a data	center	for diff	erent co	ompon	ents		
		ina	in a storage											
Course O	utco	me(s)												
CO1		Identify	and dea	scribe tl	he func	tions to	build d	ata cen	ter netw	vorking	for sw	vitch		
		network	-											
CO2		Discuss	differe	ent type	es of lo	ogical a	und phy	vsical c	ompone	ents of	a sto	rage		
		infrastru												
CO3		Underst												
		commu								differen	t netv	vork		
		storage												
CO4		Identify								nd list s	olutio	ns		
CO5		Identify		alyzes t	he com	mon th	reats in	each do	omain					
Mapping									1					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO	PO		
001										0	11	12		
C01	H		Н											
CO2	L	Н				Н					Н	-		
CO3	L			H			H			M		L		
CO4	L	H	M	Н					H					
CO5	L	Н	Μ								Η			
Course T	opic(s)												

UNIT 1: INTRODUCTION TO STORAGE TECHNOLOGY

Review data creation and the amount of data being created and understand the value of data to a business - challenges in data storage and data management - Solutions available or data storage - Core elements of a data center infrastructure - role of each element in supporting business activities.

UNIT 2: STORAGE SYSTEMS ARCHITECTURE

Hardware and software components of the host environment - Key protocols and concepts used by each component - Physical and logical components of a connectivity environment Major physical disk - access characteristics - and performance implications - Concept of RAID and its components - Different Raid levels and their suitability for different application environments: RAID 0 RAID 1, RAID 3, RAID 4, RAID 5, RAID 0+1, RAID 1+0, RAID 6 - Compare and contrast integrated and modular storage systems - High-level architecture and working of an intelligent storage system.

UNIT 3: INTRODUCTION TO NETWORKED STORAGE

Evolution of networked storage – Architecture – Components - and topologies of FC-SAN, NAS, and IP-SA Benefits of the different networked storage options -Understand the need for long-term archiving solutions and describe how CAS fulfills the need - Understand the

appropriateness of the different networked storage options for different application environments.

UNIT 4: INFORMATION AVAILABILITY & MONITORING & MANAGING DATA CENTER

List reasons for planned/unplanned outages and the impact of downtime - impact of downtime - Differentiate between business continuity (BC) and disaster recovery (DR) - RTO and RPO - Identify single points of failure in a storage infrastructure and list solutions to mitigate these failures - Architecture of backup/recovery and the different backup/recovery topologies - replication technologies and their role in ensuring information availability and business continuity - Remote replication technologies and their role in providing disaster recovery and business continuity capabilities - Identify key areas to monitor in a data center - Industry standards for data center monitoring and management - key metrics to monitor for different components in a storage infrastructure - key management tasks in a data center.

UNIT 5: SECURING STORAGE AND STORAGE VIRTUALIZATION

Information security - Critical security attributes for information systems - Storage security domains - List and analyzes the common threats in each domain - Virtualization technologies - block-level and file-level virtualization technologies and Processes

TEXT BOOK

1. EMC, EMC Education Services, Lastemc, "Information Storage and Management: Storing, Managing, and Protecting Digital Information", John Wiley and Sons, 2nd edition, 2012.

- 1. Robert Spalding, "Storage Networks: The Complete Reference". Tata McGraw Hill, Osborne, 2003
- 2. Marc Farley, "Building Storage Networks", 2nd Edition, Tata McGraw Hill, Osborne, 2001.
- 3. Meeta Gupta, "Storage Area Network Fundamentals", Pearson Education Limited, 2002.

INT18R355	DATA ANALYTICS	L	Т	P	С
IN I 18K355	DATA ANALY IICS	3	0	1	3.5
Prerequisite	Database Management Systems (INT18R371)				
Course	Professional Elective				
Category					
Course	Theory with Practice				
Туре					
Objective (s)	• To provide the students with a fundamental Of I	Big Dat	a Analyt	tics	
	• To acquire skills various Data Analytics.				
	• To introduce Data Mining Stream concepts.				
	• To familiarize the students with Clustering and	Framev	vork con	cepts	
Course Outco	ome(s)				
CO1	Understand the Big Data Platform and Modern data a	analytic	Tools		
CO2	Learn neural networks, Fuzzy logic and data analytic	c conce	pts		
CO3	Learn Data Mining rules to implement and Analysis				
CO4	Understand types of clustering				

CO5	Unde	rstand	Understand and implement the data analytic tools-Map reduce and Hadoop												
Mapping of C	COs wi	th POs	S												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	L	Н			Н	Η						L			
CO2	L	Н													
CO3	L	Μ				Η						L			
CO4	L	Μ													
CO5		Μ	Н		Н	Μ									

UNIT 1: INTRODUCTION TO BIG DATA

Introduction to Big Data Platform – Challenges of conventional systems - Web data – Evolution of Analytic scalability, analytic processes and tools, Analysis vs reporting - Modern data analytic tools, Stastical concepts: Sampling distributions, resampling, statistical inference, prediction error. Practical: Hadoop Map Reduce job flow

UNIT 2: DATA ANALYSIS

Regression modeling, Multivariate analysis, Bayesian modeling, inference and Bayesian networks, Support vector and kernel methods, Analysis of time series: linear systems analysis, nonlinear dynamics - Rule induction - Neural networks: learning and generalization, competitive learning, principal component analysis and neural networks; Fuzzy logic: extracting fuzzy models from data, fuzzy decision trees, Stochastic search methods. Practical: Creating and customizing applications to analyze data

UNIT 3: MINING DATA STREAMS

Introduction to Streams Concepts – Stream data model and architecture - Stream Computing, Sampling data in a stream – Filtering streams – Counting distinct elements in a stream – Estimating moments – Counting oneness in a window – Decaying window - Realtime Analytics Platform(RTAP) applications - case studies - real time sentiment analysis, stock market predictions. Practical: Implementing a targeted Big Data strategy

UNIT 4: FREQUENT ITEMSETS AND CLUSTERING

Mining Frequent itemsets - Market based model – Apriori Algorithm – Handling large data sets in Main memory – Limited Pass algorithm – Counting frequent itemsets in a stream – Clustering Techniques – Hierarchical – K- Means – Clustering high dimensional data – CLIQUE and PROCLUS – Frequent pattern based clustering methods – Clustering in non-euclidean space – Clustering for streams and Parallelism. Practical: Apply different classification techniques to classify the given data set

UNIT 5: FRAMEWORKS AND VISUALIZATION

MapReduce – Hadoop, Hive, MapR – Sharding – NoSQL Databases - S3 - Hadoop Distributed file systems – Visualizations - Visual data analysis techniques, interaction techniques; Systems and applications. Practical: Apply various association rule mining algorithms

TEXT BOOKS

- 1. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.
- 2. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2nd edition, 2012.

- 1. Bill Franks, T"aming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with advanced analystics", John Wiley & sons, 2012.
- 2. Glenn J. Myatt, "Making Sense of Data", John Wiley & Sons, 2007 Pete Warden, Big

INT18R303	5	SOFTV	VARE	QUA	LITY	ASSUI	RANC	E	L 3	<u>T</u>	P 0	C 3
Prerequisite	Softw	are En	gineer	ing (IN	T18R3	359)			5	U	U	5
Course			Electi			,						
Category												
Course	Theor	y										
Туре		•										
Objective(s)	•]	Disting assurar Unders and the Fo pre softwar Fo dev	uish b tand th tand th ir impa sent th re deve	etween quality ne impo act on f ne cond lopmen a good	y contrortance Final procepts, 1 The section of the	variou ol. of sta oduct. technic	s activ ndards ues ar	vities of in the nd met	qualit	llity pla y manag r quality miques	gement p y assura	process
Course Outco	ome(s)			0								
CO1			the ne	ed of	softwa	re qua	lity an	d lear	n softv	vare pro	ject life	e cycle
	-	onents										
CO2	Analy	ze sof	tware c	levelop	oment r	nethod	ologies	s and te	esting i	mpleme	ntations	•
CO3		-	-	-	to cre ategies	-	ood so	oftware	quali	ty infra	structur	e with
CO4	qualit	y mana	agemei	nt.						p mode		oftware
CO5	Obtai	n the k	nowled	lge abo	out vari	ious qu	ality n	nanager	ment st	tandards	•	
Mapping of C												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO12
CO1		Н			Μ						Н	
CO2		Μ	Н		Н							
CO3		Μ	M						H		Н	L
CO4			Н		Μ		Н					
CO5		Н	L						Μ			Н
Course Topic UNIT 1: IN Need for Soft and objective architecture –	TROE ware ques – S	uality - oftwar	- Quali e qua	ty chal lity fa	lenges ctors-	– Soft McCa	ware q ll''s qu	uality a uality	assurar model	the (SQA $-$ SQA	A) – Det A syste	m and

UNIT 2: SQA COMPONENTS AND PROJECT LIFE CYCLE

Software Development methodologies – Quality assurance activities in the development process-Verification & Validation – Reviews – Software Testing – Software Testing implementations – Quality of software maintenance – Pre-Maintenance of software quality components – Quality assurance tools – CASE tools for software quality – Software maintenance quality – Project Management.

UNIT3:SOFTWAREQUALITYINFRASTRUCTURE

Procedures and work instructions - Templates - Checklists – 3S development - Staff training and certification Corrective and preventive actions – Configuration management – Software change control – Configuration management audit -Documentation control – Storage and retrieval.

UNIT 4: SOFTWARE QUALITY MANAGEMENT & METRICS

Project process control – Computerized tools - Software quality metrics – Objectives of quality measurement – Process metrics – Product metrics – Implementation – Limitations of software metrics – Cost of software quality – Classical quality cost model – Extended model – Application of Cost model.

UNIT 5: STANDARDS, CERTIFICATIONS & ASSESSMENTS

Quality manangement standards – ISO 9001 and ISO 9000-3 – capability Maturity Models – CMM and CMMI assessment methodologies - Bootstrap methodology – SPICE Project – SQA project process standards – IEEE 1012 & 1028 – Organization of Quality Assurance – Department management responsibilities – Project management responsibilities – SQA units and other actors in SQA systems.

TEXT BOOK

1. Daniel Galin, "Software Quality Assurance", Pearson Publication, 2009.

- 1. Alan C. Gillies, "Software Quality: Theory and Management", International Thomson Computer Press, 1997.
- 2. Mordechai Ben-Menachem "Software Quality: Producing Practical Consistent Software", International Thompson Computer Press, 1997.

INT18R304	MOBILE APPLICATION DEVELOPMENT	L	Т	Р	С
111110K304	MODILE APPLICATION DEVELOPMENT	3	1	0	4
Prerequisite	Object Oriented Programming (INT18R273)				
Course	Professional Elective				
Category					
Course	Theory				
Туре					
Objective (s)	To introduce the programming techniques and design	n patteri	n of mob	ile	
	application development.				
Course Outco	ome(s)				
CO1	Study about the mobile application market and web	service	es for va	rious n	nobile
	devices				
CO2	Understand and develop the various Mobile Infor	mation	Design	and M	Iobile
	Platforms				
CO3	Design the User interface with various features of A	Android	SDK li	ke displ	laying
	pictures, menu etc				
CO4	Utilize the messaging, networking and location	based	service	in Aı	ndroid
	application				
CO5	Create, Debug and build the apps for the latest Wind	ows and	l IOS		

Mapping of COs with POs													
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
Η													
	Н												
				Н						Н	Н		
Η													
					Н					Н	Н		
	PO1 H	PO1 PO2 H H Output H	PO1 PO2 PO3 H H	PO1 PO2 PO3 PO4 H	PO1 PO2 PO3 PO4 PO5 H - - - - H - - - - H - - - - H - - - - H - - - -	PO1 PO2 PO3 PO4 PO5 PO6 H <	PO1 PO2 PO3 PO4 PO5 PO6 PO7 H -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 H - - - - - - - - PO3 H - - - - - - - - PO3 H -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 H -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 H	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 H -		

UNIT 1: INTRODUCTION

Preliminary Considerations – Cost of Development – Importance of Mobile Strategies in Business World – Mobile Web Presence – Mobile Applications – Marketing – Web Services for Mobile Devices – Creating Example Web Service _ Debugging Web Service

UNIT 2: MOBILE USER INTERFACE DESIGN

Effective Use of Screen Real Estate – Understanding Mobile Application Users – Understanding Mobile Information Design – Understanding Mobile Platforms – Using the Tools for Mobile Interface Design – Choosing a Mobile Web Option – Adaptive Mobile Website – Mobile Web Applications with HTML 5

UNIT 3: ANDROID APPLICATION DEVELOPMENT

Getting to know the Android User Interfaces – Designing Your User interface using Views – Displaying Pictures and Menus with Views – Using Image views to Display pictures – Using menus with views – Data Persistence – Saving and loading user performances - Persisting data to files – Creating and using Data bases – Content Providers.

UNIT 4 : ANDROID MESSAGING, NETWORKING, LOCATION BASED SERVICES

SMS Messaging, Sending E-mail – Networking – Downloading Binary Data, Text Files-Accessing Web Services – Performing Asynchronous Calls – Location Based Services – Displaying Maps – Getting Location Data – Creating your own services – Communicating between a service and an activity – Binding activities to Services

UNIT 5: IOS AND WINDOWS PHONE

Getting started with iOS – iOS Project – Debugging iOS Apps – Objective C Basics – Hello Word App – Building the derby app in iOS – Windows Phone 7 Project – Building Derby App in Windows Phone 7.

TEXT BOOK

1. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development," Wrox 2012.

- 1.Wei Meng Lee, "Beginning Android Application Development", Wiley 2011
- 2. Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", Dream Tech.2012
- 3. James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012
- 4. David Mark, Jack Nutting, Jeff LaMouche, and Fredric Olsson, "Beginning iOS6 Development: Exploring the iOS SDK", Apress, 2013

INT18R403	ENTERPRISE RESOURCE	L	Т	Р	С
111110K405	PLANNING	3	0	0	3
Prerequisite	Nil				

Μ

L

Course	Profe	ssional	Electiv	ve										
Category Course Type	Theor	• • • 7												
		2	4le a l		f EDD									
Objective (s)		Fo kno												
		To understand the key implementation issues of ERP												
	• [• To know the business modules of ERP												
	• 7	• To be aware of some popular products in the area of ERP												
	• 7	To appreciate the current and future trends in ERP												
Course Outcom	e(s)	**												
CO1	Unde	rstand	basics	and ke	y imple	ementa	tion is	sues of	ERP					
CO2	Identi	fy vari	ous rol	es of h	uman	resourc	es in a	n Ente	rprise					
CO3	Awar	e of EF	RP mar	kets										
CO4	Learn	functi	onal m	odules	in an l	ERP pa	ickage							
CO5	Study	currer	nt trend	s and p	predict	future	trends	in ERI	D					
Mapping of CO	s with	POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	L	Н										L		
CO2		Н	Н	М								L		
CO3		Н	Н	М	Μ		L				М			
CO4		L	Μ				Μ				Μ	L		

CO5 Course Topic(s)

UNIT 1: INTRODUCTION

ERP: An Overview, Enterprise – An Overview, Benefits of ERP- ERP and Related Technologies- Business Process Reengineering (BPR)- Data Warehousing- Data Mining - OLAP - SCM

Η

UNIT 2: ERP IMPLEMENTATION

Μ

Η

ERP Implementation Lifecycle - Implementation Methodology - Hidden Costs - Organizing the Implementation – Vendors - Consultants and Users - Contracts with Vendors - Consultants and Employees - Project Management and Monitoring

UNIT 3: THE BUSINESS MODULES

Business modules in an ERP Package - Finance – Manufacturing (Production) - Human Resources - Plant Maintenance - Materials Management - Quality Management - Sales and Distribution

UNIT 4: THE ERP MARKET

ERP Market Place and Marketplace Dynamics - SAP AG - People soft – Baan - JD Edwards-Oracle corporation – QAD – SSA Global - Lawson software

UNIT 5: ERP – PRESENT AND FUTURE

Turbo Charge the ERP System – EIA - ERP and E-Business - ERP, Internet and WWW- ERP II - Future Directions and Trends in ERP

TEXT BOOK

1. Alexis Leon, "ERP Demystified", Tata McGraw Hill, New Delhi, 3rd edition 2014. **REFERENCES**

- 1. Joseph A Brady, Ellen F Monk, Bret Wagner, "Concepts in Enterprise Resource Planning", Thompson Course Technology, USA, 2001.
- 2. Vinod Kumar Garg and Venkitakrishnan N K, "Enterprise Resource Planning -Concepts and

Practice", PHI, New Delhi, 2003.

INTTIOD 40.4	C1	DVI		IENTT					L	Т	Р	С
INT18R404	51	ERVIC	EOK		LD AR	CHIII		KE	3	0	0	3
Prerequisite	Comp	outer A	rchitec	ture an	d Orga	nizatio	n (CSE	18R17	4)	•	•	
Course	Profe	ssional	Electiv	ve								
Category												
Course	Theor	ry										
Туре												
Objective (s)	•	To le	arn the	conce	pts of d	listribu	ted app	lication	n devel	opment		
	•	To di	fferent	iate XN	ML bas	ed web	servic	es fron	n other	standard	l models	5
	•	To st	udy the	e impoi	tance of	of servi	ce com	positio	n			
Course Outco	ome(s)											
CO1	Unde	rstand (crucial	concep	ots of S	OA						
CO2	Know	the in	tegratio	on of S	OA tec	hnolog	ical po	ints wi	th Web	Service	s.	
CO3		ement o										
CO4	Build	SOA t	ased a	pplicat	ions fo	r Web :	service	s, some	e of the	prevaili	ng stand	lards
	and											
		nologie										
CO5		ement t	ne appl	ication	s based	l on Jav	/a Web	Servic	es			
Mapping of (COs wit											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Μ				Н							L
					Н							
CO2	Н	Н	L		п							
CO3	Н	Н	М	Н	п		М					Н
CO3 CO4	H M	Н		Н	п		М	Н				H H
CO3 CO4 CO5	H M H		М	Н	П		M H	Н				
CO3 CO4 CO5 Course Topic	H M H 2(s)	H M	M H					Н				Н
CO3 CO4 CO5 Course Topic UNIT 1: SC	H M H c(s) DA FUN	H M NDAM	M H ENTA	LS			Н					H L
CO3 CO4 CO5 Course Topic UNIT 1: SC SOA – Servic	H M H E(s) DA FUN es – Lo	H M NDAM ose Co	M H ENTA upling	LS – The J	Enterpr		H vice bu	s – Ser				H L usiness
CO3 CO4 CO5 Course Topic UNIT 1: SC SOA – Servic process manag	H M H c(s) DA FUN es – Lo gement	H M NDAM ose Co – SOA	M H ENTA upling and th	LS – The l e organ	Enterpr	n – SOA	H vice bu A and t	s – Ser he orga	nizatio			H L usiness
CO3 CO4 CO5 Course Topic UNIT 1 : SC SOA – Servic process manag Message exch	H H E(s) DA FUN es – Lo gement ange pa	H M NDAM ose Co – SOA atterns	M H ENTA upling and th – SOA	LS – The l e organ life cyo	Enterpr nizatior cle – V	n – SOA ersioni	H vice bu A and t ng – W	s – Ser he orga Veb serv	nizatio			H L usiness
CO3 CO4 CO5 Course Topic UNIT 1: SC SOA – Servic process manag Message exch UNIT 2: SE	H H H C(s) DA FUN es – Lo gement ange pa CRVIC	H M NDAM ose Co – SOA atterns – E-ORI	M H ENTA upling and th - SOA ENTE	LS – The l e orgar life cy D ANA	Enterpr nizatior cle – V	n – SOA ersioni S AND	H vice bu A and t ng – W DESI	s – Ser he orga /eb serv GN	nizatio vices	on - SOA	in cont	H L usiness
CO3 CO4 CO5 Course Topic UNIT 1 : SC SOA – Servic process manag Message exch	H H C(s) DA FUN es – Lo gement ange pa CRVICI ology at	H M NDAM ose Co – SOA atterns E-ORI nd Con	M H ENTA upling and th - SOA ENTE cepts -	LS – The l e organ life cy D ANA REST	Enterpr nizatior cle – V LYSI Desigr	n – SOA ersioni S AND n Const	H vice bu A and t ng – W DESI raints a	s – Ser he orga Veb serv GN and Gos	nizatio vices als - RI	on - SOA ESTful S	in cont Service-	H L usiness ext –

Analysis and Design with REST - Mainstream SOA Methodology - Analysis and Service-Oriented Design with REST - Service-Oriented Design with REST HTML - Cookies - Simple PHP scripts

UNIT 3 : SERVICE COMPOSITION

Service Composition with REST - Fundamental Service Composition with REST - Advanced Service Composition with REST - Service Composition with REST Case Study - Design Patterns for SOA with REST - Service Versioning with REST - Uniform Contract Profiles

UNIT 4: RESTFUL SERVICES AND THE RESOURCE-ORIENTEDARCHITECTURE Introducing the Simple Storage Service - Object-Oriented Design of S3 - URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface - Resource Design - Turning Requirements into Read-Only Resources - Service Implementation - Web service case studies - Connect Resources to Each Other - Controller Code - Model Code

UNIT 5 : SOA TRANSACTION AND SECURITY

SOA and performance - SOA and security – Service Management - Model driven service deployment – Establishing SOA and SOA governance

TEXT BOOK

- 1. Nicolai M.Josuttis, "SOA in design The art of distributed system design", O'REILLY publication, 2007.
- 2. 2. Raj Balasubramanian, Benjamin Carlyle, Thomas Erl, Cesare Pautasso, "SOA with REST Principles, Patterns & Constraints for building Enterprise solutions with REST", Prentice Hall/PearsonPTR, 2012.
- 3. 3. Leonard Richardson and Sam Ruby, "RESTful Web Services", O'REILLY publication, 2007.

REFERENCES

1. Thomas Erl, "Service Oriented Architecture: Concepts, Technology, and Design", Pearson education, 2005.

INT18R305	MOBILE COMMUNICATION AND	L	Т	Р	С
1111101303	COMPUTING	3	1	0	4
Prerequisite	Analog and Digital Communication Techniques (INT	18R27	2)		
Course	Professional Elective				
Category					
Course	Theory				
Туре					
Objective(s)	• To learn the fundamental concepts of mobile computing.				
	• To analyze about internet protocols, its issues computing.	while	dealing	with n	ıobile
	• To make students to understand about various c as GSM,GPRS etc.,	commu	nication	systems	s such
	• To learn the basic concepts of adhoc networ involved in it.	ks and	analyz	the i	issues
	• To design and implement mobile applications in systems	differe	ent kinds	of ope	rating
Course Outco					
CO1	Understand the basic concepts of mobile computing				
CO2	Analyze about internet protocol and Mobile internet	protoco	1.		
CO3	Learn about the different kinds of mobile telecommu	nicatior	ı system.		
CO4	Analyze the issues involved in adhoc networks and	l learn	the vari	ous kir	ids of
	adhoc networks.				
CO5	Identify, design and implement mobile applications in	n variou	is platfor	ms.	
Mapping of C			-		

EMBEDDED AND SIGNAL PROCESSING

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	Н	L									
CO2		Н	Η			L						
CO3	L	Н	Μ		Н							
CO4		Н	Н	L			Η					L
CO5		Μ	Н	Н	Μ							L

UNIT 1: INTRODUCTION

Mobile Computing – Mobile Computing Vs wireless Networking – Mobile Computing Applications – Characteristics of Mobile computing – Structure of Mobile Computing Application. MAC Protocols – Wireless MAC Issues – Fixed Assignment Schemes – Random Assignment Schemes – Reservation Based Schemes. Practical: MAC Protocols

UNIT 2: MOBILE INTERNET PROTOCOL AND TRANSPORT LAYER

Overview of Mobile IP – Features of Mobile IP – Key Mechanism in Mobile IP – route Optimization. Overview of TCP/IP – Architecture of TCP/IP- Adaptation of TCP Window – Improvement in TCP Performance. Practical: Key Distribution mechanisms

UNIT 3: MOBILE TELECOMMUNICATION SYSTEM

Global System for Mobile Communication (GSM) – General Packet Radio Service (GPRS) – Universal Mobile Telecommunication System (UMTS). Practical: GSM Technique

UNIT 4: MOBILE AD-HOC NETWORKS

Ad-Hoc Basic Concepts – Characteristics – Applications – Design Issues – Routing – Essential of Traditional Routing Protocols –Popular Routing Protocols – Vehicular Ad Hoc networks (VANET) – MANET Vs VANET – Security. Practical: Routing Protocols

UNIT 5: MOBILE PLATFORMS AND APPLICATIONS

Mobile Device Operating Systems – Special Constrains & Requirements – Commercial Mobile Operating Systems – Software Development Kit: iOS, Android, BlackBerry, Windows Phone – M-Commerce – Structure – Pros & Cons – Mobile Payment System – Security Issues. Practical: Security Mechnisms

TEXT BOOK

1. Prasant Kumar Pattnaik, Rajib Mall, "Fundamentals of Mobile Computing", PHI Learning Pvt. Ltd, New Delhi – 2012.

- 1. Jochen H. Schller, "Mobile Communications", Second Edition, Pearson Education, New Delhi, 2007.
- 2. Dharma Prakash Agarval, Qing and An Zeng, "Introduction to Wireless and Mobile systems", Thomson Asia Pvt Ltd, 2005.
- 3. Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, "Principles of Mobile Computing", Springer, 2003.

INT18R306	INFORMATION CODING	L	Т	Р	С
111106300	TECHNIQUES	3	1	0	4
Prerequisite	Analog and Digital Communication Techniques (INT	T18R27	2)		
Course	Professional Elective				

Cotogory												
Category												
Course	Theory											
Туре												
Objective (s)	• To expose to students some concepts in information theory, and the											
	performance characteristics of an ideal communications system.											
	• To expose to students fundamentals in coding and its applications.											
Course Outcome(s)												
CO1	Explain basic information and channel capacity.											
CO2	Understand different types of data and voice coding techniques											
CO3	Explain and analyse source coding compression, decoding and error control											control
	methods as applied in communication system.											
CO4	Analysis of various text and image compression techniques											
CO5	Analysis of audio and video coding techniques											
Mapping of COs with POs												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н					Н					Н
CO2	М	Н	L									
CO3	Н	Н	L			L	Н	L				L
CO4		Н	L				М				Н	L
CO5		Н	L				М				Н	L

UNIT 1: INFORMATION ENTROPY FUNDAMENTALS

Uncertainty- Information and Entropy – Source coding Theorem – Huffman coding –Shannon Fano coding – Discrete Memory less channels – channel capacity – channel coding Theorem – Channel capacity Theorem.

UNIT 2: DATA AND VOICE CODING

Differential Pulse code Modulation – Adaptive Differential Pulse Code Modulation – Adaptive sub band coding – Delta Modulation – Adaptive Delta Modulation – Coding of speech signal at low bit rates (Vocoder, LPC).

UNIT 3: ERROR CONTROL CODING

Linear Block codes – Syndrome Decoding – Minimum distance consideration – cyclic codes – Generator Polynomial – Parity check polynomial – Encoder for cyclic codes – calculation of syndrome – Convolutional codes.

UNIT 4: COMPRESSION TECHNIQUES

Principles – Text compression – Static Huffman Coding – Dynamic Huffman coding – Arithmetic coding – Image Compression – Graphics Interchange format – Tagged Image File Format – Digitized documents – Introduction to JPEG standards.

UNIT 5: AUDIO AND VIDEO CODING

Linear Predictive coding – code excited LPC – Perceptual coding, MPEG audio coders – Dolby audio coders – Video compression – Principles – Introduction to H.261 & MPEG Video standards.

TEXTBOOKS

1. Simon Haykin & Michael Moher, "Communication Systems", John Wiley and Sons, 5th Edition, 2009.

2. Fred Halsall, "Multimedia Communications, Applications Networks Protocols and Standards", Pearson Education, Asia 2002.

REFERENCES

- 1. Mark Nelson, "Data Compression Book", BPB Publication 2nd edition 1996.
- 2. Watkinson J, "Compression in Video and Audio", Focal Press, London, 1995.

INT18R307	BLUETOOTH TECHNOLOGY							L	Т	Р	C		
11110K307		DL	UEIU	om	IECH	NOLU	GI		3	1	0	4	
Prerequisite	Computer Networks (CSE18R371)												
Course	Professional Elective												
Category													
Course	Theory												
Туре	1												
Objective(s)	 To Understand Bluetooth's standards, architecture and operation. To Understand the APIs, radio interface and protocol layers used by Bluetooth. To Configure Bluetooth-enabled devices including mobile phones, PDAs and Access Points. To Install and configure Bluetooth hardware and software. To Configure LAN access, remote access and FAX gateway access point solutions using Bluetooth 												
Course Outco				0									
CO1	Demo	Demonstrate the students about how Bluetooth devices pair set up and the options concerning discoverability											
CO2							fer bet	ween E	Bluetoo	oth devic	es		
CO3	Creat	e trust	and sec	curity 1	elated	policie	s whic	h are h	andled	by Blue	etooth.		
CO4	Implement profiles like the Headset profile, LAN, OBEX, and Serial port compatible to specified applications.												
Mapping of C	COs wi	th PO	5										
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Н		Н	Μ									
CO2	Н		Н	Μ		L							
CO3			Н	Н		Μ							
CO4	Н		Μ	Н							Н		
Course Topic(s)													
UNIT 1: BA	ASIC (CONC	EPTS										

Components-networks-Topologies-Protocols and Standards –ISO/OSI model-Origin- blue tooth SIG - Protocol stack - Security applications and profiles – management - test and qualification technology basics - RF and IR wireless communication.

UNIT 2: BLUETOOTH MODULE

Antennas patterns - gain and losses- types of antennas- on chip antennas radio interference - FH, modulation, symbol timing, power emission and control, performance parameters - RF architecture - Blur RF - Base band - Blue tooth device address system timing - Physical links - packet structuring types and construction - channel coding and time base synchronization.

UNIT 3: LINK CONTROLLER AND MANAGEMENT

LCP- controller states - Pico net and scattered operations - Master / slave role switching LC Architectural overview – LMC - Link set up - Quality of service - LMP version - Name represent - Test mode.

UNIT 4: BLUETOOTH HOST

LLC and adaptation protocol L2 cap signaling – connections- Blue tooth profiles- Version 1.0-Generic profiles-serial and object exchange.

UNIT 5: SECURITY

Encryption and security Key generation - security Modes and architecture - Low power operation and QOS management.

TEXT BOOK

1. Jennifer, Sturman, "Bluetooth Connect without cables", 2nd Edition, Pearson education 2005.

- 1. Brent A.Miller and Bisdikian C, "Bluetooth reveeled", 2nd Edition, Pearson Education 2002.
- 2. Muller J, "Blue tooth Demystified", Nathan Tata Mc Graw Hill 2001.

INT18R405	WIRELESS SENSOR NETWORKS								L	Т	Р	C
IN I 10K405	WIRELESS SENSOR NET WORKS						3	1	0	4		
Prerequisite	Computer Networks (CSE18R371)											
Course	Professional Elective											
Category												
Course	Theory											
Туре												
Objective (s)	To teach the general principles of wireless sensor networks, and the state of the											
	art in information processing in wireless sensor networks.											
Course Outcome(s)												
CO1	Demonstrate familiarity with common wireless sensor node architectures											
CO2	Illustrate knowledge of MAC and routing protocols developed for WSN											
CO3	Emphasize the importance of time synchronization and localization of WSN											N
CO4	Interpret the operating system developed for WSN											
CO5	Identify the suitable topology for WSN											
Mapping of C	COs wi	ith PO	5									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н		Η	Н	Μ		L					L
CO2	Н	Η					L					
CO3	Н		Η									
CO4	Н	L										
CO5		L		М								
Course Topic(s)												
UNIT 1: INTRODUCTION AND OVERVIEW OF WIRELESS SENSOR NETWORKS											ORKS	
Introduction - Basic overview of the technology - Range of applications - Examples of category 1 and 2 WSN application - Sensor node technology - Sensor taxonomy - WN node operating												

environment – WN Trends - Wireless Transmission Technology and Systems – Applications of Wireless Sensor Network

UNIT 2: POWER MANAGEMENT AND ROUTING IN WSN

Distributed Power – Aware micro sensor networks - Dynamic voltage scaling techniques – Operating system for energy Scalable in WSN - Dynamic power management -Energy aware routing - Altruists or Friendly neighbors in the Pico radio sensor network - Aggregate queries -Bluetooth in the distributed sensor network - Mobile networking for smart dust

UNIT 3: CLUSTERING AND SECURITY PROTOCOLS IN WSN

Topology discovery and clusters in sensor networks - Adaptive clustering with deterministic Cluster – Head selection -Sensor cluster's performance - Power – aware functions -Efficient flooding with passive Clustering -Security protocols in sensor networks - Communication security

UNIT 4: NETWORK MANAGEMENT AND OPERATING SYSTEM

Network management requirements - Traditional network management models - Network management design issues – MANNA - other issues related to network management - Operating system design issues – TinyOS – Mate – MagnetOS – MANTIS – OSPM - EYES OS – SenOS – EMERALDS – PicsOS - WSN design issues -Performance modeling - Case study: Simple computation of the System Life Span. WSN Network architecture: typical network architectures-data relaying and aggregation strategies

UNIT 5: TOPOLOGY CONTROL

Issues in WSN routing – OLSR- Localization – Indoor and Sensor Network Localizationabsolute and relative localization, triangulation-QOS in WSN.Topology Control - Distributed Topology Control- Design Guidelines -Ideal Features of a Topology Control Protocol .The Quality of Information - Logical and Physical Node Degrees ; Location-based Topology Control, Localization- Absolute and relative localization. Neighbor-based Topology Control -The Number of Neighbors for Connectivity - The KNeigh Protocol - The XTC Protocol; Dealing with Node Mobility

TEXT BOOKS

- 1. Kazem Sohraby, Daniel Minoli, Taieb Znati, "Wireless Sensor Networks Technology -Protocols and Applications", John Wiley & Sons, Ltd, 2007.
- 2. Anna Hac, "Wireless Sensor Network Designs", John Wiley & Sons, Ltd, 2003.
- 3. Paolo Santi, "Topology Control in Wireless Ad Hoc and Sensor Networks", John Wiley & Sons, Ltd, 2005.

- 1. Andreas Willing, "Protocols and Architecture for Wireless Sensor Networks", John Wiley & Sons Ltd., 2005.
- 2. Ian F. Akyildiz and Mehmet Can, "Wireless Sensor Networks", John Wiley & Sons Ltd., 2010.
- 3. Mohammad Ilyas and Imad Mahgoub, "Handbook of sensor networks : Compact wireless and wired sensing systems", CRC Press LLC, 2005.

ECE18R330	DIGITAL IMAGE PROCESSING	L	Т	Р	С
ECEIONSSU	DIGITAL IMAGE FROCESSING	3	0	0	3
Prerequisite	Digital Signal Processing (INT18R274)				

Course	Profe	ssional	Electi	ve										
Category														
Course	Theor	ry												
Туре														
Objective (s)	To in	ntroduc	the the	basic	conce	pts and	d meth	nodolog	gies fo	or analy	sis, mo	deling,		
	synth	esis ar	nd cod	ing of	speed	h and	music	and	to pro	vide a t	foundati	on for		
	devel	oping	applic	ations	and f	or fur	her st	udy in	the	field of	digital	audio		
		ards an						•			U			
				1										
Course Outco	ome(s)													
CO1	-	xplain the basic concepts like sampling, image representation												
CO2		arry various transformations on images and restore them												
CO3										he regio	n of inte	rest		
CO4	Apply	y vario	us segr	nentati	on tecl	nniques	s on dig	gital in	ages					
CO5	Desci	ribe va	rious re	epreser	ntations	s of dig	ital im	ages						
Mapping of C	COs wi	th Pos												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Η	Μ										Н		
CO2		H M												
CO3	Н	H M H												
CO4		H H												
CO5		Н	Η				Μ							
Course Topic	:(s)													

Unit 1 : Image Processing Fundamentals

Advantages, Applications, Limitations of DIP; Components of an image processing system, Digital image representation, light, hue, saturation and intensity, grey scale and colour images, colour models; Basic relationship between pixels, image sampling and quantization

Unit 2: Image Transforms, Image Restoration

Two dimensional orthogonal transforms - DFT, FFT, Walsh, Slant, Hadamard, Haar transform, KLT, DCT, wavelets; Image degradation: Spatial domain, frequency domain; Degradation model for continuous function, continuous impulse function, restoration approaches: unconstrained restoration, constrained restoration, Lagrange multiplier, minimum mean square error filtering, constrained least square filtering, inverse filtering, removal of blur caused by uniform linear motion, Wiener filter, Geometric mean filter, Geometrical transformations

Unit 3: Image Enhancement

Image enhancement in the Spatial Domain, background, basic grey level transformations, histogram processing, enhancement using arithmetic/logic operations, basic of spatial filtering, smoothing spatial filters, sharpening spatial filters, combining spatial enhancement methods, image enhancement in the frequency domain -background, introduction to Fourier transform and frequency domain, smoothing frequency domain filters, sharpening frequency domain filters, homomorphic filters, implementation

Unit 4 : Image Segmentation

Detection of discontinuities, edge linking and boundary detection, threshold, region-based segmentation, segmentation by morphological watersheds, use of motion in segmentation

Unit 5: Image Representation

Image representation, Boundary representation using chain codes, Polygonal approximation, signatures, skeleton, patters, recognition based on decision theoretic methods **Text Book(s):**

1. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, Pearson, 3rd Edition, 2013 **Reference(s):**

1. Anil. K. Jain, Fundamentals of Digital Image Processing, PHI, 2001

2. William K. Pratt, Digital image processing: PIKS Scientific Inside, Wiley, 4th Edition, 2012

INT18R406			REAI	L TIM	E SYS	TEMS	5			T	P	C
	Oper	ating sy							3	0	0	3
Prerequisite	-				101127	5)						
Course	Profe	ssional	Electi	ve								
Category												
Course	Theorem	ry										
Type		F 1 ·	1	1 /	1 0	1	. 1		1 /	• 1	C	1
Objective(s)		-		apply t	he fun	damen	tal cor	ncepts	and ter	minolog	gy of re	al-time
		system		1.1	4 6	1	4 1	1 1	C 1	<i>.</i> .		
		-					-	oblems	of real	-time sy	stems.	
		Analyz		•		design	s.					
		Design									1 6	1
				assess	the rel	evant	Interatu	ire and	resear	ch trend	ds of re	al-time
<u> </u>		system	S									-
Course Outco		4 1	4 1		1.		<u> </u>	<i>.</i>				
CO1		erstand			-							
CO2	-		0						-		pecifica	
CO3	_		-		-				-	docume	entation	
CO4	-	ement a	-			-		-				
CO5	Imple	ement a	ı valida	ation pl	an bas	ed on a	ll docu	ımenta	tion			
Mapping of (COs wi	ith PO	S									
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Η	Μ										
CO2	L	Η	Н	Μ	Μ							
CO3	L	Η	Н	Μ	Μ						L	L
CO4		Η	Μ								L	
CO5		Η	Μ		Μ					L	L	
Course Topic												
UNIT 1: IN	TROD	UCTI	ON									
Introduction-I												bedded
Systems – Op								s – Est	imating	g Progra	m runti	mes.
		SSIGN										
Classical unip								r Scheo	luling	of IRIS	Tasks –	- Tasks
Assignment -1						duling.						

UNIT 3: PROGRAMMING LANGUAGES AND TOOLS

Desired language characteristics based on ADA – Data typs – Control Structures – Packages – Exception Handling – Overloading – Multitasking – Timing specification – Task Scheduling – Just-intime Compilation – Runtime support.

UNIT 4: REAL TIME DATA BASES

Basic networking principles – Real time databases –Real time Vs general purpose data base-Transaction processing – Concurrency control – Disk scheduling algorithms – Serialization and Consistency-Data base for hard real time systems.

UNIT 5: FAULT TOLERANCE, RELIABILITY AND SYNCHRONIZATION

Fault types – Fault detection and containment – Redundancy – Data diversity – Reversal checks – Obtaining parameter values – Reliability models for hardware redundancy – Software error models – Clocks – Fault tolerant synchronization – Synchronization in software.

TEXT BOOK

1. Krishna C.M., Kang G.Shin, "Real -Time Systems", McGraw-Hill, International Editions, 2010.

- 1. Raymond J.A. Buhr, Donald L. Bailey, "An Introduction To Real Time Systems", Prentice Hall International, 1999.
- 2. Stuart Bennett, "Real Time computer control-An Introduction", PHI, 2004.

INT18R407			INTE	RNET	OF TI	HINGS	5			T	P	C			
Duonoquigito	Com	Niton N	atrucal		71002	71)			3	1	0	4			
Prerequisite	•	outer N		, ,	21883	/1)									
Course	Profe	ssional	Electi	ve											
Category															
Course	Theor	ry													
Туре															
Objective (s)	•	To le	earn ab	out the	funda	mental	s of Int	ternet o	of Thin	gs					
	•	To b	uild a s	small lo	ow cos	t embe	dded s	ystem i	using A	rduino/	Raspbe	erry Pi			
		or eq	uivale	nt boar	ds				U		•	•			
	•	-				Interne	t of Th	ings in	real w	orld sce	nario				
Course Outco	ome(s)														
CO1	Desig	gn a portable IoT using Arduino/Equivalent boards and relevant protocols													
CO2	Deve	lop wel	b servi	ces to a	access/	control	I IoT d	evices							
CO3	Analy	ze the	variou	s comp	onents	s of Io7	Γ								
CO4	Analy	ze app	licatio	ns of Io	oT in re	eal tim	e scena	ario							
CO5	Deplo	oy an Io	oT app	lication	n and c	onnect	to the	cloud							
Mapping of C	COs wi	th POs	5												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	L	Н		Н	Н										
CO2	L	Н	М	М			Н			Н					
CO3	L	Н				Н									
CO4	L	Н	М	Н							Н				
CO5	L	Н	М	L			Н								
Course Topic	c(s)														

UNIT 1: FUNDAMENTALS OF IOT

Introduction-Characteristics - Physical design - Protocols-Logical design - Enabling technologies - IoT levels-Domain specific IoTs - IoT vs M2M

UNIT 2: IOT DESIGN METHODOLOGY

IoT systems management - IoT design methodology-Specifications - Integration and Application Development

UNIT 3: IOT COMPONENTS

Sensors and activators - Communication modules - Zigbee-RFID-Wi-Fi-Power sources.

UNIT 4: BUILDING IOT WITH HARDWARE PLATFORMS

Platform - Arduino/Intel Galileo/Raspberry Pi- Physical device - Interfaces - Programming - APIs/Packages - Web services.

UNIT 5: CASE STUDIES AND ADVANCED TOPICS

Various Real time applications of IoT-Connecting IoT to cloud-Cloud storage for IoT-Data Analytics for IoT- Software & Management Tools for IoT.

TEXT BOOKS

1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities Press, 2015.

REFERENCES

- 1. Manoel Carlos Ramon, —Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers^{II}, Apress, 2014.
- 2. Marco Schwartz, —Internet of Things with the Arduino Yunl, Packt Publishing, 2014

NETWORK MANAGEMENT

DIE10D2EC	NETWORK DESIGN SECURITY	L	Т	Р	С
INT18R356	AND MANAGEMENT	3	0	1	3.5
Prerequisite	Computer Networks (CSE18R371)				
Course	Professional Elective				
Category					
Course	Theory with Practice				
Туре					
Objective (s)	• To know about System Level Security, Vulner	abilitie	s & thre	ats	
	• To understand the concepts of Encryption	Algori	thms &	Techni	ques.
	Authentication functions, Protocols & Tools,	U			1 /
	• To analyze the Security principles based on	OSI A	rchitecti	ure. Wi	reless
	Security, Network design including LAN				
	Management				
Course Outco	ome(s)				
CO1	Understand the basic concepts of network design				
CO2	Illustrate the process of network design				
CO3	Apply authentication techniques to provide secure con	nmunic	ation		
CO4	Analyze public cryptosystems for the quality of securi				
CO5	Understand the concepts of various Network Managen	nent Se	ervices		
Mapping of (COs with POs				
CO		PO9 1	PO10 I	PO11	PO12

CO1	Н	L						
CO2	М	М		Н			Н	L
CO3			Η	Н				
CO4	Н	L			Н			L
CO5	Н	М				Н		

UNIT 1: INTRODUCTION

Overview of Design process - Process Components, System description, Service Description, Service, Performance Characteristics, Network Supportability. Requirement Analysis – User requirement, Application requirement, Device requirement, Network requirement.

UNIT 2: DESIGN CONCEPTS

Design Concepts – Objectives, process, Service provider Evaluation, Network Layout, Trace Traceability, Design Metrics.

UNIT 3: SECURITY PROBLEM AND CRYPTOGRAPHY

Security attacks – services – and mechanism – Conventional encryption model – Steganography – classical encryption techniques – simplified DES – block Cipher principles – The DES standards – Principles of Public key cryptosystems – RSA algorithm – Key management – Hellman key exchange – Authentication requirements and functions – Authentication codes Hash functions Kerberos. Practical: DES, RSA, Hellman algorithms

UNIT 4: NETWORK SECURITY

Transport level Security- Web Security, SSL, TLS, HTTPS, SSH- Wireless network security-E Mail security-PGP, S/ MIME, DKIM, IP Security, Intrusion detection – password management. Malicious software– Viruses and related Threats – Virus Counter measures, worms, DDoS attacks– Firewall Design Principles – Trusted Systems. Practical: PGP, S/ MIME, DKIM

UNIT 5: NETWORK MANAGEMENT

Network management – requirements and systems – Network monitoring architecture – Performance monitoring – Fault monitoring – Account monitoring – Configuration control – Security control – SNMP background and concepts – structure of management information – SNMP protocol – Basic concepts – specifications – Transport level support Groups. Practical: Network Monitoring

TEXT BOOKS

- 1. "Network Analysis, Architecture, and Design" (3rd Edition), James McCabe, Morgan Kaufmann Publishers, 3rd edition, 2011
- 2. William Stallings, "Cryptography and Network Security", 6th Edition, Pearson Education, March 2013.
- 3. William Stallings, "SNMP, SNMPv2, SNMPv3 and RMON 1 and 2", Pearson education Asia, 2009.

- 1. Charles P. Pfleeger, "Security in Computing", Prentice Hall, 3rd Edition 2003.
- 2. Bruce Schneier, "Applied Cryptography", JohnWiley & Sons Inc, 2nd edition, 2007.
- 3. Mani Subramanian, "Network management Principle and practice", Pearson education India, 2010.

INT18R308		TN	FORM	ЛАТТА	M CF		TV		L	Т	Р	С		
IN I 18K308		IN	FUR		JN SE	CURI	1 1		3	1	0	4		
Prerequisite	Nil													
Course	Profe	ssional	Electi	ve										
Category														
Course	Theor	ry												
Туре														
Objective (s)	•	App	ly the b	asic se	curity	algorit	hms ar	d polic	cies rec	uired by	y compu	ting		
		syste	em.											
	•	Pred	ict the	vulner	abilitie	s acros	s any c	comput	ing sys	stem and	l hence l	be able		
		to de	sign a	securit	v solut	ion for	any co	mputi	ng syst	em.				
Course Outco	ome(s)		0		-		2	1	0.					
CO1		ntroduce the concepts and models of security in computing.												
CO2		design and implement symmetric and asymmetric cryptosystems.												
CO3		-	-		•				• •	evel and				
		cation 1		2										
CO4	To es	timate	the lev	el of se	ecurity	risk fa	ced by	an org	anizati	ion and t	the coun	ter		
		ures to					2	C						
CO5	To kr	now ab	out the	softwa	are secu	urity de	evelopi	nent m	odel.					
Mapping of (•	1							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	М	Н	Н									L		
CO2		Н		Η			Н					L		
CO3		Н		Η		Н	Н							
CO4			Н									L		
CO5		Н	Μ			Н						L		
Course Topic	:(s)													

UNIT 1: SECURITY - AN OVERVIEW

Basics of Security - CIA Triad - Threats, Attacks and Controls - Security Models- Bell-LaPadula model - Biba Integrity model - Chinese Wall model - Malicious Logic - Viruses, Worms, Logic Bombs - Basics of Cryptography - Mathematics for Cryptography - Modulo Arithmetic -Euclidean and extended Euclidean Theorem - Chinese Remainder Theorem - Euler and Fermat theorem - Classical Cryptosystems - Substitution and Transposition.

UNIT 2: ADVANCED CRYPTOGRAPHY

DES and AES - Public Key Cryptography - RSA and ElGamal algorithms - Authentication and Key Exchange - Biometric authentication - Diffie Hellman and Needem Schroeder algorithms -Elliptic Curve Cryptosystems - Digital Signatures - Message Digest - Certificates - Directories and Revocation of keys and certificates.

UNIT 3: SECURITY STANDARDS

Public Key Infrastructure - Kerberos - X.509 - IPSec - Virtual Private Networks - E-Mail Security - PGP and PEM - Web Security - Secured DNS - SSL, TLS and SET - CoBIT Framework - Compliances - Credit Card Applications - GLBA.

UNIT 4: SECURITY PRACTICES

Vulnerability Analysis - Flaw Hypothesis Methodology, NRL taxonomy and Aslam's model -

Auditing - Anatomy of an Auditing System - Design of Auditing Systems - Posteriori Design - Auditing mechanisms - Risk Analysis and Management - Disaster Recovery Planning/Incident Response Planning.

UNIT 5: SECURE DEVELOPMENT

Secure Coding - OWASP/SANS Top Vulnerabilities - Buffer Overflows - Incomplete mediation - XSS - Anti Cross Site Scripting Libraries - Canonical Data Format - Command Injection - Redirection - Inference – Application Controls - Secured Software Development Life Cycle - Evaluation of Security Systems- Case Studies-Legal and Ethical Issues- Cybercrime and computer crime - Intellectual property-Copyright, patent, trade secret - Hacking and Intrusion privacy-Identity theft.

TEXT BOOKS:

1. Charles Pfleeger, Shari Lawrence Pfleeger, Devin N Paul, —Security in Computing II, Pearson, 2007.

2. William Stallings, —Cryptography and Network Security – Principles and Practices^{II}, Pearson Education, Sixth Edition, 2013.

REFERENCES:

1. Wade Trappe, Lawrence C Washington, —Introduction to Cryptography with Coding and Theoryl, Second Edition, Pearson, 2007.

2. Wenbo Mao, —Modern Cryptography Theory and Practicel, Pearson, 2004.

4. Behrouz A Forouzan and Debdeep Mukhopadhyay, "Cryptography and Network Security", Tata Mc Graw Hill Ltd. 2014.

INT18R357			MOD	ILE N		ODVS			L	Т	Р	С		
111100357			MOD			UNNS			3	0	1	3.5		
Prerequisite	Comp	puter N	etwork	ts (CSE	E18R37	71)								
Course	Profe	ssional	Electi	ve										
Category														
Course	Theor	ry with	Practi	ce										
Туре														
Objective (s)	This	Course	Desc	ribes a	bout r	outing	mecha	nisms	for bo	oth Adh	oc and	Sensor		
	Netw	orks												
Course Outco														
CO1	Unde	erstand the basics of radio access and networks in to simulate wireless networks and analyze the simulation results												
CO2	Learn	to sim	ulate v	vireless	s netwo	orks an	d analy	ze the	simula	ation res	ults			
CO3	Descr	ribe the	conce	pts of	ad hoc	netwo	rks, de	sign ar	nd impl	lementat	ion issu	es, and		
	availa	able sol	utions											
CO4			<u> </u>						1	plicatio				
CO5	Demo	onstrate	e advar	nced kn	owled	ge of n	etwork	ing an	d wirel	ess netw	orking			
Mapping of C	COs wi	th POs	6											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	L	Н	Н											
CO2	Н													
CO3		Н												
CO4		Н			L									
CO5							Η			Η	Η	L		

UNIT 1: MULTIPLE RADIO ACCESS

Medium Access Alternatives: Fixed-Assignment for Voice Oriented Networks Random Access for Data Oriented Networks, Handoff and Roaming Support, Security and Privacy.

UNIT 2: WIRELESS BROADBAND NETWORKS TECHNOLOGY & PLATFORMS

Wireless broadband fundamentals and Fixed Wireless Broadband Systems - Platforms-Enhanced Copper- Fibre Optic and HFC - 3G Cellular- Satellites - ATM and Relay Technologies **UNIT 3: AD HOC NETWORKS**

Characteristics and Applications of Ad hoc Networks - Routing – Need for routing and routing classifications - Table Driven Routing Protocols - Source Initiated On-Demand Routing Protocols - Hybrid Protocols – Zone Routing - Fisheye Routing - LANMAR for MANET with group mobility - Location Added Routing, Distance Routing Effects - Micro discovery and Power Aware Routing. Practical : Routing Protocols

UNIT 4: SENSOR NETWORKS

Wireless Sensor Networks - DARPA Efforts –Classification - Fundamentals of MAC - Flat routing – Directed Diffusion-SPIN - COGUR - Hierarchical Routing - Cluster base routing -Scalable Coordination – LEACH – TEEN - APTEEN and Adapting to the dynamic nature of Wireless Sensor Networks. Practical : MAC protocols

UNIT 5: ADVANCED WIRELESS NETWORKS

Wireless. Broadband Network Applications - Teleservices Model and Adaptive QoS Parameters - Modelling of Wireless - Broadband Applications – Multi component Model - Residential High speed Internet Wireless Broadband Satellite Systems - Next Generation Wireless Broadband Networks – 3G, Harmonized 3G, 3G CDMA, Smart Phones and 3G Evolution. Practical :Multi component models

TEXT BOOK

1. John R. Vacca, "Wireless Broadband Networks Handbook 3G, LMDS and Wireless Internet", Tata McGraw-Hill, 2001.

- 1. Agrawal D.P., and Qing-An zeng, "Introduction to Wireless and Mobile Systems", Thomson Learning, 3rd Edition, 2010.
- 2. Martyn Mallick, "Mobile and Wireless Design Essentials, Wiley publication, 2003.
- 3. Kavesh Pahlavan and Prashant Krishnamurty, "Principles of Wireless Networks A unified Approach", Prentice Hall PTR, 2002

INT18R309	WIRELESS APPLICATION	L	Т	Р	С
IN I 10K309	PROTOCOL	3	0	0	3
Prerequisite	Computer Networks (CSE18R371)				
Course	Professional Elective				
Category					
Course	Theory				
Туре					
Objective (s)	• To learn the basic concepts of mobile internet				

• To introduce the web technologies for developing simple web applications.														
	• '	To mal progran To teac	ke stud nming h the c	lents to langua concept	o under ages us ts for d	ed for eployin	about s WAP s ng WA	services service P servi	s of W impler ices	AP and nentatio	to learr	n WAP		
		To und	erstanc	i about	wirele	ess tele	phony	applica	ations a	and its en	nhancen	nents		
Course Outco	ome(s)													
CO1		Understand the basic concepts of mobile internet, services and service providers of mobile internet.												
CO2		Learn about the web technologies used for developing web applications and components.												
CO3		Analyze about the WAP services and to learn programming language used for developing WAP services.												
CO4	Analy proto	U	how V	VAP s	service	s are	linked	with	interne	et and	about i	nternet		
CO5		abou ations		eless	teleph	iony a	applica	tions,	desig	n cons	ideratio	ns for		
Mapping of C	COs wi	th POs	5											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	Н	М											
CO2		Н	Н		Н							L		
CO3		М	L		Н									
CO4		Μ	L				Η							

CO5

UNIT 1: MOBILE INTERNET

Introduction, Mobile Data – connectivity – Key services for mobile internet – Mobile Internet access and application service provides - Content providers and Developer.

UNIT 2: MOBILE INTERNET STANDARD

Μ

Η

Current Web technologies for wireless application - origin and overview of WAP components of wap standard - Network Infrastructure services supporting Wap clients Design Principles Tools and software editors and emulators.

UNIT 3: IMPLEMENTING WAP SERVICES

WML Basic and Document model - content generation - Binary WML - enhanced WML - WML script - rules of script standard libraries - user interface design guidelines.

UNIT 4: ADVANCED WAP

Tailoring content to client - Techniques using HTTP 1.1 - WAP Push - Push Access Protocol -Push Technology - MIME media types for push messages - Proxy gateway; Data base driven WAP - ASP and WAP - Object model - Activex data objects (ADO) - End-to-End WAP services - Security domains - linking WAP and internet.

UNIT 5: WIRELESS TELEPHONY APPLICATIONS

WTA architecture - client Framework - Server and security - Design considerations Application creation Toolbox - WTA enhancements – Technology - Bluetooth and voice XML - Telematics inter connectivity.

TEXT BOOK

1. Sandeep Signal et al, "Writing Applications for Mobile Internet", Pearson Education, 2001.

L

REFERENCE

1. "Wireless Protocols - A beginner's Guide" BulBrook, Tata McGraw Hill PCL, 2001.

NE LWORKS 3 1 0 4 Prerequisite Computer Networks (CSE18R371) 0 4 Course Professional Elective	INT10D 400]	HIGH	PERF	ORM	ANCE			L	Т	P	С			
Course Category Professional Elective Course Type Theory Objective(s) To facilitate the students on the basis of ATM and Frame relay concepts ar explain the various types of LAN's and to know about their applications. To learn about network security in many layers and network management To study the types of VPN and tunneling protocols for security. To develop a comprehensive understanding of multimedia networking. Course Outcome(s) CO1 Implement different operations in communication networks CO2 Understand the flow control and congestion control during packet transmission CO3 Understand switching in ATM and Frame Relay networks CO4 Study about the different queuing methods CO5 Know the different protocols towards Quality of Service Mapping of COs with POs CO2 L H M H H	INT18R408			Ν	NETW	ORKS	5			3	1	0	4			
Category Theory Type To facilitate the students on the basis of ATM and Frame relay concepts and explain the various types of LAN's and to know about their applications. • To facilitate the students on the basis of ATM and Frame relay concepts and explain the various types of LAN's and to know about their applications. • To facilitate the students on the basis of ATM and Frame relay concepts and explain the various types of VPN and tunneling protocols for security. • To study the types of VPN and tunneling protocols for security. • To develop a comprehensive understanding of multimedia networking. CO1 Implement different operations in communication networks CO2 Understand the flow control and congestion control during packet transmission CO3 Understand switching in ATM and Frame Relay networks CO4 Study about the different queuing methods CO5 Know the different protocols towards Quality of Service Mapping of COs with POs Co CO1 L H CO3 L H CO4 L H CO5 L H CO6 PO1 PO2 CO3 L H	Prerequisite	Comp	puter N	letwork	ks (CSI	E18R3'	71)									
Course Type Theory Objective(s) To facilitate the students on the basis of ATM and Frame relay concepts are explain the various types of LAN's and to know about their applications. To learn about network security in many layers and network management To study the types of VPN and tunneling protocols for security. To develop a comprehensive understanding of multimedia networking. Course Outcome(s) CO1 Implement different operations in communication networks CO2 Understand the flow control and congestion control during packet transmission CO3 Understand switching in ATM and Frame Relay networks CO4 Study about the different protocols towards Quality of Service Mapping of COs with POS CO4 CO5 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 L H H	Course	Profe	ssional	l Electi	ve											
Type - Objective(s) • To facilitate the students on the basis of ATM and Frame relay concepts ar explain the various types of LAN's and to know about their applications. • To learn about network security in many layers and network management • To study the types of VPN and tunneling protocols for security. • To develop a comprehensive understanding of multimedia networking. Course Outcome(s) CO1 Implement different operations in communication networks CO2 Understand the flow control and congestion control during packet transmission CO3 Understand switching in ATM and Frame Relay networks CO4 Study about the different queuing methods CO5 Know the different protocols towards Quality of Service Mapping of CO8 with POS CO CO1 L H H CO2 L H M CO3 L H H CO3 L H H CO3 L H H CO4 L H H CO3 L H H CO3 L H H CO4 L H H	Category															
Objective(s) To facilitate the students on the basis of ATM and Frame relay concepts ar explain the various types of LAN's and to know about their applications. To learn about network security in many layers and network management To study the types of VPN and tunneling protocols for security. To develop a comprehensive understanding of multimedia networking. Course Outcome(s) Course for exercise and the flow control and congestion control during packet transmission CO3 Understand the flow control and Congestion control during packet transmission CO4 Study about the different queuing methods CO5 Know the different protocols towards Quality of Service Mapping of CO8 with PO5 CO2 CO1 L H H H CO3 L H	Course	Theor	ry													
explain the various types of LAN's and to know about their applications. • To learn about network security in many layers and network management • To study the types of VPN and tunneling protocols for security. • To develop a comprehensive understanding of multimedia networking. Course Outcome(s) CO1 Implement different operations in communication networks CO2 Understand the flow control and congestion control during packet transmission CO3 Understand switching in ATM and Frame Relay networks CO4 Study about the different queuing methods CO5 Know the different protocols towards Quality of Service Mapping of COs with POS CO2 CO1 L H CO2 L H CO3 L H CO3 L H CO3 L H CO4 L H CO3 L H CO4 L H CO3 L H CO4 L H CO5 L H CO4 L H UNT1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
To learn about network security in many layers and network management To study the types of VPN and tunneling protocols for security. To develop a comprehensive understanding of multimedia networking. Course Outcome(s) CO1 Implement different operations in communication networks CO2 Understand the flow control and congestion control during packet transmission CO3 Understand switching in ATM and Frame Relay networks CO4 Study about the different queuing methods CO5 Know the different protocols towards Quality of Service Mapping of COs with POs CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 L H M M H H H CO3 L H M M H H H CO3 L H M M H H H CO4 L H M M L H H CO5 L H M M L H H CO4 L H M M L H H CO5 L H M M L H H CO4 CO3 L H CO5 CO1	Objective (s)											•	-			
To study the types of VPN and tunneling protocols for security. To develop a comprehensive understanding of multimedia networking. Course Outcome(s) C01 Implement different operations in communication networks C02 Understand the flow control and congestion control during packet transmission C03 Understand switching in ATM and Frame Relay networks C04 Study about the different queuing methods C05 Know the different protocols towards Quality of Service Mapping of COs with POs C06 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 C01 L H H H H H H H H H H H C03 L H M M H H H H C03 L H M M H H H H C04 L H M M H L H H C05 L H M M Cell - ATM Service Categories - AAI High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless LAN applications, requirements - Architecture of 802.11 UNT 2: CONGESTION AND TRAFFIC MANAGEMENT Queuing Analysis- Queuing Models - Single Server Queues - Effects of Congestion Congestion Control. TTY CONGESTION CONTROL TCP AND ATM CONGESTION CONTROL TCP Flow control - TCP Congestion Control - Retransmission - Timer Management Exponential RTO backoff - KARN's Algorithm – Window management – Performance of TC over ATM. Traffic and Congestion Control in ATM – Requirements – Attributes – Traffic			-			• 1					-					
To develop a comprehensive understanding of multimedia networking. Course Outcome(s) CO1 Implement different operations in communication networks CO2 Understand the flow control and congestion control during packet transmission CO3 Understand switching in ATM and Frame Relay networks CO4 Study about the different queuing methods CO5 Know the different protocols towards Quality of Service Mapping of COs with POs CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 L H H H H H H H H H CO3 L H M M M H H CO3 L H M M H CO3 L H M M H CO4 L H M H H CO5 L H M M L CO4 L H M M L CO5 L Concetion, ATM Cell – ATM Service Categories – AAA High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless LAN applications, requirements – Architecture of 802.11 UNIT 2: CONGESTION AND TRAFFIC MANAGEMENT Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks Frame Relay Congestion Control. UNIT 3: TCP AND ATM CONGESTION CONTROL TCP Flow control – TCP Congestion Control – Requirements – Attributes – Traffic over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic over ATM.							•	-	•			-	nent			
Course Outcome(s) CO1 Implement different operations in communication networks CO2 Understand the flow control and congestion control during packet transmission CO3 Understand switching in ATM and Frame Relay networks CO4 Study about the different queuing methods CO5 Know the different protocols towards Quality of Service Mapping of COs with POs CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 L H				-				-				-				
CO1 Implement different operations in communication networks CO2 Understand the flow control and congestion control during packet transmission CO3 Understand switching in ATM and Frame Relay networks CO4 Study about the different queuing methods CO5 Know the different protocols towards Quality of Service Mapping of COs with POs CO PO1 PO1 PO1 PO1 PO1 PO11 PO1 PO1 PO11 PO12 PO1 PO11 PO1 PO11 PO12 CO PO1 PO1 PO11 PO12 CO PO1 PO11 PO12 PO11 PO11 PO11 PO11 PO12 CO PO1 PO1 PO10 PO11 PO12 CO PO1 PO1 PO1 PO1	<u> </u>			elop a	compr	ehensiv	ve unde	erstand	ing of	multım	iedia net	tworking	g.			
CO2 Understand the flow control and congestion control during packet transmission CO3 Understand switching in ATM and Frame Relay networks CO4 Study about the different queuing methods CO5 Know the different protocols towards Quality of Service Mapping of COs with POS CO CO1 L H H CO2 L H M CO3 L H H CO2 L H M CO3 L H H CO3 L H H CO4 L H M CO3 L H H CO4 L H M CO5 L H M CO4 L H M CO5 L H M CO6 L H M				lifformer	t onor	otiona	noom	munica	tion n	aturante	2					
CO3 Understand switching in ATM and Frame Relay networks CO4 Study about the different queuing methods CO5 Know the different protocols towards Quality of Service Mapping of COs with POs CO CO1 L H H H H CO2 L H CO3 L H CO4 L H CO2 L H M H H CO3 L H CO4 L H CO5 L H CO3 L H CO4 L H CO5 L H CO5 L H M CO6 L H M		_										·	· · · · ·			
CO4 Study about the different queuing methods CO5 Know the different protocols towards Quality of Service Mapping of COs with POs CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 L H											packet	transmis	sion			
CO5 Know the different protocols towards Quality of Service Mapping of COs with POs CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 L H H H H H H H Image: Colspan="2">CO12 CO2 L H M M H H H Image: Colspan="2">CO2 CO3 L H M H H H Image: Colspan="2">H CO3 L H M L Image: Colspan="2">H CO4 L H M L Image: Colspan="2">H CO4 L H M L Image: Colspan="2">H CO4 L H M L Image: Colspan="2">H H Image: Colspan="2"					-				lay net	works						
Mapping of Cos with POsCOPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12CO1LHHHHHHHHImage: Second		-														
COPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12CO1LHHHHHHHHHHCO2LHMMHHHHHCO3LHMHHHHHCO4LHMHHHHHCO5LHMLHHHHCourse Topic(s)UNIT 1: HIGH SPEED NETWORKSFrame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATIlogicalConnection, ATMCell–ATMServiceCategories–Jight SpeedLANs:FastEthernet, GigabitEthernet, FiberChannel – WirelessLANapplications, requirements – Architecture of 802.11UNIT 2: CONGESTION AND TRAFFIC MANAGEMENTQueuingAnalysis-QueuingModels – SingleServerQueues – Effects of CongestionCongestion Control – Traffic Management – Congestion Control in Packet Switching NetworksFrame Relay Congestion Control.UNIT 3: TCP AND ATM CONGESTION CONTROLTCP Flow control – TCP Congestion Control – Retransmission – Timer ManagementExponential RTO backoff – KARN's Algorithm – Window management – Performance of TCover ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic <td>CO5</td> <td>Know</td> <td colspan="13"></td>	CO5	Know														
CO1LHHHHCO2LHMMHHCO3LHMHHHCO4LHMHHHCO5LHMLHHCourse Topic(s)UNIT 1: HIGH SPEED NETWORKSFrame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATIlogical Connection, ATM Cell – ATM Service Categories – AAIHigh Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless LANapplications, requirements – Architecture of 802.11UNIT 2: CONGESTION AND TRAFFIC MANAGEMENTQueuing Analysis- Queuing Models – Single Server Queues – Effects of CongestionCongestion Control – Traffic Management – Congestion Control in Packet Switching NetworksFrame Relay Congestion Control.UNIT 3: TCP AND ATM CONGESTION CONTROLTCP Flow control – TCP Congestion Control – Retransmission – Timer ManagementExponential RTO backoff – KARN's Algorithm – Window management – Performance of TCover ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic		COs wi	Ds with POs													
CO2LHMMHHHCO3LHMHHHCO4LHMHHHCO5LHMLHHCourse Topic(s)UNIT 1: HIGH SPEED NETWORKSFrame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATIlogical Connection, ATM Cell – ATM Service Categories – AAIHigh Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless LANapplications, requirements – Architecture of 802.11UNIT 2: CONGESTION AND TRAFFIC MANAGEMENTQueuing Analysis- Queuing Models – Single Server Queues – Effects of CongestionCongestion ControlUNIT 3: TCP AND ATM CONGESTION CONTROLTCP Flow control – TCP Congestion Control – Retransmission – Timer ManagementExponential RTO backoff – KARN's Algorithm – Window management – Performance of TCover ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic		PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO3LHHHCO4LHMHHCO5LHMLHCourse Topic(s)UNIT 1: HIGH SPEED NETWORKSFrame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATHlogical Connection, ATM Cell – ATM Service Categories – AAHHigh Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless LANapplications, requirements – Architecture of 802.11UNIT 2: CONGESTION AND TRAFFIC MANAGEMENTQueuing Analysis- Queuing Models – Single Server Queues – Effects of CongestionCongestion Control – Traffic Management – Congestion Control in Packet Switching NetworksFrame Relay Congestion Control.UNIT 3: TCP AND ATM CONGESTION CONTROLTCP Flow control – TCP Congestion Control – Retransmission – Timer ManagementExponential RTO backoff – KARN's Algorithm – Window management – Performance of TCover ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic						Н										
CO4LHMHIIIICO5LHMLHHIICourse Topic(s)UNIT 1: HIGH SPEED NETWORKSFrame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATH logical Connection, ATM Cell – ATM Service Categories – AAH High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless LAN applications, requirements – Architecture of 802.11UNIT 2: CONGESTION AND TRAFFIC MANAGEMENT Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks Frame Relay Congestion Control.UNIT 3: TCP AND ATM CONGESTION CONTROLTCP Flow control – TCP Congestion Control – Retransmission – Timer Management Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TC over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic UNIT A: Traffic and Congestion control in ATM – Requirements – Attributes – Traffic				M	M			H			Н					
CO5LHMLHHICourse Topic(s)UNIT 1: HIGH SPEED NETWORKSFrame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATIlogical Connection, ATM Cell – ATM Service Categories – AAIHigh Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless LANapplications, requirements – Architecture of 802.11UNIT 2: CONGESTION AND TRAFFIC MANAGEMENTQueuing Models – Single Server Queues – Effects of CongestionCongestion Control – Traffic Management – Congestion Control in Packet Switching NetworksFrame Relay Congestion Control.UNIT 3: TCP AND ATM CONGESTION CONTROLTCP Flow control – TCP Congestion Control – Retransmission – Timer ManagementExponential RTO backoff – KARN's Algorithm – Window management – Performance of TCCover ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic							H									
Course Topic(s) UNIT 1: HIGH SPEED NETWORKS Frame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATI logical Connection, ATM Cell – ATM Service Categories – AAI High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless LAN applications, requirements – Architecture of 802.11 UNIT 2: CONGESTION AND TRAFFIC MANAGEMENT Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks Frame Relay Congestion Control. UNIT 3: TCP AND ATM CONGESTION CONTROL TCP Flow control – TCP Congestion Control – Retransmission – Timer Management Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TC over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traff												H				
 UNIT 1: HIGH SPEED NETWORKS Frame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATI logical Connection, ATM Cell – ATM Service Categories – AAI High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless LAN applications, requirements – Architecture of 802.11 UNIT 2: CONGESTION AND TRAFFIC MANAGEMENT Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks Frame Relay Congestion Control. UNIT 3: TCP AND ATM CONGESTION CONTROL TCP Flow control – TCP Congestion Control – Retransmission – Timer Management Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TC over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic 			H	M	L			H								
Frame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATH logical Connection, ATM Cell – ATM Service Categories – AAH High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless LAN applications, requirements – Architecture of 802.11 UNIT 2: CONGESTION AND TRAFFIC MANAGEMENT Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks Frame Relay Congestion Control. UNIT 3: TCP AND ATM CONGESTION CONTROL TCP Flow control – TCP Congestion Control – Retransmission – Timer Management Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TC over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic				TTAN												
 logical Connection, ATM Cell – ATM Service Categories – AAI High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless LAN applications, requirements – Architecture of 802.11 UNIT 2: CONGESTION AND TRAFFIC MANAGEMENT Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks Frame Relay Congestion Control. UNIT 3: TCP AND ATM CONGESTION CONTROL TCP Flow control – TCP Congestion Control – Retransmission – Timer Management Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TC over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic 						ue tran	sfor m	ode _	ΔТΜ	Proto	col Arc	hitectur				
 High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless LAN applications, requirements – Architecture of 802.11 UNIT 2: CONGESTION AND TRAFFIC MANAGEMENT Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks Frame Relay Congestion Control. UNIT 3: TCP AND ATM CONGESTION CONTROL TCP Flow control – TCP Congestion Control – Retransmission – Timer Management Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TC over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic 	•			•									AAL.			
 applications, requirements – Architecture of 802.11 UNIT 2: CONGESTION AND TRAFFIC MANAGEMENT Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks Frame Relay Congestion Control. UNIT 3: TCP AND ATM CONGESTION CONTROL TCP Flow control – TCP Congestion Control – Retransmission – Timer Management Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TC over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic 	0		,													
 UNIT 2: CONGESTION AND TRAFFIC MANAGEMENT Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks Frame Relay Congestion Control. UNIT 3: TCP AND ATM CONGESTION CONTROL TCP Flow control – TCP Congestion Control – Retransmission – Timer Management Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TC over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic 	U 1					0		,								
Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks Frame Relay Congestion Control. UNIT 3: TCP AND ATM CONGESTION CONTROL TCP Flow control – TCP Congestion Control – Retransmission – Timer Management Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TC over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traff		-						GEME	NT							
Frame Relay Congestion Control. UNIT 3: TCP AND ATM CONGESTION CONTROL TCP Flow control – TCP Congestion Control – Retransmission – Timer Management Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TC over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traff																
UNIT 3: TCP AND ATM CONGESTION CONTROL TCP Flow control – TCP Congestion Control – Retransmission – Timer Management Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TC over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traff	-				ageme	ent – C	ongesti	ion Co	ntrol ir	Packe	t Switcl	hing Net	works –			
TCP Flow control – TCP Congestion Control – Retransmission – Timer Management Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TC over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traff	•	0			anar											
Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TC over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traff									•	•	T :	М.	4			
over ATM. Traffic and Congestion control in ATM - Requirements - Attributes - Traff					-							-				
Management Frame work, Traffic Control – ABR traffic Management – ABR rate control, RI				-					-							
cell formats, ABR Capacity allocations – GFR traffic management	-								-							

UNIT 4: INTEGRATED AND DIFFERENTIATED SERVICES

Integrated Services Architecture – Approach, Components, Services- Queuing Discipline, FQ, PS, BRFQ, GPS, WFQ – Random Early Detection, Differentiated Services

UNIT 5: PROTOCOLS FOR QOS SUPPORT

RSVP – Goals & Characteristics, Data Flow, RSVP operations, Protocol Mechanisms – Multiprotocol Label Switching – Operations, Label Stacking, Protocol details – RTP – Protocol Architecture, Data Transfer Protocol, RTCP.

TEXT BOOK

1. William Stallings, "High Speed Networks And Internet", Pearson Education, Second Edition, 2010.

- 1. Warland & Pravin Varaiya, "High Performance Communication Networks", Jean Harcourt Asia Pvt. Ltd., II Edition, 2001.
- 2. Irvan Pepelnjk, Jim Guichard and Jeff Apcar, "MPLS and VPN Architecture", Cisco Press, Volume 1 and 2, 2003.

INT18R455		CRY	PTOG	RAPH	IY AN	D NEI	WOR	K	Ι		Т	Р	C
IIN I 18K455				SEC	URIT	Y				3	0	1	3.5
Prerequisite	Com	outer N	etwork	ks (CSI	E18R3'	71)				-			
Course	Profe	ssional	Electi	ve									
Category													
Course	Theor	ry with	Practi	ce									
Туре													
Objective (s)	To d	evelop	a fun	damen	tal uno	lerstan	ding o	of Cryp	tograpl	ny and	networ	k sec	urity
	prope	er pract	ices, p	olicies,	techno	ologies	and sta	andards					
Course Outco	ome(s)												
CO1	Expla	in the	founda	tions o	of crypt	ograph	y and i	network	securi	ity.			
CO2	Ident	ify con	nmon s	ecurity	vulne	rability	attack	s in dif	ferent r	networki	ing env	ironm	ent
CO3	Evalu	ate the	risks a	and thr	eats to	digital	comm	unicatio	on syste	em			
CO4	Demo	onstrate	e the de	etailed	knowl	edge of	the ro	le of en	cryptic	on to pro	tect the	e data	
CO5	Expla	in the	fundan	nental	concep	ts of di	fferent	digital	signat	ure sche	mes		
CO6									ecurity	mechai	nism fo	r diffe	erent
		outing e		ment a	nd info	ormatic	on syste	ems					
Mapping of (COs wi	ith PO:	5	-		-			-		-		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012
CO1	Η	L			L								
CO2	Н	Н			L	Н							
CO3	Н	Н		L	L								
CO4	Η	L					Η						
CO5	Η	Н											
CO6	Н	Н	L	L		Μ	L	Μ					
Course Topic													
UNIT 1: INT	-												
OSI Security					• 1		-		-				
Data Encrypti	on Sta	ndard-	Basic o	concep	ts in nı	umber	theory	and fin	ite field	ls – Blo	ck Cipl	ner De	esign

Principles and Modes of Operation - Evaluation criteria for AES – AES Cipher – Triple DES. Practical: DES

UNIT 2: PUBLIC KEY CRYPTOGRAPHY

Number Theory- Public Key Cryptography and RSA-Key Management - Diffie-Hellman key Exchange – Elliptic Curve Architecture and Cryptography - Confidentiality using Symmetric Encryption and Asymmetric Encryption. Practical: RSA, Diffie Hellman

UNIT 3: CRYPTOGRAPHIC AND DATA INTEGRITY ALGORITHMS

Applications of cryptographic hash functions- Simple Hash Functions- Requirements and security-Secured Hash Algorithm- Message Authentication requirements and functions – Message Authentication Codes – Security of MACs – HMAC- Digital Signatures – ElGamal Digital signature scheme- Schnorr Digital signature scheme - Digital Signature Standard. Practical: Secured Hash Algorithm

UNIT 4: NETWORK AND INTERNET SECURITY

Transport level Security- Web Security, SSL, TLS, HTTPS, SSH- Wireless network security-E Mail security-PGP, S/ MIME, DKIM, IP Security. Practical: PGP

UNIT 5: SYSTEM LEVEL SECURITY

Intrusion detection – password management. Malicious software– Viruses and related Threats – Virus Counter measures , worms, DDoS attacks– Firewall Design Principles – Trusted Systems. Practical: password management

TEXT BOOK

1. William Stallings, "Cryptography and Network Security", 6th Edition, Pearson Education, March 2013.

REFERENCES

- 1. Bruce Schneier, "Applied Cryptography", second edition, John Wiley & Sons, New York, 2007.
- 2. Chris Brenton, "Mastering Network Security", BPB Publication, New Delhi, 2002.
- 3. Behrouz A Forouzan, "Cryptography and Network Security", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2014.

COMPUTING TECHNIQUES

INT10D250	DISTRIBUTED SYSTEMS						C		L	Т	Р	С
INT18R358		J	JIS I K	IBUII		51 EIVI	3		3	0	1	3.5
Prerequisite	Comp	outer A	rchitec	RMAN	dorga	nizatio	n (ÇSE	E18R17	(4)	Curricul	um and Sy	llabus
Course	Prog	Program Core										
Category												
Course Type	Theo	ory with	n Practi	ce								
Objective (s)	•	To ex	xpose s	tudents	s to bot	h the a	bstracti	ion and	details	s of file s	systems.	
	•	To in	troduc	e conce	epts rel	ated to	distrib	uted co	mputir	ng syster	ns.	
	•	To fo	ocus on	perfor	mance	and fle	xibility	y issues	s related	d to syste	ems desi	gn
		deci	sions.	-			-			-		-
	•	To ex	xpose s	tudents	s to cur	rent lite	erature	in dist	ributed	systems	5.	
Course Outco	me(s)											
CO1	Unde	rstand	various	model	s of dis	stribute	d syste	ems				
CO2	Awar	e of dis	stribute	d file s	ystems							
CO3	Identi	ify the	needs c	of distri	buted s	systems	s imple	mentat	ion			
CO4	Const	truct w	ork flov	ws as s	uch in o	distribu	ited sys	stems				
CO5	Desig	n distri	ibuted s	system	S							
Mapping of C	Os wit	th POs										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Μ	L		Η			Μ	L		Н	
CO2		Μ	Н					Μ	Η			
CO3		H M L H M L										
CO4			Μ	L					М	L		
CO5						L						
Course Topic	(s)											

UNIT 1: INTRODUCTION

Characterization of Distributed Systems- Examples of distributed systems - Challenges-System Models-Physical models-Architectural models - Fundamental models - Introduction to interprocess communications-External data representation and marshalling- Multicast communication-Network virtualization -Overlay networks – Practical : MPI and World Wide Web, Remote Method Invocation program

UNIT 2: DISTRIBUTED OBJECTS AND FILE SYSTEM

Introduction - Distributed objects - From objects to components- Case studies: Enterprise JavaBeans and Fractal - Introduction to DFS - File service architecture - Sun network file system - The Andrew File System- Introduction to Name Services- Name services and DNS - Directory and directory services Practical : The Global Name Service, The X.500 Directory Service.

UNIT 3: DISTRIBUTED OPERATING SYSTEM SUPPORT

The operating system layer – Protection - Process and threads - Communication and invocation - Operating system architecture - Virtualization at the operating system level - Introduction to time and global states - Clocks, Events and Process states - Synchronizing physical clocks - Logical time and logical Clocks - Global states - Distributed debugging. Practical : CORBA using Java program, Java deadlock program

UNIT 4: TRANSACTION AND CONCURRENCY CONTROL – DISTRIBUTED TRANSACTIONS

Transactions – Nested transaction – Locks - Optimistic concurrency control - Timestamp ordering -Comparison of methods for concurrency control - Introduction to distributed transactions - Flat and nested distributed transactions - Atomic commit protocols - Concurrency control in distributed transactions - Distributed deadlocks - Transaction recovery. Practical: Concurrency control using DBMS

UNIT 5: DISTRIBUTED SYSTEM DESIGN AND DISTRIBUTED MULTIMEDIA

SYSTEMS

Introducing the case study: Google- Overall architecture and design philosophy- Underlying communication paradigms- Data storage and coordination services- Distributed computation services- Introduction to distributed multimedia systems- Characteristics of multimedia data - Quality of service management - Resource management- Stream adaptation- Practical : Tiger, BitTorrent and End System Multicast.

TEXT BOOK

1. George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems Concepts and Design", Fifth Edition, Addison Wesley, May 2011.

- 1. A.S.Tanenbaum, M.Van Steen, "Distributed systems: principles and paradigms", Pearson Prentice Hall, 3rd Edition, 2007.
- 2. Mukesh Singhal, "Advanced Concepts In Operating Systems", McGraw-Hill Series in Computer Science, Ohio State University, Columbus 2001.

INT18R456	FORMAL LANGUAGE AND AUTOMATA								L	Т	P	С	
	rt	JKMA	L LAI	NGUA	GE AI	ND AU	TOM	AIA	3	0	1	3.5	
Prerequisite	Progr	ammin	g for F	roblen	n Solvi	ng (CS	E18R1	171)				<u>.</u>	
Course	Profe	rofessional Elective											
Category													
Course	Theor	'heory with Practice											
Туре													
Objective (s)	•	To ii	ntroduc	e stud	ents ab	out the	e mathe	ematica	al foun	dations	of comp	utation	
	inclue	ding au	itomata	a theor	y, the	theory	v of fo	ormal l	anguag	ges and	gramma	ars, the	
	notio	ns of al	gorith	n, deci	dabilit	y, com	plexity	, and c	omput	ability,			
	•				-			•		erstand	and c	conduct	
		athematical proofs for computation and algorithms.											
Course Outco													
CO1	Desig	/			itomata	i, Det	ermini	istic I	Finite	Automa	ata and	l Non	
		ministi											
CO2							-			n a probl			
CO3										amming	languag	ges and	
		ate the											
CO4										ple com			
CO5				idable	proble	m in re	egular e	express	sion an	d Turing	g machin	e	
Mapping of ([1	1			1	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	L	Н		Н			Μ						
CO2	L		Η										
CO3	L			Н									
CO4	L												
CO5	L	Н	Н				Μ					Μ	
Course Topic	c(s)												

UNIT 1: AUTOMATA

Introduction to formal proof – Additional Forms of Proof – Inductive Proofs –Finite Automata (FA) – Deterministic Finite Automata (DFA) – Non-deterministic Finite Automata (NFA) – Finite Automata with Epsilon Transitions.

UNIT 2: REGULAR EXPRESSIONS AND LANGUAGES

Regular Expression –Finite Automata and Regular Expressions – Properties of Regular languages: Pumping Lemma for Regular Languages and Applications – Closure Properties of Regular Languages- Equivalence and Minimization of Automata

UNIT 3: CONTEXT-FREE GRAMMAR AND PUSH DOWN AUTOMATA

Context-Free Grammar (CFG) – Application- Parse Trees – Ambiguity in Grammars and Languages – Pushdown Automata – Languages of a Pushdown Automata – Equivalence of Pushdown Automata and CFG - Deterministic Pushdown Automata

UNIT 4: PROPERTIES OF CFL AND TURING MACHINE

Normal Forms for CFG – Pumping Lemma for CFL –Applications Properties of CFL –Turing Machines – Programming Techniques for TM: Multiple Stacks, Subroutines-Extensions to the Basic Turing Machine

UNIT 5: UNDECIDABILITY

A language that is not Recursively Enumerable (RE) – An Undecidable problem that is RE – Undecidable Problems about Turing Machine – Post_s Correspondence Problem - The classes P and NP - NP complete-Complements of Languages in NP

PRACTICE COMPONENTS

. Create the Deterministic Finite Automata using JFLAP simulator

2. Create the Non-Deterministic Finite Automata using JFLAP simulator

3. Construct a regular expression using JFLAP. Use Convert \rightarrow Convert FA to RE.

4. Construct a Grammar using JFLAP.

5. Convert regular expressions to FA

6. Create Regular Grammar and convert to Finite Automaton

7.Create a PDA that accepts strings that contains the language $L = \{axcb2x \mid where x \ge 0\}$ using the alphabet $\Sigma = \{a,b,c\}$.

8. Create each PDA with at least five test results with the following languages over alphabet: $\Box = \{a,b\}$

a) $L = \{anbn \mid where n > 0\}$

b) $L = \{anbncn \mid where n > 0\}$

9. Construct PDA for any given grammar.

TEXT BOOK

1. Hopcroft J.E,Motwani R and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Third Edition, 2006.

REFERENCE BOOKS

1. Martin J, "Introduction to Languages and the Theory of Computation", Third Edition, TMH, 2003

2. Lewis H. R and Papadimitriou C.H , "Elements of The theory of Computation", United States Edition, 1997.

INT18R409	COMPUTER FORENSICS	L	Т	P	С
	COMPUTERFORENSICS	3	0	0	3

Prerequisite	Com	puter N	letwork	ts (CSI	E18R3	71)						
Course	Profe	ssional	Electi	ve								
Category												
Course	Theor	Гheory										
Туре												
Objective(s)	•	law of Desc Exect autor Dem the in	enforce cribe el cute an mated a nonstrat	ement a ectroni n inve analysi te an u ttion se	and ind c evide estigations s tools ndersta curity	ustry. ence an on str , worki anding and dig	d the c ategies ng as a of a c gital fo	comput s, FAT an expe ode of rensics	ing inv f file ert witn ethics profes	vestigation system ess. and cont sions.	onship b on proce , manu iduct rel	ss al and ated to
	•	secu	-	nd digi	ital for	rensics	profe				for infor hese sta	
Course Outc	ome(s)											
C01	Unde world		of the	role o	of com	puter f	orensi	cs in t	oth th	e busine	ess and	private
CO2	Ident	ify son	ne of th	e curre	ent tech	iniques	and to	ols for	forens	ic exam	inations	
CO3			d ident oractitio		ic prin	ciples	of goo	d profe	essional	l practic	e for a f	orensic
CO4	Apply	y some	forens	ic tool	s in dif	ferent	situatio	ons.				
CO5			e an un n techn					ed to p	privacy	and det	termine	how to
Mapping of (COs wi	ith PO	S									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	Н			Н				L			L
CO2		М			Н				Н			
CO3	L	Н		Н			М				Н	
CO4				Μ	Н			Н				Μ
CO5		H H H H										
Course Topic	c(s)											
UNIT 1: NE IPSec Protoc IPSec.Transpo UNIT 2: E-M	ol - l ort laye	P Aut er Secu	thentica rity: SS	ation 1 SL prot	Header tocol, C	· - IP Cryptog	ESP	- Key	y Man	agemen	t Protoc	

PGP - S/MIME - Internet Firewalls for Trusted System: Roles of Firewalls – Firewall related terminology- Types of Firewalls - Firewall designs - SET for E-Commerce Transactions.

UNIT 3: FORENSICS METHODS

Introduction to Traditional Computer Crime, Traditional problems associated with Computer Crime. Introduction to Identity Theft & Identity Fraud. Types of CF techniques - Incident and incident response methodology - Forensic duplication and investigation. Preparation for IR: Creating response tool kit and IR team. - Forensics Technology and Systems - Understanding Computer Investigation – Data Acquisition.

UNIT 4: EVIDENCE COLLECTION AND FORENSICS TOOLS

Processing Crime and Incident Scenes – Working with Windows and DOS Systems. Current Computer Forensics Tools: Software/ Hardware Tools.

UNIT 5: ANALYSIS AND VALIDATION

Validating Forensics Data – Data Hiding Techniques – Performing Remote Acquisition – Network Forensics – Email Investigations – Cell Phone and Mobile Devices Forensics.

TEXT BOOKS

- 1. Man Young Rhee, "Internet Security: Cryptographic Principles", "Algorithms and Protocols", Wiley Publications, 2003.
- 2. Nelson, Phillips, Enfinger, Steuart, "Computer Forensics and Investigations", Cengage Learning, India Edition, 2008.

- 1. John R.Vacca, "Computer Forensics", Cengage Learning, 2005
- 2. Richard E.Smith, "Internet Cryptography", 3rd Edition Pearson Education, 2008.
- 3. Marjie T.Britz, "Computer Forensics and Cyber Crime": An Introduction", 3rd Edition, Prentice Hall, 2013.

DIT10D410						L	Т	Р	C				
INT18R410			CLO	UD CO	JMPU	IING			3	1	0	4	
Prerequisite	Comp	Computer Networks (CSE18R371)											
Course	Profe	rofessional Elective											
Category													
Course	Theor	heory											
Туре													
Objective (s)	• ′	To imp	art fun	damen	tal con	cepts i	n the a	rea of o	cloud c	omputir	ıg.		
	• ′	To i	mpart	know	vledge	in de	evelop	ing app	olicatio	ns of clo	oud com	puting	
Course Outco	ome(s)												
CO1	Unde	rstandi	ng the	e syst	ems,	protoco	ols an	d mee	chanisr	ns to	support	cloud	
	comp	uting											
CO2	Devel	evelop applications for cloud computing											
CO3	Unde	Inderstanding the hardware necessary for cloud computing											
CO4	Desig	gn and :	implen	nent a r	novel c	loud co	omputi	ng app	licatio	1			
CO5	Know	vledge	in vario	ous Clo	oud ver	ndors a	nd the	ir prod	ucts				
Mapping of C	COs wi	ith PO	s										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	L	Η			Н				Η				
CO2		Η	Μ		L							L	
CO3	L	Η			Μ						Η		
CO4		Μ	Н		Н			Η				Н	
CO5	L	Η										Н	
Course Topic	c(s)												
	UNIT 1: INTRODUCTION												
	Overview – applications - intranet and cloud - examples: Amazon, Google, Microsoft, IBM –												
Benefits and												APP -	
Microsoft Azu	icrosoft Azure - Amazon(EC2, S3,SQS) - open stack -cloud computing services									services			

UNIT 2: HARDWARE AND ARCHITECTURE

Clients-Security-Network-Services. Accessing the cloud: Platforms-web applications-web APIsweb browsers. Cloud storage: overview-providers. Standards: application-client-infrastructureservice.

UNIT 3: SOFTWARE AS SERVICE

Overview- Driving forces-company offerings-industries. Software plus services: Overview-mobile device integration-providers-Microsoft Online.

UNIT 4: DEVELOPING APPLICATIONS

Google – Microsoft – IntuitQuickBase - Cast Iron Cloud - Bungee Connect –Development (App engine, Azure, open stack etc.) - trouble shooting and application management.

UNIT 5: LOCAL CLOUDS AND THIN CLIENTS

Virtualization-server solutions-thin clients. Cloud Migration: cloud services for individualsenterprise cloud- methods for migration-analyzing cloud services.

TEXT BOOKS

- 1. Anthony T.Velte, Toby Velte, "Cloud Computing a practical approach", Mcgraw Hill, 2010.
- 2. M.S.V.Janakiram, "Demystifying the Cloud An introduction to Cloud Computing", version 1.1, 2010.

REFERENCE BOOKS

- 1. Mark C. Chu-Carroll, "Code in the Cloud- Programming Google App Engine", The Pragmatic Bookshelf Raleigh, North Carolina Dallas, Texas, 2011.
- 2. Breslin "Cloud Computing: Principles and Paradigms", Wiley Press, New York, USA, 2008.

		L	Т	Р	С
INT18R411	GREEN COMPUTING	3	0	0	3
Prerequisite	Computer Networks (CSE18R371)				
Course	Professional Elective				
Category					
Course	Theory				
Туре					
Objective(s)	This course covers fundamental principles of end designers of hardware, operating systems, and data co energy management option in individual compone interfaces, hard drives, memory. We will further pre policies at the operating system level that consider per tradeoffs. Finally we will consider large scale management is done at multiple layers from individu to shutting down entries subset of machines. W generation and delivery and well as cooling issues in	enters. Ints suc sent the erforma data ce al com e will	We will of h as CP e energy nce vs. e enters w ponents also dis	explore Us, ne manage nergy s here e in the s scuss e	basic twork ement saving energy ystem
Course Outco					
CO1	Understand the concepts of technologies that conform		•	-	
CO2	Understand green (power-efficient) technologies fo computer, such as CPU, memory and disk, and app for these components including memory and Register	reciate			U

CO3	Have	Have a basic understanding of a variety of technologies applied in building a										
	green	green system (especially green data centers), including networks, Virtual										
	Mach	ine (V	M) ma	nagem	ent and	l storag	ge syste	ems				
CO4	Use a	range	of tool	s to he	lp mor	itor an	d desig	gn gree	n syste	ems		
CO5	Analy	yze the	variou	s tools	to gree	ening th	he orga	anizatio	on			
Mapping of C	COs wi	th PO:	S									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Н	Μ									L
CO2		Η					L				M	L
CO3	L	Μ	Μ		Μ							
CO4		H H M										
CO5												
Course Tonie	n(n)											

Course Topic(s) UNIT 1:ION

Inroduction - Need for Green Computing – Green computing Background – Understanding the World of Green IT: Win-Win-Winning with Green IT – Making the Business Case of Green IT – Green Journeys in Action.

UNIT 2: GETTING A RUNNING START

Getting to know the Standards and Metrics – Assessing your current Energy use and

Needs – Go Green in 12 months: Putting Together a plan – Techniques for managing Power consumption

UNIT 3: GREENING THE DATA CENTER

Laying the foundation for green data management – maximizing data center efficiency – Bottom up Electrical Efficiency Improvement - Racking up green servers – cooling your data center – Building a Green Storage System – Grooming the Network for green – Using Virtualization – computer power using Benchmarking – Evaluation of Power Benchmarks

UNIT 4: GREENING THE OFFICE

Moving to Green Screens and Computing Machines – Reducing Desktop Energy Waste – Pursuing the Less-Paper Office – Evaluation Green Gadgetry – Experimental methodology

UNIT 5: GREENING THE ORGANIZATION

Greening the Facility – e-Waste Not, e-Want Not – Virtually There: Collobration Technologies for a Greener World - Ten Organizations that can help with Green IT objectives – Ten creative computer Recycling Tips – Ten tips for a Green Home Office.

TEXT BOOK

1. Carol Baroudi , Jeffery Hill , Arnold Reinhold , Jhana Senxian, " Green IT for dummies", Wiley Publishing Inc, 2009.

REFERENCE

1. Mujtaba Talebi, "Computer Power Consumption benchmarking for green computing", ceangage learning, April 2008.

INT18R412	SOCIAL NETWORK ANALYSIS	L	Т	Р	С
1111101412	SOCIAL NET WORK ANAL ISIS	3	0	0	3
Prerequisite	Data structures and algorithms (INT18R271)				
Course	Professional Elective				

Category												
Course Type	Theor	ry										
Objective (s)	•	To g	ain kn	owledg	ge abou	it socia	l netw	orks, it	s struc	ture and	social	
		netw	ork da	ta sour	ces							
	•	To le	earn th	e analy	sis and	l minir	ng tech	niques	for So	cial netv	works	
	•	To s	tudy ał	oout th	e sema	ntic te	chnolo	gies fo	r socia	l networ	k analy	sis
	•	To g	ain kn	owledg	ge on V	/isualiz	zation of	of Soci	al netv	vorks an	d its	
		appl	ication	S								
Course Outcon	ne(s)											
CO1	Learn	n curre	nt web	devel	opmen	ts in S	ocial W	Veb				
CO2	Unde	rstand	variou	s minii	ng tech	niques	for so	cial ne	tworks			
CO3	Mode	el and r	represe	nt kno	wledge	e for Se	emantic	e Web				
CO4	Desig	gn extra	action	and mi	ning to	ols for	Socia	l netwo	orks			
CO5	Deve	lop per	sonaliz	zed vis	ualizat	ion for	Socia	l netwo	orks			
Mapping of C	Os wit	h POs										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	Н	Μ		Н	Н						
CO2	L	Н										
CO3	L	L H M H L L										
CO4	L	L H										
CO5	L	Н				Η	Η					Μ

UNIT 1: SOCIAL NETWORK ANALYSIS

Definition and Features - The Development of Social Network Analysis - Basic graph theoretical Concepts of Social Network Analysis – ties, density, path, length, distance, betweenness, centrality, clique - Electronic sources for network analysis - Electronic discussion networks, Blogs and online communities, Web-based networks.

UNIT 2: SOCIAL NETWORK PROFILES

Introduction – types of commercial social network profiles (CSNP) - Quantitative and Qualitative Analysis of CSNPs – Analysis of social networks extracted from log files - Data Mining Methods Related to SNA and Log Mining - Clustering Techniques – Case study.

UNIT 3: SEMANTIC TECHNOLOGY FOR SOCIAL NETWORK ANALYSIS

Introduction to ontology-based knowledge representation - - Ontology languages for the Semantic Web – RDF and OWL - Modeling Social network data - State-of-the-art in network data representation, Ontological representation of social individuals, Ontological representation of social relationships.

UNIT 4: SOCIAL NETWORK MINING

Detecting and discovering Communities in Social Networks - Definition of Community -Evaluating Communities - Methods for Community Detection – divisive, spectral and modularity optimization algorithms - Applications of Community Mining Algorithms - Overview of tools for Detecting Communities - Understanding and Predicting Human Behavior for Social Communities.

UNIT 5: VISUALIZATION AND APPLICATIONS OF SOCIAL NETWORKS

Visualization of Social Networks - Node-Edge Diagrams - Random Layout - Force-Directed Layout - Tree Layout - Matrix Representations - Hybrid Representations - Visualizing Online

Social Notwor	Iza A	nnlige	tions	Cov	ort No	tworks		mmun	ity W/	alfora	Collab	oration
Social Networks - Applications - Covert Networks – Community Welfare - Collaboration Networks - Co-Citation Networks.												
TEXT BOOK		n neu	WOIKS.									
1. Peter M		locial N	Vatura	ke and	l tha Sa	monti	Wah'	' Sprin	oor la	t adition	2007	
2. BorkoF												aar lat
edition,		lanuo	JOK OI	Social	INCLW		linoio	gies all	u Appi	ications	, spin	gei, 1st
REFERENCE												
1. Guando		Vanch	un 7h	ana an	d I in I	i "We	h Min	ing and	l Socia	l Netwo	rking	
Technic									i Doela	1110000	iking	
2. Max C				· 1	0		,		v. "Co	llaborat	ive and	Social
								-			ng", IGI	
snippet,									0.501.1		.,	01000
3. John G		lin. Al	exandr	e Pass	sant an	d Stef	an De	cker.'	The S	ocial S	emantic	Web".
Springe				• • • • • •				,				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
									L	Т	Р	С
INT18R413	INI	FORM	ATION	RET	RIEVA	L TEC	HNIQ	UES	3	0	0	3
									3	U	U	3
Prerequisite					ystems	(INT1	8R371)				
Course	Profe	ssional	l Electi	ive								
Category												
Course Type		Theory										
Objective (s)	•	• To learn the concepts behind IR										
	•	• To understand the operation of web search										
	•	• To learn the algorithms related to text classification, indexing and										
~ ~ ~		sear	ching									
Course Outco												
CO1										plore its	s capabil	ities
CO2					ing and							
CO3			resent	docun	nents ir	n differ	ent wa	ys and	discus	s its effe	ect on	
	simila		1	1		1						
CO4					n searc		• .	•		•		
CO5	J	/	impler	nent ai	n innov	ative f	eature	in a se	arch en	gine		
Mapping of C		1	DO2	DO4	DO5	PO6	PO7	DOQ	PO9	DO10	DO11	DO12
CO	PO1	PO2	PO3	PO4	PO5	FU0	r0/	PO8	F09	PO10	PO11	PO12
CO1 CO2	H	п	Н			п					ц	
CO2 CO3	L L	Н		Н		Н	Н			М	Н	L
CO4	L	Н	M	H			11		Н	101		L
CO4 CO5	L	H	M	11					11	<u> </u>	Н	
Course Topic(11	141	L	1			L	l	l	11	I
UNIT 1: INT		UCTIO)N									
Information I				Develo	opment	s – T	he IR	Probl	em –	The U	ser's Ta	ask –
Information v			-		-							
System – The												
web changed												
Today – Visua								I				
-												

UNIT 2: MODELING AND RETRIEVAL EVALUATION

IR models – Classic Information Retrieval – Alternative Set Theoretic Models – Alternative Algebraic Models – Alternative Probabilistic Models – Other Models – Hypertext Models – Web based Models – Retrieval Evaluation – Cranfield Paradigm – Retrieval Metrics – Reference Collections – User-based Evaluation – Relevance Feedback and Query Expansion – Explicit Relevance Feedback – Clicks – Implicit Feedback Through Local Analysis – Global Analysis – Documents: Languages & Properties – Queries: Languages & Properties.

UNIT 3: TEXT CLASSIFICATION, INDEXING AND SEARCHING

A Characterization of Text Classification – Unsupervised Algorithms – Supervised Algorithms – Feature Selection or Dimensionality Reduction – Evaluation metrics – Organizing the classes – Indexing and Searching – Inverted Indexes –Signature Files – Suffix Trees & Suffix Arrays – Sequential Searching – Multi-dimensional Indexing.

UNIT 4: WEB RETRIEVAL AND WEB CRAWLING

The Web – Search Engine Architectures – Search Engine Ranking – Managing Web Data – Search Engine User Interaction – Browsing – Applications of a Web Crawler – Taxonomy – Architecture and Implementation – Scheduling Algorithms – Evaluation - Structured Text Retrieval.

UNIT 5: TYPES OF IR AND APPLICATIONS

Parallel and Distributed IR –Data Partitioning – Parallel IR – Cluster-based IR – Distributed IR - Multimedia Information Retrieval – Challenges – Content Based Image Retrieval – Audio and Music Retrieval – Retrieving and Browsing Video – Fusion Models – Segmentation – Compression - Enterprise Search –Tasks – Architecture of Enterprise Search Systems – Enterprise Search Evaluation - Library Systems – Digital Libraries

TEXT BOOKS

- 1. Ricardo Baeza-Yates and Berthier Ribeiro-Neto, "Modern Information Retrieval: The Concepts and Technology behind Search", Second Edition, ACM Press Books, 2011.
- 2. Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, "Information Retrieval: Implementing and Evaluating Search Engines", The MIT Press, 2010.

REFERENCES

1.C. Manning, P. Raghavan, and H. Schütze, "Introduction to Information Retrieval", Cambridge University Press, 2008.

2. Bruce Croft, Donald Metzler and Trevor Strohman, "Search Engines: Information Retrieval in Practice", First Edition, Addison Wesley, 2009.

INT18R414	Parallel and Distributed Computing	L	Т	Р	С
1111101414	I aranci and Distributed Computing	3	0	0	3
Prerequisite	Distributed Systems (INT18R358)				
Course	Professional Elective				
Category					
Course Type	Theory				
Objective(s)	 To understand the need and fundame paradigms To loom the meaner of nerallel electricher 		-	lel com	puting
	• To learn the nuances of parallel algorithm	U		1 1 .	
	• To understand the programming principl computing architectures	es in pa	arallel a	and disti	ributed
	• To learn few problems that are solved usi	ng para	llel algo	orithms	

Course Outcome(s)								
CO1	Apply parallel and distributed computing architectures for any given problem							
CO2	Apply problem solving (analysis, design, and development) skills to distributed applications							
CO3	Develop applications by incorporating parallel and distributed computing architectures							
CO4	Develop applications by incorporating fault tolerance							
CO5	Convert a sequential algorithm to a parallel one							
Manning of	COs with POs							

Mapping of C		II I US										
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO12
	1	2	3	4	5	6	7	8	9	0	1	
CO1	Н	Н				Н						Н
CO2	Μ	Н	Н									
CO3	L	Н	Н									
CO4		Н	Н	Н	L						Μ	Н
CO5			Н	Н	L						Μ	Μ
A T · ·	\sim											

UNIT 1: INTRODUCTION TO PARALLEL COMPUTING

Scope of Parallel Computing – Parallel Programming Platforms – Implicit Parallelism – Limitations of Memory System Performance – Control Structure of Parallel Platforms – Communication Model of Parallel Platforms – Physical Organization of Parallel Platforms – Communication Costs in Parallel Machines – Impact of Process - Processor Mapping and Mapping Techniques.

UNIT 2: PARALLEL ALGORITHM DESIGN

Preliminaries – Decomposition Techniques – Characteristics of Tasks and Interactions – Mapping Techniques for Load Balancing – Methods for Containing Interaction Overheads – Parallel Algorithm Models – Basic Communication Operations – One-to-All Broadcast and All-to-One Reduction – All-to-All Broadcast and Reduction – All-Reduce and Prefix Sum Operations – Scatter and Gather – All-to-All Personalized Communication- Circular Shift – Improving the Speed of some Communication Operations

UNIT 3: PROGRAMMING USING MESSAGE PASSING AND SHARED ADDRESS SPACE

Principles of Message Passing Programming – Building Blocks – Send and Receive Operations – MPI – Message Passing Interface – Topologies and Embedding – Overlapping Communication with Computation – Collective Communication and Computation Operations – Groups and Communicators – POSIX thread API – OpenMP: a Standard for Directive based Parallel Programming – Applications of Parallel Programming - Matrix-Matrix Multiplication – Solving Systems of Equations – Sorting Networks - Bubble Sort Variations – Parallel Depth First Search

UNIT 4: DISTRIBUTED COMPUTING PARADIGM

Paradigms for Distributed applications – Basic algorithms in Message passing Systems – Leader Election in Rings – Mutual Exclusion in Shared Memory

UNIT 5: FAULT TOLERANT DESIGN

Synchronous Systems with Crash Failures – Byzantine Failures – Impossibility in Asynchronous Systems - Formal Model for Simulation – Broadcast and Multicast –

Specification of a Broadcast Service – Implementing a Broadcast Service – Multicast in Groups – Distributed Shared Memory – Linearizable – Sequentially Consistent Shared Memory – Algorithms

TEXT BOOK

- 1. Ananth Grama, Anshul Gupta, George Karypis and Vipin Kumar, —Introduction to Parallel Computingl, Second Edition, Pearson Education, 2009.
 - 2. Haggit Attiya and Jennifer Welch, —Distributed Computing Fundamentals, Simulations and Advanced Topics, Second Edition, Wiley, 2012.

- 1. Norman Matloff, —Parallel Computing for Data Science With Examples in R, C++ and CUDAI, Chapman and Hall/CRC, 2015.
- 2. Wan Fokkink, —Distributed Algorithms: An Intuitive Approachl, MIT Press, 2013.
- 3. M.L. Liu, —Distributed Computing Principles and Applications^{II}, First Edition, Pearson Education, 2011.

			<u> </u>			DX7			L	Т	Р	C
INT18R415			GR	RAPH	гнео	PKY			3	1	0	4
Prerequisite	Data	Structu	ires and	d Algo	rithms	(INT1	8R271)				_
Course	Profe	ssional	Electi	ve								
Category												
Course Type	Theor	ry										
Objective(s)	sciend techn	ce & E iques (Enginee of cour	ering. l nting a	t intro	duces nbinati	the str ions, v	uctures which a	such such	alysis to as graph ded in Science	ns & tre number	es and
Course Outco	ome(s)											
CO1	Able	to prec	ise and	l accur	ate ma	themat	ical de	finitior	ns of ot	jects in	graph th	ieory.
CO2	Apply	y math	ematica	al defir	nitions	to iden	tify an	d cons	truct ex	amples		
CO3	Able	to Vali	date ar	nd criti	cally a	ssess a	mathe	matica	l proof	•		
CO4	-									edge an s in grap	-	
CO5	Identi	ify the	reason	from c	lefiniti	ons to	constru	ict mat	hemati	cal proo	fs.	
Mapping of (COs wi	th PO	s									
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Н										
CO2								Μ				
CO3		Н					L					
CO4						Η						
CO5		L		Μ		Η						
Course Topic	c(s)											

UNIT 1 INTRODUCTION

Graphs – Introduction – Isomorphism – Sub graphs – Walks, Paths, Circuits –Connectedness – Components – Euler graphs – Hamiltonian paths and circuits – Trees – Properties of trees – Distance and centers in tree – Rooted and binary trees.

UNIT 2 TREES, CONNECTIVITY & PLANARITY

Spanning trees – Fundamental circuits – Spanning trees in a weighted graph – cut sets – Properties of cut set – All cut sets – Fundamental circuits and cut sets – Connectivity and separability – Network flows – 1-Isomorphism – 2-Isomorphism – Combinational and geometric graphs – Planer graphs – Different representation of a planer graph.

UNIT 3 MATRICES, COLOURING AND DIRECTED GRAPH

Chromatic number – Chromatic partitioning – Chromatic polynomial – Matching – Covering – Four color problem – Directed graphs – Types of directed graphs – Digraphs and binary relations – Directed paths and connectedness – Euler graphs.

UNIT 4 PERMUTATIONS & COMBINATIONS

Fundamental principles of counting - Permutations and combinations - Binomial theorem - combinations with repetition - Combinatorial numbers - Principle of inclusion and exclusion - Derangements - Arrangements with forbidden positions.

UNIT 5 GENERATING FUNCTIONS

Generating functions - Partitions of integers - Exponential generating function – Summation operator - Recurrence relations - First order and second order – Non-homogeneous recurrence relations - Method of generating functions

TEXT BOOKS:

1. Narsingh Deo, Graph Theory: With Application to Engineering and Computer Science, Prentice Hall of India, 2003.

2. Grimaldi R.P., Discrete and Combinatorial Mathematics: An Applied Introduction, Addison Wesley, 1994.

REFERENCES:

1. Clark J. & Holton D.A., A First Look at Graph Theory, Allied Publishers, 1995.

2. Mott J.L., Kandel A. & Baker T.P., Discrete Mathematics for Computer Scientists and Mathematicians, Prentice Hall of India, 1996.

3. Liu C.L., Elements of Discrete Mathematics, McGraw Hill, 1985.

4. Rosen K.H., Discrete Mathematics And Its Applications, McGraw Hil, 2007

AI STREAM

INT18R310	BIO INFORMATICS	L 3	Т 0	P 0	C 3
Prerequisite	Nil				
Course	Professional Elective				
Category					
Course	Theory				
Туре					
Objective (s)	• Exposed to the need for Bioinformatics techn	ologies			

	•	Be fa	amiliar	with tl	ne mod	leling t	echnia	ues				
	•		n micro			0	-1					
	•		osed to	•	•		nd Visu	alizati	on			
Course Outc	ome(s)	-				0						
CO1	Learn	the sta	ructura	l bioin	format	ics						
CO2	Unde	rstand	the cor	ncept of	f data v	wareho	using a	and dat	a mini	ng in bio	oinforma	atics
CO3	Exam	nine dif	ferent	models	s in bio	inforn	natics			_		
CO4	Demo	onstrate	e the va	arious p	pattern	s of DN	ЛА					
CO5	Learn	n to ana	lyze in	nage ai	nd data	extrac	tion in	inform	natics c	latabase		
Mapping of (COs wi	th PO	s									
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	Η	Μ									
CO2	Η	Η			Н							L
CO3	L	Н	Μ									
CO4	L				Μ		Н					
CO5	L	Η	М		М							L
Course Topic	c(s)											

UNIT 1: INTRODUCTION

Need for Bioinformatics technologies – Overview of Bioinformatics technologies Structural bioinformatics – Data format and processing – Secondary resources and applications – Role of Structural bioinformatics - Biological Data Integration System.

UNIT 2: DATAWAREHOUSING AND DATAMINING IN BIOINFORMATICS

Bioinformatics data – Data warehousing architecture – data quality – Biomedical data analysis – DNA data analysis – Protein data analysis – Machine learning – Neural network architecture and applications in bioinformatics.

UNIT 3: MODELING FOR BIOINFORMATICS

Hidden markov modeling for biological data analysis – Sequence identification –Sequence classification – multiple alignment generation – Comparative modeling –Protein modeling – genomic modeling – Probabilistic modeling – Bayesian networks – Boolean networks - Molecular modeling – Computer programs for molecular modeling.

UNIT 4: PATTERN MATCHING AND VISUALIZATION

Gene regulation – motif recognition – motif detection – strategies for motif detection – Visualization – Fractal analysis – DNA walk models – one dimension – two dimension – higher dimension – Game representation of Biological sequences – DNA, Protein, Amino acid sequences.

UNIT 5: MICROARRAY ANALYSIS

Microarray technology for genome expression study – image analysis for data extraction – preprocessing – segmentation – gridding – spot extraction – normalization, filtering – cluster analysis – gene network analysis – Compared Evaluation of Scientific Data Management Systems – Cost Matrix – Evaluation model - Benchmark – Tradeoffs.

TEXT BOOK

1. Yi-Ping Phoebe Chen (Ed), "BioInformatics Technologies", First Indian Reprint, Springer Verlag, 2007.

REFERENCES

1. Bryan Bergeron, "Bio Informatics Computing", Second Edition, Pearson Education,

2003.

Arthur M Lesk, "Introduction to Bioinformatics", Second Edition, Oxford University Press, 2005.

									L	Т	Р	С
INT18R312	NEU	JRAL	NETV	VORK	S ANI) FUZ	ZY LC	OGIC	3	1	0	4
Prerequisite	Nil								•			
Course Category	Profe	ssional	l Electi	ve								
Course Type	Theor	ry										
Objective (s)	•	Reveal proble Introdu system control Discus applica	different ms. ice the s to en l. s neura itions,	ent app theory gineeri al netw inclue	lication and aging app orks a ding	ns of th pplicat licatio .nd fuz Back-p	nese maions of ns with zzy syspropaga	odels t f artific n emph stems, ation,	o solve ial neu asis or archite BAM	iuzzy system e engined ural network i image j ctures, a , Hopf expert sy	ering an vork and processi algorithi ield ne	d other l fuzzy ng and ns and
Course Outco		<u>r</u>			6,							
CO1			ferent 1 es for e					es, the	ir limit	ations a	nd appr	opriate
CO2	Desig	gn and	l impl	ement	a neu	ıral ne	etwork			(with t uage C+		des of
CO3	Demo	onstrate		ledge a						n as app		
CO4	Learn applio finan	the cations ce, rot	power inclu ootic c	and ding s ontrol,	peech signal	synthe proce	esis, d essing,	liagnos	tic pro uter vi	networ oblems, ision an	busine	ss and
CO5	Deve	lop mo	dels fo	r diffe	rent ap	plicatio	ons usi	ng fuzz	zy syste	em and I	MatLab	
Mapping of (1									
CO	PO1		PO3		PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Η		Н			Μ					
CO2		Н	Н									
CO3							Η			Н	Η	L
CO4		Μ										
CO5			Н	Μ								
Course Topic												
UNIT 1: INT												
Introduction ·	- Hum	ans ar	nd Cor	nputers	s - Or	ganiza	tion of	f the I	- Brain	Biolog	gical Ne	uron -

Biological and Artificial Neuron Models - Characteristics of ANN - Models of ANNs - McCulloch-Pitts Model - Feed forward & feedback networks - learning rules - Hebbian learning rule - perception learning rule - delta learning rule - Widrow-Hoff learning rule - correction learning rule - Winner – lake all learning rule - etc.

UNIT 2: FEED FORWARD NEURAL NETWORKS

Classification model - Features & Decision regions - training & classification using discrete perception - algorithm - single layer continuous perception networks for linearly separable classifications - linearly non- separable pattern classification - Delta learning rule for multiperception layer - Generalized delta learning rule -Back-propagation training - learning factors - Examples.

UNIT 3: ASSOCIATIVE MEMORIES

Paradigms of Associative Memory - Pattern Mathematics - Hebbian Learning - General Concepts of Associative Memory - Bidirectional Associative Memory (BAM) Architecture - BAM Training Algorithms - Storage and Recall Algorithm - BAM Energy Function - Hopfield networks - Basic Concepts - Training & Examples - SOM-UN supervised learning of clusters - winner-take-all learning - recall mode, Initialization of weights - seperability limitations del - Historical Developments - Potential Applications of ANN.

UNIT 4: CLASSICAL SETS

Introduction to classical sets – properties - Operations and relations -Fuzzy sets –Membership – Uncertainty – Operations – properties - fuzzy relations – cardinalities - membership functions -Overview of Classical Sets - Membership Function - a-cuts - Properties of a-cuts – Decomposition – Theorems - Extension Principle

UNIT 5:

UNCERTAINTY

BASED INFORMATION

Information & Uncertainty - Non specificity of Fuzzy & Crisp sets - Fuzziness of Fuzzy Sets – Fuzzification - Membership value assignment - development of rule base and decision making system - Defuzzification to crisp sets - Defuzzification methods - Neural network applications -Process identification – control - fault diagnosis - Fuzzy logic applications - Fuzzy logic control and Fuzzy classification.

TEXT BOOKS

- 1. S. Rajasekharan and G. A. Vijayalakshmi pai, "Neural Networks, Fuzzy logic, Genetic algorithms: synthesis and applications", PHI Publication, 2011.
- 2. John Yen and Reza Langan, "Fuzzy Logic: Intelligence, Control and Information", Pearson Education, 2011.

- 1. Simon Haykin, "Neural Networks- A comprehensive foundation", Pearson Education, 2005.
- 2. S.N.Sivanandam, S.Sumathi, S. N. Deepa "Introduction to Neural Networks using MATLAB 6.0", TMH, 2006.
- 3. James A Freeman and Davis Skapura, Neural Networks Pearson Education, 2002.

		L	Т	Р	С
INT18R313	MACHINE LEARNING	3	1	0	4
Prerequisite	Data Structures and Algorithms (INT18R271)				

Course	Profe	ssional	Professional Elective											
Category														
Course	Theor	ry												
Туре														
Objective (s)	٠	To ir	ntroduc	e stude	ents to	the bas	sic con	cepts a	nd tech	niques	of Mach	ine		
	Lea	arning.												
	٠	To h	ave a tl	horoug	h unde	rstandi	ing of t	he Sup	ervise	d and Ui	nsupervi	sed		
	lear	rning te	echniqu	ies										
	٠	To st	udy th	e vario	us pro	bability	y based	learni	ng tech	niques				
	٠	To u	ndersta	and gra	phical	model	s of ma	chine 1	learnin	g algorit	thms			
Course Outco	ome(s)													
CO1	Distir	nguish	betwee	en, supe	ervised	, unsur	pervise	d and s	semi-su	pervise	d learnir	ng		
CO2	Choo	se the	approp	oriate 1	nachin	e learn	ing str	ategy f	or any	given p	roblem			
CO3	00	est sup proble		, unsuj	pervise	d or se	mi-sup	ervise	d learn	ing algo	rithms f	or any		
CO4	0	1		t use t	he appr	ropriate	e graph	mode	ls of m	achine l	earning			
CO5						-				assificat	-	ciency		
Mapping of C	COs wi	th POs	5											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		L	Н											
CO2	L		Н	М		Η								
CO3			Н	М		Μ		Н						
CO4			М			Μ						Η		
CO5														

UNIT 1: INTRODUCTION

Learning – Types of Machine Learning –Supervised Learning – The Brain and the Neuron– Design a Learning System –Perspectives and Issues in Machine Learning–Concept Learning Task –Concept Learning as Search –Finding a Maximally Specific Hypothesis –Version Spaces and the Candidate Elimination Algorithm –Linear Discriminants –Perceptron –Linear Separability –Linear Regression

UNIT 2: LINEAR MODELS

Multi-layer Perceptron – Going Forwards –Going Backwards: Back Propagation Error –Multilayer Perceptron in Practice –Examples of using the MLP –Overview –Deriving Back-Propagation –Radial Basis Functions and Splines –Concepts –RBF Network –Curse of Dimensionality–Interpolations and Basis Functions –Support Vector Machines

UNIT 3 : TREE AND PROBABILISTIC MODELS

Learning with Trees –Decision Trees –Constructing Decision Trees –Classification and Regression Trees –Ensemble Learning –Boosting –Bagging –Different ways to Combine Classifiers –Probability and Learning –Data into Probabilities –Basic Statistics –Gaussian Mixture Models –Nearest Neighbor Methods –Unsupervised Learning –K means Algorithms – Vector Quantization –Self Organizing Feature Map

UNIT 4: DIMENSIONALITY REDUCTION AND EVOLUTIONARY MODELS

Dimensionality Reduction –Linear Discriminant Analysis –Principal Component Analysis – Factor Analysis –Independent Component Analysis –Locally Linear Embedding –Isomap –Least Squares Optimization –Evolutionary Learning –Genetic algorithms –Genetic Offspring: -Genetic Operators –Using Genetic Algorithms –Reinforcement Learning –Overview –Getting Lost Example –Markov Decision Process

UNIT 5: GRAPHICAL MODELS

Markov Chain Monte Carlo Methods–Sampling –Proposal Distribution –Markov Chain Monte Carlo –Graphical Models –Bayesian Networks –Markov Random Fields –Hidden Markov Models –Tracking Methods

TEXTBOOKS:

1. Stephen Marsland, —Machine Learning –An Algorithmic Perspectivel, Second Edition,

Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.

2.Tom M Mitchell, —Machine Learningl, First Edition, McGraw Hill Education, 2013. **REFERENCES:**

1.Peter Flach, —Machine Learning: The Art and Science of Algorithms that Make Sense of Datal, First Edition, Cambridge University Press, 2012.

2.Jason Bell, —Machine learning –Hands on for Developers and Technical Professionals^I, First Edition, Wiley, 2014

3.Ethem Alpaydin, —Introduction to Machine Learning 3e (Adaptive Computation and Machine Learning Series)^{II}, Third Edition, MIT Press, 2014

		L	Т	Р	С
INT18R314	SOFT COMPUTING	3	1	0	4
Prerequisite	Nil		•		
Course Category	Professional Elective				
Course Type	Theory				
Objective(s)	 To give students knowledge of soft computing To learn the fundamentals of non-traditional to solving hard real-world problems. To learn and apply artificial neural networld logic, and genetic algorithms in problem solving on human experience 	technol orks, fu	ogies an uzzy set	d appro	oaches fuzzy
Course Outco	ome(s)				
CO1	Learn the importance of tolerance of imprecision a robust and low- cost intelligent machines.	nd unc	ertainty f	for desi	ign of
CO2	Acquire soft computing fundamentals and design real-world problems.	system	s for sol	ving v	arious
CO3	Integrate the knowledge of neural networks, fuzz probabilistic reasoning, rough sets, chaos, hybrid app			algor:	ithms,
CO4	Learn about fuzzy sets, fuzzy logic, neural netw rules for inference systems			appro	priate
CO5	Learn about genetic algorithms and other rand global optimum in self-learning situations	om sea	arch pro	ocedure	s for
Mapping of C	COs with POs				

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				Η								
CO2				Н		Н						
CO3				Н		Μ		Н	Μ			
CO4				Μ		Μ			Μ			Н
CO5										Н		Н
Comme Tous	- ()											

UNIT 1: NEURAL NETWORKS -I

(Introduction and Architecture) Neuron, Nerve Structure and Synapse, Artificial Neuron and its Model, Activation Functions, Neural Network Architecture: Single Layer and Multilayer Feed Forward Networks, Recurrent Networks. Various Learning Techniques; Perception and Convergence Rule, Auto-Associative and Hetro-Associative Memory.

UNIT 2: NEURAL NETWORKS -II

(Back Propagation Networks) Architecture: Perceptron Model, Solution, Single Layer Artificial Neural Network, Multilayer Perception Model; Back Propagation Learning Methods, Effect of Learning Rule Co-Efficient ;Back Propagation Algorithm, Factors Affecting Back Propagation Training, Applications.

UNIT 3: FUZZY LOGIC -I

(Introduction) Basic Concepts of Fuzzy Logic, Fuzzy Sets and Crisp Sets, Fuzzy Set Theory and Operations, Properties of Fuzzy Sets, Fuzzy and Crisp Relations, Fuzzy to Crisp Conversion.

UNIT 4: FUZZY LOGIC –II

(Fuzzy Membership, Rules) Membership Functions, Interference in Fuzzy Logic, Fuzzy If -Then Rules, Fuzzy Implications and Fuzzy Algorithms, Fuzzifications and Defuzzificataions, Fuzzy Controller, Industrial Applications

UNIT 5: GENETIC ALGORITHM

Basic Concepts, Working Principle, Procedures of GA, Flow Chart of GA, Genetic Representations, (Encoding) Initialization and Selection, Genetic Operators, Mutation, Generational Cycle, Applications

TEXTBOOKS:

1.S. Rajasekaran and G.A. Vijayalakshmi Pai, —Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications^{||}, Prentice Hall of India, 2003.

2.N.P.Padhy, Artificial Intelligence and Intelligent Systems, Oxford University Press, 2005.

3.J.S.R. Jang, C.T. Sun and E. Mizutani, -Neuro-Fuzzy and Soft Computing, Pearson Education, 2004.

REFERENCES:

1.Siman Haykin, —Neural Networks I, Prentice Hall of India, 1999

2.Timothy J. Ross, —Fuzzy Logic with Engineering Applications^{II}, Third Edition, Wiley India, 2010

3. S.Y.Kung, —Digital Neural Network, Prentice Hall International, 1993.

4.Aliev.R.A and Aliev,R.R, — Soft Computing and its Application^{II}, World Scientific Publishing Company, 2001

		L	Т	Р	С
INT18R416	SPEECH AND LANGUAGE PROCESSING	3	0	0	3

Prerequisite	Progr	ammin	g for F	roblen	n Solvi	ng (CS	E18R1	171)					
Course	Profe	ssional	Electi	ve									
Category													
Course	Theor	ry											
Туре													
Objective (s)	•	To le	earn the	e funda	mental	ls of na	tural la	anguag	e proc	essing			
	•	To a	pprecia	te the	use of	CFG a	nd PCF	FG in N	NLP				
	•		ndersta										
Course Outco	ome(s)												
CO1	To ta	g a giv	en text	with b	asic La	inguag	e featu	res					
CO2		esign ar							ponent	S			
CO3		_					_		_	ntax of a	a langua	lge	
CO4										real-time			
CO5													
		o compare and contrast use of different statistical approaches for different types f NLP applications											
Mapping of (
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Н												
CO2	Н					Н							
CO3	Н					М		Н	М				
CO4	M					М			M			Н	
CO5										Н		Н	
Course Topic	r(s)												
The Represe Computationa	etics -S opics -C SYN amars of anguag CMAN ntation l Lexic APPL Extrac al Agen S: Sky,— omputa	Speech Comput FAX of Eng ge and TICS of N cal Sem ICATI ction -Q nts -Ma Speech ational	tationa lish -S Compl AND P Meanin nantics ONS Questio chine 7 n and L Lingui	l Phone yntacti exity. PAGN g -Comp -Comp n An Fransla anguag stics an	ology c Pars AATI(nputation swerin tion ge Proc	ing -St CS onal S nal Dis g and eessing echl, Po	atistica Semant course I Sun : An In earson	l Pars ics -Le nmariz troduc Public	ing -Fe exical ation - tion to ation, 2	eatures a Semant Dialogue Natural 2014.	and ics - e and Langua		
Pythonl, First REFERENC 1.Breck Baldy	ES:		2			Java aı	nd Ling	gPipe (Cookbo	ook , Atl	antic		
												14	

Publisher, 2015.

2.Richard M Reese, —Natural Language Processing with Javal, O'Reilly Media,2015. 3.Nitin Indurkhya and Fred J. Damerau, —Handbook of Natural Language Processingl, Second Edition, Chapman and Hall/CRC Press, 2010.

									L	Т	Р	С
INT18R417			DE	EP LE	EARNI	ING			3	1	0	4
Prerequisite	Nil											
Course	Profe	ssional	Electi	ve								
Category												
Course	Theor	ry										
Туре		•										
Objective(s)	•	build	resent ling ne tudy th	ural ne	tworks				comp	utational	l challer	iges of
	•	To ir	ntroduc	e dime	ensiona	lity red	luction	techni	iques			
	•					-			-	niques t	o suppo	rt real-
			applic				1		0	1		
	•	To e	xamine	e the ca	se stuc	lies of	deep le	earning	techni	ques		
Course Outco	ome(s)											
CO1		rstand										
CO2	Imple	ement v	various	deep l	earning	g mode	ls					
CO3								n techn				
CO4							on in de	eep lear	rning			
CO5		ore the		earning	applic	ations						
Mapping of C	COs wi			r	r	1		T	1			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					Н							
CO2	Н				Н		Η					
CO3			L		Н							
CO4	Μ				Μ						Μ	
CO5												
Course Topic	· /											
UNIT 1:		RODU										
Introduction t	o macl	hine le	arning-	- Linea	r mod	els (SV	/Ms ai	nd Perc	ceptron	is, logist	ic regre	ssion)-

Introduction to machine learning- Linear models (SVMs and Perceptrons, logistic regression)-Intro to Neural Nets: What a shallow network computes- Training a network: loss functions, back propagation and stochastic gradient descent- Neural networks as universal function approximates

UNIT 2: DEEP NETWORKS

History of Deep Learning- A Probabilistic Theory of Deep Learning- Backpropagation and regularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow Networks-Convolutional Networks- Generative Adversarial Networks (GAN), Semi-supervised Learning

UNIT 3: DIMENTIONALITY REDUCTION

Linear (PCA, LDA) and manifolds, metric learning - Auto encoders and dimensionality reduction in networks - Introduction to Convnet - Architectures – AlexNet, VGG, Inception, ResNet - Training a Convnet: weights initialization, batch normalization, hyperparameter optimization

UNIT 4: OPTIMIZATION AND GENERALIZATION

Optimization in deep learning– Non-convex optimization for deep networks- Stochastic Optimization-Generalization in neural networks- Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models- Word-Level RNNs & Deep Reinforcement Learning - Computational & Artificial Neuroscience

UNIT 5: CASE STUDY AND APPLICATIONS

Imagenet- Detection-Audio WaveNet-Natural Language Processing Word2Vec - Joint Detection-BioInformatics- Face Recognition- Scene Understanding- Gathering Image Captions **REFERENCES:**

1. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015.

2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.

- 3. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016.
 - 4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

OPEN ELECTIVE

INT18R315	WEB PROGRAMMING	L	T	P	C					
		3	0	0	3					
Prerequisite	Nil									
Course	Open Elective									
Category										
Course Type	Theory									
Objective(s)	 To learn the theoretical and practical concepts of web programming. To introduce the programming languages for developing simple web applications. To make students to understand about the architecture of web server and deployment of web site To teach methodologies useful for the implementation of dynamic web applications To efficiently design and implement web applications using server side programming languages 									
Course Outcon	ne(s)									
CO1	Understand the programming concepts of HTML, DHTML, CSS, JavaScript, XML and other Web technologies									
CO2	Understand Java programming concepts and utilize Java Graphical User Interface program writing.									

	-											
CO3	Build Java Application for distributed environment. Design and Develop multi-											
	tier applications.											
CO4	Utilize professional level platforms (ASP, JSP, Servlets) to produce software											
	systems/websites that meet specified user needs and constraints.											
CO5	Understand database basics related to develop dynamic web applications and											
	Apply XML for designing web pages.											
Mapping of COs with POs												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	М										L
CO2		Μ	Μ	Η								L
CO3		Μ	Μ			Н						L
CO4		М	Μ				Н					L
CO5		М	Μ								Η	L

UNIT 1: INTRODUCTION

World Wide Web – History of the World Wide Web, World Wide Web Consortium – HTML – Dynamic HTML – Object model and collections, Event model, Filters and Transitions.

UNIT 2: JAVA SCRIPT

Introduction – Simple program, Memory concepts, Arithmetic, Decision making - Equality and Relational operators – Control statements – Control structures, Operators – Functions – Programmer defined functions, JavaScript global functions, Recursion – Arrays – References and Reference parameters, Passing arrays to functions, Multidimensional arrays – Objects – Object types, Cookies.

UNIT 3: XML

Introduction, Structuring data, XML namespaces, Document Type Definitions (DTDs) and Schemas, Document type definitions, W3C XML schema documents, XML vocabularies, Document Object Model (DOM), DOM methods, Simple API for XML (SAX), Extensible Style sheet Language (XSL), Simple Object Access Protocol (SOAP).

UNIT 4: PERL, CGI AND PHP

Introduction, String processing and Regular expressions, Viewing Client/Server environment variables, Form processing and Business logic, Verifying a username and password, Connecting to a database, Cookies, Operator precedence chart.

UNIT 5: JAVA PROGRAMMING

Classes – Constructors, Garbage collection - Overloading methods – Overriding methods - Exception handling - Multithreading – Creating a thread, Synchronization, Inter thread communication - Streams – Byte streams, Character streams.

TEXT BOOKS:

1. 1. Harvey Deitel, Abbey Deitel, "Internet and World Wide Web: How To Program" 5th Edition.

2. Herbert Schildt, "Java – The Complete Reference, 7th Edition". Tata McGraw-Hill.

REFERENCES:

1. John Pollock, "Javascript – A Beginners Guide", 3rd Edition – Tata McGraw-Hill. 2. Keyur Shah, "Gateway to Java Programmer Sun Certification", Tata McGraw Hill, 2002.

144

									L	Т	Р	C
INT18R316			BIG D	ATA	ANAL	YTIC	S		3	0	0	3
Prerequisite	Nil									I		
Course	Open	Electi	ve									
Category												
Course Type	Theo	ry										
Objective(s)			p Ecos	ystem	and pr	epare t	hem fo	or a Ca	reer in	; Data A Analyti		
Course Outcon	ne(s)		-	-								
CO1	Unde	rstand	the ke	ey issi	ues on	big d	ata, cł	naracte	ristics,	data so	ources a	nd the
	assoc	iated a	pplicat	tions ir	n intell	igent b	usines	s and s	cientifi	c comp	ıting.	
CO2	Acqu analy		ndamer	ntal en	abling	techni	ques a	and sca	alable a	algorith	ns in b	ig data
CO3		pret by are too					ntific	comp	uting p	oaradign	ns, and	apply
CO4	Achie servie	eve ad	equate	persp service	ectives s, soc	s of b ial ne	tworki			n marke sics ex		
CO5								to a	nalyze	big da	ta and	create
					-				•	unts of		
Mapping of CO												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	М										L
CO2		М	Μ	Н								L
CO3		М	Μ			Н						L
CO4		Μ	М				Н					L
C04		111	111									

UNIT 1: INTRODUCTION TO BIG DATA

Introduction to Big Data Platform – Challenges of conventional systems – Web data – Evolution of Analytic scalability, analytic processes and tools, Analysis vs reporting – Modern data analytic tools, Stastical concepts: Sampling distributions, resampling, statistical inference, prediction error.

UNIT 2: MINING DATA STREAMS

Introduction to Streams Concepts – Stream data model and architecture – Stream Computing, Sampling data in a stream – Filtering streams – Counting distinct elements in a stream – Estimating moments – Counting oneness in a window – Decaying window – Realtime Analytics Platform(RTAP) applications – case studies – real time sentiment analysis, stock market predictions.

UNIT 3: HADOOP

History of Hadoop- The Hadoop Distributed File System –Components of Hadoop -Analyzing The Data with Hadoop-Scaling Out-Hadoop Streaming-Design of HDFS-Java interfaces to HDFS-Basics-Developing a Map Reduce Application-How Map Reduce Works-Anatomy of a Map Reduce Job run-Failures-Job Scheduling-Shuffle and Sort–Task execution-Map Reduce Types and Formats

UNIT 4: HADOOP ENVIRONMENT

Setting up a Hadoop Cluster -Cluster specification -Cluster Setup and Installation -HadoopConfiguration-Security in Hadoop -Administering Hadoop -HDFS -Monitoring-Maintenance-Hadoop benchmarks-Hadoop in the cloud

UNIT 5: FRAMEWORKS

Applications on Big Data Using Pig and Hive –Data processing operators in Pig –Hive services – HiveQL –Querying Data in Hive -fundamentals of HBase and ZooKeeper -IBM InfoSphere-. Visualizations -Visual data analysis techniques, interaction techniques.

TEXT BOOKS:

1. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007. 2. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.

REFERENCES:

 Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with advanced analystics", John Wiley & sons, 2012.
 Glenn J. Myatt, "Making Sense of Data", John Wiley & Sons, 2007 Pete Warden, Big Data Glossary, O'Reilly, 2011.

	TN	EODM						L	Т	Р	С
INT18R317		FORM		NIHE	ORYO	a COD	ING	<u>L</u> 3	0	P 0	3
Prerequisite	Nil							0	v		0
Course	Open 1	Elective	•								
Category	-										
Course	Theory	у									
Туре											
Objective (s)	•	Inform	nation.				-		ation and		
	•			-		-			n, error		of
					0			•	ptograph	•	
	•					oundati	on of co	ompress	ion, erro	or contro	l and
		securit	ty of inf	formatio	on.						
Course Outco											
CO1		stand th					1.7				
CO2	Analyz	ze sour	ce cod	ing cor	npressi	on, dec	oding	and err	or contr	ol meth	ods as
	applie	d in con	nmunic	ation sy	vstem.						
CO3	Under	stand di	fferent	types c	oding te	echniqu	es.				
CO4	Under	stand th	e basic	numbe	r theory	of cod	ing tech	niques.			
CO5	Analys	sis the v	various	algorith	ms tech	nniques	•				
Mapping of (COs wit	h POs									
CO PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1 H	Н					Η					Н
CO2 M	Н	L									
CO3 H	Н	L			L	Н	L				L

CO4	Η	L		Μ		Н	L
CO5	Η	L		М		Η	L

UNIT 1: INFORMATION THEORY & SOURCE CODING

Introduction to Information Theory- Entropy & Types of Entropy Source Coding, Prefix Coding, Channel Capacity

UNIT 2: COMPRESSION ALGORITHMS

Optimal Compression- Compression Algorithms, Huffman Coding, Adaptive Huffman Compression, Dictionary Based Compression, Speech Compression, Sliding Window Compression, LZW,RLE, Lossy & Lossless Compression Schemes, Image Compression – GIF,JPEG

UNIT 3: ERROR CONTROL CODING TECHNIQUES

Types of Codes - Error Checking & Correcting Codes, Linear Block Codes, Cyclic Codes, BCH Codes, Convolution Codes

UNIT 4: BASIC NUMBER THEORY

Modular Arithmetic, Solving ax+by=d, Congruence's, Chinese Remainder Theorem Modular Exponentiation, Fermat's Little and Euler Theorem, Prime Number Generation, Random Number Generation, Primitive Roots, Legendre and Jacobi Symbols, Discrete Probability, Discrete Logarithms

UNIT 5: CRYPTOGRAPHIC TECHNIQUES

Security Goals, Threats and Attack on Information-Classic Cryptography-Symmetric Key Cryptography – Stream Ciphers, Block Cipher, Stream Cipher, DES, Triple DES, AES-Public and Private Key Cryptography – RSA, Diffie-Hellman-Hash Function – MD5, SHA-1, Digital Signature

TEXTBOOKS

1. Ranjan Bose, "Information Theory, Coding and Cryptography", Tata McGrawHill, Second Edition.2012

2. R Avudaiammal, "Information Coding Techniques", Tata McGrawHill, Second Edition.2009 **REFERENCES**

1.Mark Nelson, "Data Compression Book", BPB Publication 2nd edition 2002.

2. Watkinson J, "Compression in Video and Audio", Focal Press, London, 2005.

INT18R318	INTRODUCTION TO INFORMATION	L	Т	Р	С
1111101310	SECURITY	3	0	0	3
Prerequisite	Nil				
Course	Open Elective				
Category					
Course	Theory				
Туре					
Objective(s)	It covers Information Security, Vulnerabilities & th	nreats,	attacks,	Risk A	nalysis,
	logical design and physical design				
Course Outco	ome(s)				
CO1	Understand the importance of information security	and mo	odels to	develop	secure
	information system.				
CO2	Learn about various kinds of issues, threats, atta	icks in	volved	while s	ecuring

	inform	nation										
CO3	Analy	ze the	risks i	nvolve	d in inf	formati	on sec	urity				
CO4	Desig	n and	develo	p an in	format	ion sec	urity s	ystem				
CO5	Learn	the va	rious t	echnol	ogies,	tools a	nd tech	niques	used t	o ensure	e securit	у.
Mapping of (COs wi	th PO	5									
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Μ	Η	Η									L
CO2		Η		Н			Η					L
CO3		Η		Н		Η	Η					
CO4			Η									L
CO5		Н	М			Η						L
Course Topic	c(s)	•		•	•			•	•			

UNIT 1: INTRODUCTION

History, Information Security, Critical Characteristics of Information, NSTISSC Security Model, Components of an Information System, Securing the Components, Balancing Security and Access, The SDLC, The Security SDLC

UNIT 2: SECURITY INVESTIGATION

Need for Security, Business Needs, Threats, Attacks, Legal, Ethical and Professional Issues

UNIT 3: SECURITY ANALYSIS

Risk Management: Identifying and Assessing Risk, Assessing and Controlling Risk

UNIT 4: LOGICAL DESIGN

Blueprint for Security, Information Security Policy, Standards and Practices, ISO 17799/BS 7799, NIST Models, VISA International Security Model, Design of Security Architecture, Planning for Continuity

UNIT 5: PHYSICAL DESIGN

Security Technology, IDS, Scanning and Analysis Tools, Cryptography, Access Control Devices, Physical Security, Security and Personnel

TEXT BOOK

1. Michael E Whitman and Herbert J Mattord, "Principles of Information Security", 4th Edition, Vikas Publishing House, New Delhi, 2011.

REFERENCES

- 1. Micki Krause, Harold F. Tipton, "Handbook of Information Security Management", 6th edition vol-5, CRC Press LLC, 2011.
- 2. Stuart Mc Clure, Joel Scrambray, George Kurtz, "Hacking Exposed 6th edition –Network security secrets and solutions", Tata McGraw-Hill, 2009.
- 3. Matt Bishop, "Computer Security Art and Science", Addison-Wesley Professional, 2003.

INT18R319	CYBER FORENSICS	L	Т	Р	С
111110K319	CIDER FORENSICS	3	0	0	3
Prerequisite	Nil				
Course	Open Elective				
Category					
Course	Theory				
Туре					

	•	To u	ndersta	and the	funda	mental	s of Co	mpute	r Forer	sics and	l compu	ting
		Inve	stigatio	ons.				-			-	-
	•	To re	ecogniz	ze the l	egal ur	nderpin	nings	and cri	tical la	ws affec	ting for	ensics.
	•		-		-	-	-			nformat	-	
		syste										0
	•	•		out cui	rrent lie	censing	and c	ertifica	tion re	quireme	nts to b	uild
			areer i			-				1		
Course Outco	ome(s)											
CO1	Unde	rstand	of the i	role of	compu	ter for	ensics					
CO2			ne of th					ools				
CO3	Descr	ribe and	d ident	ify bas	ic prin	ciples of	of good	d profe	ssional	practice	e for a f	orensic
	comp	uting p	oractitio	oner	-	-	•	-		-		
CO4	Demo	onstrate	e an un	dersta	nding o	of issue	es relat	ed to p	rivacy	and det	ermine	how to
			n techn					_	-			
CO5	Apply	y some	forens	ic tool	s in dif	ferent	situatio	ons.				
Mapping of (
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	Η			Η				L			L
CO2		Μ			Η				Н			
CO3	L	Η		Н			М				Η	
CO4				М	Η			Η				Μ
CO5		Н				Н					Η	
O	r(s)											
Course Topic UNIT 1: NT		UCTIO	ON									
UNIT 1: NT The Scope Computer Ha	FROD of Co ardware	mputer e – Ana	Forei atomy	of Digi	ital Inv	estigat	ion.	ing an	d File	System	ns —Hai	ndling
UNIT 1: NT The Scope Computer Ha UNIT 2: IN	of Co ardward	mputer e – Ana IGAT	Forei atomy	of Digi MART	ital Inv PRA (estigat C TICE	ion. 2 S	-		-	ıs –Hai	ndling
UNIT 1: NT The Scope Computer Ha	FROD of Co ardward VEST vestigat	mputer e – Ana IGAT I tive Sn	Foren atomy IVE SI nart Pra	of Digi MART actices	ital Inv T PRAC – Time	estigat C TICE e and F	ion. 2 S	-		-	ns —Hai	ndling
UNIT 1: NT The Scope Computer Ha UNIT 2: IN Forensics Inv UNIT 3: LA	FROD of Co ardward VEST vestigat AWS A	mputer e – Ana IGAT tive Sn ND Pl	Foren atomy IVE SI nart Pra RIVA (of Digi MART actices CY CO	ital Inv 7 PRA – Time NCEF	estigat C TICE e and F RNS	ion. 2 S forensio	cs – In	cident	closure		-
UNIT 1: NT The Scope Computer Ha UNIT 2: IN Forensics Inv	of Co ardward VEST vestigat AWS A ting Fo	mputer e – Ana IGAT tive Sn ND Pl orensic	Foren atomy IVE SM nart Pra RIVA(Inves	of Digi MART actices CY CO tigatio	ital Inv PRA – Time NCEH ns – S	estigat C TICE e and F RNS Search	ion. 2 S Forensid	cs – Ine	cident of sub	closure	– Legi	slated
UNIT 1: NT The Scope Computer Ha UNIT 2: IN Forensics Inv UNIT 3: LA Laws Affect	FROD of Co ardward VEST vestigat AWS A ting Fo cerns –	mputer e – Ana IGAT tive Sn ND Pl orensic The ac	Forei atomy IVE SI nart Pra RIVA(Inves dmissit	of Digi MART actices CY CO tigatio pility of	ital Inv PRA – Time NCEF ns – S f Evide	estigat CTICE e and F RNS Search ence – 1	ion. 2 S Oorensio Warra First R	cs – Ine ants ar espons	cident of sub	closure	– Legi	slated
UNIT 1: NT The Scope Computer Ha UNIT 2: IN Forensics Inv UNIT 3: LA Laws Affect Privacy Cond	FROD of Co ardward VEST vestigat AWS A ting Fo cerns – ATA A	mputer e – Ana IGAT tive Sn ND Pl orensic The ac CQUI	Foren atomy IVE SM nart Pra RIVAC Inves dmissit SITIO	of Digi MART actices CY CO tigatio bility of N AN	ital Inv PRA Time NCEF ns – S f Evide D REP	estigat CTICE e and F RNS Search ence – I CORT	ion. S orensio Warra First R WRIT	cs – Ine ants ar espons ING	cident nd Sub e and I	closure poenas Digital In	– Legi nvestiga	slated
UNIT 1: NT The Scope Computer Ha UNIT 2: IN Forensics Inv UNIT 3: LA Laws Affect Privacy Cond UNIT 4: DA Data Acquiss Writing – Bu	FROD of Co ardward VEST vestigat AWS A ting Fo cerns – ATA A ition – uilding	mputer e – Ana IGAT tive Sn ND Pl orensic The ac CQUI Findin a Fore	Forei atomy of IVE SI nart Pra RIVA(Invest dmissit SITIO g Lost nsics W	of Digi MART actices CY CO tigatio bility of N ANI Files	ital Inv PRAC – Time DNCEP ns – S f Evide D REP – Docu ation	estigat CTICE e and F RNS Search ence – I CORT	ion. S orensio Warra First R WRIT	cs – Ine ants ar espons ING	cident nd Sub e and I	closure poenas Digital In	– Legi nvestiga	slated
UNIT 1: NT The Scope Computer Ha UNIT 2: IN Forensics Inv UNIT 3: LA Laws Affect Privacy Cond UNIT 4: DA Data Acquis Writing – Bu UNIT 5: TO	FROD of Co ardward VEST vestigat AWS A ting Fo cerns – ATA A ition – uilding DOLS	mputer e – Ana IGATI tive Sn ND PI orensic The ac CQUI Findin a Foren AND (Forei atomy (IVE SI nart Pra RIVAC Inves dmissib SITIO ag Lost nsics W CASE (of Digi MART actices CY CO tigatio bility of N ANI Files Vorksta STUD	ital Inv PRA Time NCEF ns – S f Evide D REP – Docu ntion IES	estigat CTICE e and F RNS Search ence – 1 CORT ument	ion. S Forensid Warra First R WRIT Analys	cs – Ind ants ar espons ING is – Ca	cident nd Sub e and I ase Ma	closure poenas Digital In nageme	– Legi nvestiga nt and F	slated tor Report
UNIT 1: NT The Scope Computer Ha UNIT 2: IN Forensics Inv UNIT 3: LA Laws Affect Privacy Cond UNIT 4: DA Data Acquis Writing – Bu UNIT 5: TO Tools of th	FROD of Col ardward VEST vestigat AWS A ting Fo cerns – ATA A ition – uilding DOLS e Digi	mputer e – Ana IGAT tive Sn ND Pl orensic The ac CQUI Findin a Foren AND (tal Inv	Forei atomy of IVE SI hart Pra RIVA(Investignation SITIO ag Lost nsics W CASE of vestigat	of Digi MART actices CY CO tigatio oility of N ANI Files Vorksta STUD	ital Inv PRA Time NCEF ns – S f Evide D REP – Docu ntion IES Licensi	estigat CTICE e and F RNS Search ence – I rORT iment A	ion. S Orensid Warra First R WRIT Analys d Cert	cs – Ind ants ar espons ING is – Ca	cident nd Sub e and I ase Ma on – (closure ppoenas Digital In nagemen Case Stu	– Legi nvestiga nt and F udies: E	slated tor Report E-mail
UNIT 1: NT The Scope Computer Ha UNIT 2: IN Forensics Inv UNIT 3: LA Laws Affect Privacy Cond UNIT 4: DA Data Acquiss Writing – Bu UNIT 5: TO Tools of th Forensics –	FROD of Col ardward VEST vestigat AWS A ting Fo cerns – ATA A ition – uilding DOLS e Digi	mputer e – Ana IGAT tive Sn ND Pl orensic The ac CQUI Findin a Foren AND (tal Inv	Forei atomy of IVE SI hart Pra RIVA(Investignation SITIO ag Lost nsics W CASE of vestigat	of Digi MART actices CY CO tigatio oility of N ANI Files Vorksta STUD	ital Inv PRA Time NCEF ns – S f Evide D REP – Docu ntion IES Licensi	estigat CTICE e and F RNS Search ence – I rORT iment A	ion. S Orensid Warra First R WRIT Analys d Cert	cs – Ind ants ar espons ING is – Ca	cident nd Sub e and I ase Ma on – (closure ppoenas Digital In nagemen Case Stu	– Legi nvestiga nt and F udies: E	slated tor Report E-mail
UNIT 1: NT The Scope Computer Ha UNIT 2: IN Forensics Inv UNIT 3: LA Laws Affect Privacy Cond UNIT 4: DA Data Acquist Writing – Bu UNIT 5: TO Tools of th Forensics – Forensics.	FROD of Co ardward VEST vestigat AWS A ting Fo cerns – ATA A ition – uilding OOLS e Digi Web Fo	mputer e – Ana IGAT tive Sn ND Pl orensic The ac CQUI Findin a Foren AND (tal Inv	Forei atomy of IVE SI hart Pra RIVA(Investignation SITIO ag Lost nsics W CASE of vestigat	of Digi MART actices CY CO tigatio oility of N ANI Files Vorksta STUD	ital Inv PRA Time NCEF ns – S f Evide D REP – Docu ntion IES Licensi	estigat CTICE e and F RNS Search ence – I rORT iment A	ion. S Orensid Warra First R WRIT Analys d Cert	cs – Ind ants ar espons ING is – Ca	cident nd Sub e and I ase Ma on – (closure ppoenas Digital In nagemen Case Stu	– Legi nvestiga nt and F udies: E	slated tor Report E-mail
UNIT 1: NT The Scope Computer Ha UNIT 2: IN Forensics Inv UNIT 3: LA Laws Affect Privacy Cond UNIT 4: DA Data Acquis Writing – Bu UNIT 5: TO Tools of th Forensics – Forensics.	FROD of Col ardward VEST vestigat AWS A ting Fo cerns – ATA A ition – ilding DOLS Web Fo DKS :	mputer e – Ana IGATI tive Sn ND PI orensic The ac CQUI Findin a Foren AND (tal Invorensic	Forei atomy of IVE SI nart Pra RIVA(Invest dmissit SITIO g Lost nsics W CASE of vestigat cs – Se	of Digi MART actices CY CO tigatio oility of N ANI Files Vorksta STUD tor - 1 arching	ital Inv PRA - Time NCEH ns – S f Evide D REP - Docu tion IES Licensi g the N	estigat CTICE e and F RNS Search ence – I rORT ment A ng and Networ	ion. S Vorensid First R WRIT Analys d Cert k – Ex	cs – Ind ants ar espons ING is – Ca cification cavatin	cident nd Sub e and I ase Ma on – C ng a C	closure ppoenas Digital In nageme Case Stu loud – N	– Legi nvestiga nt and F udies: F Mobile o	slated tor Report E-mail
UNIT 1: NT The Scope Computer Ha UNIT 2: IN Forensics Inv UNIT 3: LA Laws Affect Privacy Cond UNIT 4: DA Data Acquist Writing – Bu UNIT 5: TO Tools of th Forensics – Forensics. TEXTBOO 1. Michae Addisor	FROD of Co ardward VEST vestigat AWS A ting Fo cerns – ATA A ition – nilding OOLS e Digi Web Fo OKS: el Grave n-Wesl	mputer e – Ana IGATI tive Sn ND PI orensic The ac CQUI Findin a Foren AND (tal Inv orensic	Forei atomy of IVE SI nart Pra RIVAC Inves dmissib SITIO ag Lost nsics W CASE of vestigat cs – Se gital A fession	of Digi MART actices CY CO tigatio oility of N ANI Files - Vorksta STUD tor - 1 arching rchaeo al, 201	ital Inv PRA – Time NCEF ns – S f Evide D REP – Docu tion IES Licensi g the N	estigat CTICE e and F RNS Search ence – I ORT Ment A ng and Networ The Art	ion. SS Forensid First R WRIT Analys d Cert k – Ex and So	cs – Ind ants ar espons ING is – Ca dification cavatin cience	cident nd Sub e and I ase Ma on – O ng a C of Dig	closure opoenas Digital In nagemen Case Stu loud – N	– Legi nvestiga nt and F udies: E Mobile o nsics",	slated tor Report E-mail
UNIT 1: NT The Scope Computer Ha UNIT 2: IN Forensics Inv UNIT 3: LA Laws Affect Privacy Cond UNIT 4: DA Data Acquist Writing – Bu UNIT 5: TO Tools of th Forensics – Forensics. TEXTBOO 1. Michae	FROD of Co ardward VEST vestigat AWS A ting Fo cerns – ATA A ition – nilding OOLS e Digi Web Fo OKS: el Grave n-Wesl	mputer e – Ana IGATI tive Sn ND PI orensic The ac CQUI Findin a Foren AND (tal Inv orensic	Forei atomy of IVE SI nart Pra RIVAC Inves dmissib SITIO ag Lost nsics W CASE of vestigat cs – Se gital A fession	of Digi MART actices CY CO tigatio oility of N ANI Files - Vorksta STUD tor - 1 arching rchaeo al, 201	ital Inv PRA – Time NCEF ns – S f Evide D REP – Docu tion IES Licensi g the N	estigat CTICE e and F RNS Search ence – I ORT Ment A ng and Networ The Art	ion. SS Forensid First R WRIT Analys d Cert k – Ex and So	cs – Ind ants ar espons ING is – Ca dification cavatin cience	cident nd Sub e and I ase Ma on – O ng a C of Dig	closure opoenas Digital In nagemen Case Stu loud – N	– Legi nvestiga nt and F udies: E Mobile o nsics",	slated tor Report E-mail
UNIT 1: NT The Scope Computer Ha UNIT 2: IN Forensics Inv UNIT 3: LA Laws Affect Privacy Cond UNIT 4: DA Data Acquist Writing – Bu UNIT 5: TO Tools of th Forensics – Forensics. TEXTBOO 1. Michae Addison 2. Darren 2015. 3. Albert J	FROD of Co ardward VEST vestigat AWS A ting Fo cerns – ATA A ition – nilding OOLS e Digi Web Fo OKS: el Grave n-Wesl R. Hay J. Marc	mputer e – Ana IGATI tive Sn ND PI orensic The ac CQUI Findin a Foren AND C tal Invo orensic es, "Dig ey Pro- zes, "Pr	Forei atomy of IVE SI nart Pra RIVAC Inves dmissib SITIO ag Lost nsics W CASE (vestigat cs – Se gital A fession ractical d Frede	of Digi MART actices CY CO tigatio oility of N ANI Files Vorksta STUD arching rchaeo al, 201 Guide	ital Inv PRA PRA PRA PRA NCEH ns – S f Evide D REP – Docu tion IES Licensi g the N logy: T 4. to Cor	estigat CTICE e and F RNS Search ence – 1 ORT Norther Network The Art mputer	ion. S Varra First R WRIT Analys d Cert k – Ex and So Forens	cs – Ind ants ar espons ING is – Ca dification cavatin cience sics Inv	cident nd Sub e and I ase Ma on – O ng a C of Dig vestiga	closure poenas Digital In nageme Case Stu loud – M ital Fore tion", Pe	– Legi nvestiga nt and F udies: E Mobile o nsics", earson,	slated tor Report E-mail device
UNIT 1: NT The Scope Computer Ha UNIT 2: IN Forensics Inv UNIT 3: LA Laws Affect Privacy Cond UNIT 4: DA Data Acquiss Writing – Bu UNIT 5: TO Tools of th Forensics – Forensics. TEXTBOO 1. Michae Addison 2. Darren 2015.	FROD of Col ardward VEST vestigat AWS A ting Fo cerns – ATA A ition – uilding DOLS web Fo DKS: el Grave n-Wesl R. Hay J. Marc ce " Wi	mputer e – Ana IGATI tive Sn ND PI orensic The ac CQUI Findin a Foren AND C tal Invo orensic es, "Dig ey Pro- zes, "Pr	Forei atomy of IVE SI nart Pra RIVAC Inves dmissib SITIO ag Lost nsics W CASE (vestigat cs – Se gital A fession ractical d Frede	of Digi MART actices CY CO tigatio oility of N ANI Files Vorksta STUD arching rchaeo al, 201 Guide	ital Inv PRA PRA PRA PRA NCEH ns – S f Evide D REP – Docu tion IES Licensi g the N logy: T 4. to Cor	estigat CTICE e and F RNS Search ence – 1 ORT Norther Network The Art mputer	ion. S Varra First R WRIT Analys d Cert k – Ex and So Forens	cs – Ind ants ar espons ING is – Ca dification cavatin cience sics Inv	cident nd Sub e and I ase Ma on – O ng a C of Dig vestiga	closure poenas Digital In nageme Case Stu loud – M ital Fore tion", Pe	– Legi nvestiga nt and F udies: E Mobile o nsics", earson,	slated tor Report E-mail device

1. Bill Nelson, Amelia Phillips and Christopher Steuart, "Guide to Computer Forensics and Investigations", Fourth Edition, Cengage Learning, 2013.

		ESSE	INTIA	LS OF	F INFC	DRMA	TION		L	Т	Р	С
INT18R320			T]	ECHN	OLO	GΥ			3	0	0	3
Prerequisite	NIL											
Course	Open	Electiv	ve									
Category	_											
Course	Theor	ry										
Туре		-										
Objective (s)	To k	now t	he cor	ncept d	of Inte	rnet, N	Jetwor	ks and	its w	orking	principl	es and
_	under	stand t	he vari	ious ap	plicati	ons rela	ated to	Inform	nation 7	Fechnol	ogy.	
Course Outco	ome(s)											
CO1	Unde	rstand	the cor	ncept of	f webs	ite desi	gn and	l types	of serv	er.		
CO2	Know	v about	scripti	ing lan	guages	•						
CO3	Identi	ify the	concep	ots of In	nternet	, Netw	orks ar	nd its w	orking	princip	les.	
CO4	Unde	rstand	the cor	ncept of	f mobi	le com	munica	ation.				
CO5	Unde	rstand	various	s applie	cations	related	l to Inf	ormati	on Tec	hnology	′ .	
Mapping of C	COs wi	th POs	5									
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	Н			Н				L			L
CO2		Μ			Н				Н			
CO3	L	Η		Н			М				Н	
CO4				М	Н			Н				М
CO5		Н				Н					Н	
Course Topic	c(s)											

UNIT 1: WEB ESSENTIALS

Creating a Website - Working principle of a Website - Browser fundamentals - Authoring tools -Types of servers: Application Server - Web Server - Database Server

UNIT 2: SCRIPTING ESSENTIALS

Need for Scripting languages - Types of scripting languages - Client side scripting - Server side scripting - PHP - Working principle of PHP - PHP Variables - Constants - Operators - Flow Control and Looping - Arrays - Strings - Functions - File Handling - PHP and MySQL - PHP and HTML - Cookies - Simple PHP scripts

UNIT 3: NETWORKING ESSENTIALS

Fundamental computer network concepts - Types of computer networks - - Network layers - TCP/IP model - Wireless Local Area Network - Ethernet - WiFi - Network Routing - Switching - Network components.

UNIT 4: MOBILE COMMUNICATION ESSENTIALS

Cell phone working fundamentals - Cell phone frequencies & channels - Digital cell phone components - Generations of cellular networks - Cell phone network technologies / architecture - Voice calls & SMS.

UNIT 5: APPLICATION ESSENTIALS

Creation of simple interactive applications - Simple database applications - Multimedia applications - Design and development of information systems – Personal Information System – Information retrieval system – Social networking applications.

TEXT BOOKS:

1. Robin Nixon, "Learning PHP, MySQL, JavaScript, CSS & HTML5" Third Edition, O'REILLY, 2014.

2. James F. Kurose, "Computer Networking: A Top-Down Approach", Sixth Edition, Pearson, 2012.

REFERENCES:

1. Gottapu Sasibhushana Rao, "Mobile Cellular Communication", Pearson, 2012. 2. R. Kelly Rainer, Casey G. Cegielski, Brad Prince, "Introduction to Information Systems", Fifth Edition, Wiley Publication, 2014. 3. it-ebooks.org

INT10D221									L	Т	Р	С
INT18R321			INTE	RNET	' AND	JAVA			3	0	0	3
Prerequisite	Progr	ammin	g for F	roblen	n Solvi	ng (CS	E18R	171)				
Course	Open	Electiv	ve									
Category												
Course	Theor	ry										
Туре												
Objective (s)		arn the simple c			metwor	king, R	outing,	World	Wide	Web, Jav	a Progra	amming
Course Outco	ome(s)											
CO1	Unde	rstand	the con	cept of	Interne	etworki	ng with	TCP/II	P			
CO2	Learn	routing	for hig	gh speed	d multii	nedia ti	affic					
CO3	Learn	the fun	dament	als in V	WWW,	HTML	and XM	ML.				
CO4	Under	rstand J	ava for	Networ	rking ap	plication	on					
CO5	Under	rstand	the ba	sic co	ncepts	in E-o	com, N	Vetwork	opera	ating sys	stem an	d Web
	design											
Mapping of C	COs wi	th POs	3							-		
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Μ										L
CO2		Μ	Μ	Η								L
CO3		Μ	Μ			Η						L
CO4		Μ	Μ				Η					L
CO5		Μ	Μ								Н	L
Course Topic	x(s)											
UNIT 1: INT	ERNF	ETWO	RKIN	G WI	ГН ТС	P/IP						
Review of net	work te	echnolo	ogies, I	nternet	t addre	ssing, A	Addres	s resol	ution p	rotocols	(ARP	
/ RARP), Rou												
ATM network					-mail, T	Гelnet,	FTP, 1	NFS, Ir	ternet	traffic n	nanagen	nent.
UNIT 2: INT												
Concepts of gr	-	•	-	-				-				
protocol (OSF	PP), Pa	th vect	tor pro	tocols	(BGP	and II	ORP),	Routin	g for l	nigh spe	ed mult	imedia

traffic, Multicasting, Resource reservation (RSVP), IP switching.

UNIT 3: WORLD WIDE WEB

HTTP protocol, Web browsers netscape, Internet explorer, Web site and Web page design, HTML, Dynamic HTML, CGI, Java script.

UNIT 4: INTRODUCTION TO JAVA

The java programming environment, Fundamental Programming structures, Objects and Classes, Inheritance, Event handling, Exceptions and Debugging, Multithreading, RMI.

UNIT 5: JAVA PROGRAMMING

Networking with Java, Swing: Applets and Applications, Menu's & Tool Bars, Java and XML – Creating packages, Interfaces, JAR files & Annotations, Javabeans, JDBC.

TEXTBOOKS

1. Douglas E.Comer, "Internetworking with TCP/IP", Vol. I: 5th edition, Pearson Education, 2007 (Unit – I &II)

2. Robert W.Sebesta, "Programming the worldwide web", 3/e, Pearson Education, 2007.

3. Steven Holzner et. al, "Java 2 Programming", Black Book, Dreamtech Press, 2006. **REFERENCES**

1. Cay S.Hortsmann, Gary Cornwell, "Core Java 2", Vol I, Pearson Education, 7/e, 2005.

2. W. Richard Stevens, "TCP/IP Illustrated, The Protocol", Vol I, Pearson Education, 1st Edition, 2006.

3. Behrouz A. Farouzon, "TCP/IP Protocol Suite, 3rd edition, Tata McGraw Hill, 2007

INT18R322	P PPOCP A MMINC	L	Т	Р	С
IN I 18K322	R PROGRAMMING	3	0	0	3
Prerequisite	Nil				
Course	Open Elective				
Category					
Course	Theory				
Туре					
Objective(s)	The student will be able to learn				
	• Understand what R is and what it can be used	for			
	• Why would you choose R over another tool				
	• Troubleshoot software installs (keep your fing	gers cro	ossed)		
	• Gain familiarity with using R from within the	RStud	io IDE		
	• Get to know the basic syntax of R functions				
	• Be able to install and load a package into you	r R libi	rary		
Course Outco	ome(s)				
CO1	Familiarize themselves with R and the RStudio IDE				
CO2	Understand and use the various forms of data with R				
CO3	Access online resources for R and import new fu	inction	package	s into	the R
	workspace				
CO4	Import, review, manipulate and summarize data-sets	in R			
CO5	Get insight into the capabilities of the language as	a proc	luctivity	tool for	r data
	manipulation and statistical analyses.				
Mapping of C	COs with POs			<u> </u>	
CO	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8	PO9	PO10 I	PO11	PO12

CO1	Η	L	L							
CO2	Η	Η	Μ							
CO3	Н			Μ						
CO4			М	М	М	М				
CO5							L		L	

UNIT I: INTRODUCTION

Getting R, R Version, 32-bit versus 64-bit, The R Environment, Command Line Interface, RStudio, Revolution Analytics RPE, R Packages: Installing Packages, Loading Packages, Building a Package R Basics: Basic Math, Variables, Data Types, Vectors, Calling Functions, Function Documentation, Missing Data Advanced Data Structures: data frames, Lists, Matrices, Arrays

UNIT II: R DATA

Reading Data into R: Reading CSVs, Excel Data, Reading from Databases, Data from Other Statistical Tools, R Binary Files, Data Included with R, Extract Data from Web Sites Statistical Graphics: Base Graphics, ggplot2

UNIT III: R FUNCTIONS & STATEMENTS

Writing R Functions: Hello, World!, Function Arguments, Return Values, do.call Control Statements: if and else, switch, ifelse, Compound Tests Loops: for Loops, while Loops, Controlling Loops

UNIT IV: DATA MANIPULATION

Group Manipulation: Apply Family, aggregate, plyr, data.table Data Reshaping: cbind and rbind, Joins, reshape2 Manipulating Strings: paste, sprint, Extracting Text, Regular

UNIT V: R STATISTICS & LINEAR MODELING

Probability Distributions: Normal Distribution, Binomial Distribution, Poisson Basic Statistics: Summary Statistics, Correlation and Covariance, T-Tests 200, ANOVA Linear Models: Simple Linear Regression, Multiple Regression Generalized Linear Models: Logistic Regression, Poisson Model Diagnostics: Residuals, Comparing Models, Cross-Validation, Bootstrap, Stepwise Variable Selection

TEXT BOOK(S):

1. Jared P. Lander, R for Everyone: Advanced Analytics and Graphics, Pearson Edu. Inc., 2nd Edition, 2017

REFERENCES:

- 1. Christian Heumann, Michael Schomaker and Shalabh, Introduction to Statistics and Data Analysis-With Exercises, Solutions and Applications in R, Springer, 2016
- 2. Pierre Lafaye de Micheaux, Rémy Drouilhet, Benoit Liquet, The R Software-Fundamentals of Programming and Statistical Analysis, Springer 2013
- 3. Alain F. Zuur, Elena N. Ieno, Erik H.W.G. Meesters, A Beginner's Guide to R (Use R) Springer 2009

		L	Т	Р	С
INT18R418	PROGRAMMING WITH C++ AND JAVA	3	0	0	3
Prerequisite	Programming for Problem Solving (CSE18R171)				
Course	Open Elective				

Category														
Course	Theor	ry												
Туре		5												
Objective(s)	•	 To understand object oriented programming through C++. To demonstrate adeptness of object oriented programming in developing solutions to problems demonstrating usage of data abstraction, encapsulation, and inheritance. 												
Course Outco			6						P	-0				
CO1	Unde		the output of the the	0		d con	cepts.	То	under	stand o	bject o	riented		
CO2	Unde	rstand		e of in	heritar		lymorp	ohism,	dynam	ic bindi	ng and g	generic		
CO3			Java pı writing	-	ming c	concept	ts and u	utilize .	Java G	raphical	User In	terface		
CO4			databa for de ،				o deve	lop dy	mamic	web ap	plicatio	ns and		
CO5	Utiliz syster softw	ze prof ms/web are sys	essiona osites t stem/we	al leve that m	l platfeet spe	orms (ecified	user	needs	and co) to pro onstraint and acc	s.Evalu			
Mapping of C					1	1	1	1	1	1				
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	Μ										L		
CO2		Μ	Μ	Н								L		
CO3		Μ	Μ			Н						L		
CO4		Μ	Μ				Н					L		
CO5		Μ	Μ								Н	L		
Course Tonic	(c)													

UNIT 1: INTRODUCTION TO OOP, CLASS & OBJECTS

Object Oriented Programming Paradigm- Basic Concepts of OOP- Benefits of OOP- Object Oriented Languages- Features of OOP- How OOP Differ from Procedure Oriented Programming-applications of OOP-a Simple C++ Program- structure of C++ Program-basic Data Types in C++- Operators in C++ - Scope Resolution Operator- Member Dereferencing Operators- memory 31 SE-Engg&Tech-SRM-2013 management operators- Introduction of Classes-Inline member functions-Objects - Arrays of Objects- Objects as Function Arguments-Static data member and static member functions – Constructors- Parameterized Constructors-Default Argument constructors - Copy Constructors- Destructors – Friend functions.

UNIT 2: POLYMORPHISM, TEMPLATES & EXCEPTION HANDLING

Introduction to Operator overloading- Rules for Operator overloading- overloading of binary and unary operators-Introduction to inheritance–Types of inheritance- Abstract Classes- new Operator and delete Operator- Pointers to Objects- this Pointer- Virtual Functions- Pure Virtual Functions- Introduction to Class Templates- Function Templates-Member Function Templates-Basics of Exception Handling- Types of exceptions- Exception Handling Mechanism- Throwing and Catching Mechanism- Rethrowing an Exception- Specifying Exceptions.

UNIT 3: JAVA PROGRAMMING

An overview of Java – Data Types – Variables and Arrays – Operators – Control Statements – Classes – Objects – Methods – Inheritance – Packages – Abstract classes – Interfaces and Inner classes – Exception handling – Introduction to Threads – Multithreading – String handling – Streams and I/O – Applets.

UNIT 4: WEBSITES BASICS, HTML 5, CSS 3, WEB 2.0

Web 2.0: Basics-RIA Rich Internet Applications – Collaborations tools – Understanding websites and web servers: Understanding Internet – Difference between websites and web server- Internet technologies Overview –Understanding the difference between internet and intranet; HTML and CSS: HTML 5.0, XHTML, CSS 3.

UNIT 5: CLIENT SIDE AND SERVER SIDE PROGRAMMING

Java Script: An introduction to JavaScript–JavaScript DOM Model-Date and Objects,-Regular Expressions- Exception Handling-Validation-Built-in objects-Event Handling- DHTML with JavaScript. Servlets: Java Servlet Architecture- Servlet Life Cycle- Form GET and POST actions- Session Handling- Understanding Cookies- Installing and Configuring Apache Tomcat WebServer;- DATABASE CONNECTIVITY: JDBC perspectives, JDBC program example – JSP: Understanding Java Server Pages-JSP Standard Tag Library(JSTL)-Creating HTML forms by embedding JSP code.

TEXTBOOKS:

1. Deitel and Deitel and Nieto, "Internet and World Wide Web – How to Program", Prentice Hall, 5thEdition,2011.

2. Herbert Schildt, "Java-The Complete Reference", Eighth Edition, Mc Graw Hill Professional, 2011.

REFERENCES:

1.Stephen Wynkoop and John Burke "Running a Perfect Website", QUE, 2nd Edition,1999. 2. Chris Bates, "Web Programming – Building Intranet Applications", 3rd Edition, Wiley Publications, 2009.

3. Jeffrey C and Jackson, "Web Technologies A Computer Science Perspective", Pearson Education, 2011.

INT18R419	NETWORK PROTOCOLS	L	Т	Р	С
IN I 18K419	NETWORK PROTOCOLS	3	0	0	3
Prerequisite	Computer Networks (CSE18R371)			•	
Course	Open Elective				
Category					
Course	Theory				
Туре					
Objective (s)	It understands the networking concepts and Multipl	e protoc	ols typ	bes.	
Course Outco	ome(s)				
CO1	Understand the existing network architecture	models	and	analyzes	their
	performance.				

CO2	Understand the multiple layers of the protocol.														
CO3		Understand the high speed network protocols and design issues.													
CO4	Learn	Learn Network Security Technologies and Protocols.													
CO5	To st	To study various protocols in wireless LAN, MAN.													
Mapping of (ping of COs with POs														
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	L	Η			Η				L			L			
CO2		М			Н				Н						
CO3	L	Η		Н			М				Н				
CO4				М	Н			Η				М			
CO5		H H H H													
~ .	<pre>/ ``</pre>														

UNIT 1: FUNDAMENTALS OF NETWORKING STANDARDS AND PROTOCOLS

Network Communication Architecture and Protocols - OSI Network Architecture seven Layers Model - Definition and Overview of TCP/IP Protocols -TCP/IP Four Layers Architecture Model - Other Network Architecture Models: IBM SNA.

UNIT 2: ROUTED AND ROUTING PROTOCOLS

Application Layer Protocols-Presentation Layer Protocols- Session Layer Protocols - Transport Layer Protocols - Network Layer Protocols - Data Link Layer Protocols - Routing Protocols -Multicasting Protocols - MPLS.

UNIT 3: SDN AND NETWORK MANAGEMENT PROTOCOLS

Overview of ISDN – Channels – User access – Protocols Network management requirements – Network monitoring – Network control – SNMP V1, V2 and V3 – Concepts, MIBs – Implementation issues-RMON.

UNIT 4: SECURITY AND TELEPHONY PROTOCOLS

Network Security Technologies and Protocols - AAA Protocols - Tunneling Protocols - Security Protocols- Private key encryption – Data encryption system, public key encryption – RSA – Elliptic curve cryptography – Authentication mechanisms– Web security -Secured Routing Protocols - IP telephony -Voice over IP and VOIP Protocols –Signaling Protocols-Media/CODEC.

UNIT 5: NETWORK ENVIRONMENTS AND PROTOCOLS

Wide Area Network and WAN Protocols - Frame relay - ATM - Broadband Access Protocols - PPP Protocols - Local Area Network and LAN Protocols - Ethernet Protocols - Virtual LAN Protocols - Wireless LAN Protocols - Metropolitan Area Network and MAN Protocol - Storage Area Network and SAN Protocols.

TEXT BOOK

1. Javvin, "Network Protocols", Javvin Technologies Inc, second edition, 2005

2. William Stallings, "Cryptography and Network Security", PHI, 2000.

3. Mani Subramanian, "Network Management-Principles and Practices", Addison Wesley, 2000.

REFERENCES

1. William Stallings, "SNMP, SNMPV2, SNMPV3 and RMON1 and 2", 3rd Edition, Addison Wesley, 1999.

2. William Stallings, "Data and Computer Communications" 5th Edition, PHI, 1997.

INT10D 430		H	IGHS	SPEED	NET	WORI	KS		L	Т	Р	С		
INT18R420									3	0	0	3		
Prerequisite	Comp	outer N	etwork	ts (CSI	E18R3'	71)								
Course	Open	Electiv	ve											
Category	-													
Course	Theorem	ry												
Туре														
Objective (s)	To hi	ghlight	the fe	atures	of diffe	erent te	chnolo	gies in	volved	l in High	n Speed			
	Netw	orking	and th	eir perf	forman	ce.								
Course Outco	ome(s)													
CO1	Stude	ents wil	l get a	n intro	luction	about	ATM	and Fra	ame re	lay.				
CO2	Enab	le to	know	techi	niques	invol	ved t	o sup	port 1	real-time	e traffi	c and		
	conge	Enable to know techniques involved to support real-time traffic and congestion control.												
CO3		rstand						t.						
CO4	Unde	rstand	differe	nt serv	ices in	netwo	rk.							
CO5	Stude	Students will be provided with different levels of quality of service (Q.S) to												
		different applications.												
Mapping of C				n		1	n			1	1	n		
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	L	Η			Н				L			L		
CO2		Μ			Η				Η					
CO3	L	Η		Η			Μ				Η			
CO4				Μ	Η			Н				Μ		
CO5		Η				Η					Η			
Course Topic	c(s)													
UNIT 1: HIC	GH SP	EED N	ETW	ORKS										
Frame Relay														
ATM logical														
LAN's: Fast														
	etwork			ions,	-			– A				302.11.		
UNIT 2:										MA				
Queuing Ana	•	-	-			-		-			-			
Congestion (Control	$-T_1$		-	gement		-					-		
Networks		-		rame		Rela	•		Conges			ontrol.		
UNIT 3			ГСР			ATN		CON				TROL		
TCP Flow co														
Exponential H					-				-					
TCP over A														
Traffic Mana														
control, RM	cell				-	•					-			
UNIT 4:	micas			ATED		ND		FERE				VICES		
Integrated Se														
- FQ - PS -		y – 0					-	electio						
UNIT	5:		rku	TOCO	L2		FOR		QO	3	SUP	PORT		

9 Hours
RSVP - Goals & Characteristics, Data Flow, RSVP operations - Protocol Mechanisms
– Multiprotocol Label Switching – Operations, Label Stacking – Protocol details – RTP
– Protocol Architecture – Data Transfer Protocol– RTCP.
TEXTBOOKS
1. William Stallings, "High speed networks and internet", Second Edition, Pearson
Education, 2002.
REFERENCES:
1. Warland, Pravin Varaiya, "High performance communication networks", Second
Edition, Jean Harcourt Asia Pvt. Ltd., , 2001.
2. Irvan Pepelnjk, Jim Guichard, Jeff Apcar, "MPLS and VPN architecture", Cisco
Press, Volume 1 and 2, 2003.
3. Abhijit S. Pandya, Ercan Sea, "ATM Technology for Broad Band Telecommunication
Networks", CRC Press, New York., 2010

INT18R421		INT	RODU	CTIO	N TO	STOR	AGE		L	Τ	P	С
1111101421			Μ	ANAG	EME	NT			3	0	0	3
Prerequisite	Datab	base Ma	anagen	nent Sy	stems	(INT1	8 R 371))				
Course	Open	Electiv	ve									
Category												
Course	Theor	ry										
Туре												
Objective (s)	•]	Descrit for swi Storage	be the c tch net e Area	challen work c Netwo	ges ass onverg rks inc	sociateo gence. luding	d with storag	data ce e archi	enter ne tecture	d compo etworkin es, logica id monit	g and th al and p	hysical
Course Outco	ome(s)											
CO1					<u> </u>					anagem		
CO2		iss dif tructur		types	of lo	gical	and p	hysical	com	ponents	ofa	storage
CO3		rstand cation e				ifferen	t netw	vork st	orage	options	for di	ifferent
CO4	Identi	ify and	analyz	es the	comme	on thre	ats in e	each do	main.			
CO5	Know	v about	the vir	tualiza	ation To	echniq	ues.					
Mapping of C	1				r			1	r			
СО	PO1	PO2	PO3	PO4		PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Н	М		Н		Η					L
CO2	L	Н	М						Н			
CO3	L	Н										L
CO4		Η	Н					Н				
CO5		Η	Н									L
Course Topic	c(s)											

UNIT 1: INTRODUCTION TO STORAGE TECHNOLOGY

Review data creation and the amount of data being created and understand the value of data to business - challenges in data storage and data management - Solutions available or data storage - Core elements of a data center infrastructure - role of each element in supporting business activities.

UNIT 2: STORAGE SYSTEMS

Hardware and software components of the host environment - Key protocols and concepts used by each component - Physical and logical components of a connectivity environment Major physical disk - access characteristics - and performance implications

UNIT 3: NETWORKED STORAGE

Evolution of networked storage – Architecture – Components - and topologies of FC-SAN, NAS, and IP-SA Benefits of the different networked storage options -Understand the need for long-term archiving solutions

UNIT 4: DATA CENTER

List reasons for planned/unplanned outages and the impact of downtime - impact of downtime - Differentiate between business continuity (BC) and disaster recovery (DR) - RTO and RPO - Identify single points of failure in a storage infrastructure and list solutions to mitigate these failures - Architecture of backup/recovery and the different backup/recovery topologies- key management tasks in a data center.

UNIT 5: VIRTUALIZATION

Virtualization technologies – block-level and file-level virtualization technologies and Processes

TEXT BOOK

1. EMC, EMC Education Services, Lastemc, "Information Storage and Management: Storing, Managing, and Protecting Digital Information", John Wiley and Sons, 2010.

REFERENCES

- 1. Robert Spalding, "Storage Networks: The Complete Reference". Tata McGraw Hill, Osborne, 2003
- 2. Marc Farley, "Building Storage Networks", 2nd Edition, Tata McGraw Hill, Osborne, 2001.
- 3. Meeta Gupta, "Storage Area Network Fundamentals", Pearson Education Limited, 2002.

HONOURS ELECTIVES

INT18R422	ADVANCED NETWORKS	L	Т	Р	С
1111101422	ADVANCED NETWORKS	3	1	0	4
Prerequisite	Computer Networks (CSE18R371)				
Course	Honours Elective				
Category					
Course	Theory				
Туре					
Objective (s)	• To explain QoS requirements and compare di	fferent	approach	nes to Q	QoS.
	• To appreciate need for high speed networks				
	• To identify reliability issues and provide solu	tions			
Course Outco	ome(s)				
CO1	Gain an understanding of advanced networks concept	ot.			

CO2	Desci	Describe the principles behind the enhancement in networking													
CO3	Know	Know the recent development in networks													
CO4	Know	Know the optical network design													
CO5	Know	v the vi	rtualiz	ation.											
Mapping of (COs wi	ith PO	S												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	Η		L												
CO2				Н	Н		L					L			
CO3	Н	Н					L					L			
CO4	Η	L													
CO5							Μ								
O T !	$\langle \rangle$														

UNIT 1: INTERNETWORKING

IPv6 - Design issues - Scalability - Addressing - Headers - Routing - Auto configuration - Transition from IPv4 to IPv6 - Interoperability - QoS in IPv6 - Multicast support - ICMPv6 - Security in IPv6

UNIT 2: QUALITY OF SERVICE

QoS taxonomy - Resource allocation - Scheduling - Queuing disciplines - Delay Analysis Integrated services - Differentiated services - RSVP.

UNIT 3: MPLS AND VPN

MPLS Architecture - MPLS to GMPLS - Traffic engineering with MPLS - QoS -Network recovery and restoration with MPLS – VPN L2 – VPN L3 .

UNIT 4: OPTICAL NETWORKS

Photonic Packet switching - WDM network design - Introduction to optical networks -optical layer - SONET/SDH - Optical packet switching - Client layers - Signaling protocols and network operation

UNIT 5: SOFTWARE DEFINED NETWORKING

Introduction to SDN - Network Function Virtualization - Data Plane- Control Plane - SDN software stack - Data center Traffic Management

TEXT BOOKS:

1. Larry L. Peterson, Bruce S. Davie, —Computer Networks: A Systems Approach^I, Fifth Edition, Elsevier/Morgan Kaufmann Publishers, 2011.

2. Bruce S. Davie, Adrian Farrel, -MPLS: Next Steps, Morgan Kaufmann Publishers, 2011.

3. Rajiv Ramaswami, Kumar N. Sivarajan and Galen H. Sasaki, "Optical Networks A Practical Perspective ",Third Edition, Morgan Kaufmann,2010.

EFERENCES:

1. William Stallings, "High-speed networks and internets ", Second Edition Pearson Education India, 2002.

3. Ying-Dar Lin , Ren-Hung Hwang , Fred Baker , "Computer Networks: An Open Source Approach", McGraw-Hill Higher Education, 2011.

INT18R423	AGENT BASED INTELLIGENT SYSTEMS	L	Т	Р	С
11110K423	AGENI DASED INTELLIGENT SISTEMS	3	1	0	4
Prerequisite	Artificial Intelligence (INT18R311)				

Course	Hono	urs Ele	ective											
Category	110110													
Course	Theor	ry												
Туре		•												
Objective (s)	•	The	structu	re of ag	gents									
	•	• The learning mechanisms of agents												
	•	The	comm	unicati	on and	coope	ration	within	agents					
	•	The	design	of age	nts									
Course Outco	ome(s)													
CO1	Imple	ement a	l comp	utation	al ager	nt with	variou	s searc	hing te	chnique	S			
CO2	Apply	y the re	easonin	g mecł	nanism	s of pr	opositi	on and	predic	ate logic	c to ager	its		
CO3	Use the	he lear	ning m	echani	sms fo	r an art	ificial	agent.						
CO4	Execu	ute dif	ferent	comm	unicati	on and	l co-op	peration	n meth	odologi	es in a	multi-		
	agent	setup.												
CO5	Know	v about	the ag	ents de	esign.									
Mapping of (COs wi	th PO:	S											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Μ	Н												
CO2		Н	Н	L	Μ									
CO3		Μ	Н	Μ										
CO4						Н		Μ			Μ	L		
CO5		Н	L		Н						Н	М		
Course Tonic	·(c)													

UNIT 1: INTRODUCTION

Agents as a paradigm for software engineering - Agents as a tool for understanding human societies- Intelligent Agent: Agents and Objects - Agents and Expert Systems - Agents as Intentional Systems - Abstract Architectures for Intelligent Agents - How to Tell an Agent What to Do

UNIT 2: LEARNING IN AGENTS

Proportional case - Handling variables and qualifiers - Dealing with intractability - Reasoning with horn clauses - Procedural control of reasoning - Rules in production – Reasoning with Higher order Logics.

UNIT 3: COMMUNICATION AND COOPERATION IN AGENTS

Software tools for ontology - OWL - XML - KIF - Speech acts - Cooperative Distributed Problem Solving - Task Sharing and Result Sharing - Result Sharing - Combining Task and Result Sharing - Handling Inconsistency - Coordination - Multi agent Planning and Synchronization

UNIT 4: DEVELOPING INTELLIGENT AGENT SYSTEMS

Situated Agents: Actions and Percepts - Proactive and Reactive Agents: Goals and Events -Challenging Agent Environments: Plans and Beliefs - Social Agents - Agent Execution Cycle -Deciding on the Agent Types - Grouping functionalities - Review Agent Coupling -Acquaintance Diagrams - Develop Agent Descriptors

UNIT 5: APPLICATIONS

Agent for workflow and business process management- Mobile agents - Agents for distributed systems - agents for information retrieval and management - agents for electronic commerce -

agent for human- computer interface - agents for virtual environments - agents for social simulation. **TEXT BOOKS:** 1. Michael Wooldridge, "An Introduction to Multi Agent Systems", Second Edition, John Wiley and Sons, 2009. 2. Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, Pearson Education, 2009. 3. Lin Padgham, Michael Winikoff, "Developing Intelligent Agent Systems: A Practical Guide", Wiley publications, 2005 **REFERENCES:** 1 Ronald Brachman, Hector Levesque, "Knowledge Representation and Reasoning", The Morgan Kaufmann Series in Artificial Intelligence 2004 2. Arthur B. Markman, "Knowledge Representation", Lawrence Erlbaum Associates, 1998 С Т L Р INT18R424 **COMPUTATIONAL LINGUISTICS** 3 1 0 4 **Prerequisite** Programming for Problem Solving (CSE18R171) Honours Elective Course Category Course Theory Type **Objective(s)** Learn about the statistical modeling and classification for NLP • Learn the basic techniques of information retrieval ٠ Know about the basics of text mining Learn the generic issues in speech processing and applications relevant to natural language generation **Course Outcome(s)** Develop applications related to speech processing. CO1 To know about the basic techniques of information retrieval. CO2 CO3 Develop applications related to text mining. Know about the generic issues in speech processing. CO4 CO5 Develop applications relevant to natural language generation Mapping of COs with POs CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 L Η CO2 Η Μ L CO3 Μ Μ Η L CO4 Η L CO5 Η L Η L **Course Topic(s) UNIT 1: NATURAL LANGUAGE PROCESSING** Linguistic background - spoken language input and output technologies - Written language input - Mathematical methods - Statistical modeling and classification - Finite state methods: Grammar for NLP - Parsing - Semantic interpretation: Semantics and logical form - Ambiguity Resolution - Other strategies for semantic interpretation - Word Sense Disambiguation - Named **Entity Recognition**

UNIT 2: INFORMATION RETRIEVAL

Information Retrieval architecture - Indexing - Storage - Compression techniques - Retrieval approaches - Evaluation - Search Engines - Commercial search Engine features - comparison -Performance measures - Document processing - NLP based Information Retrieval - Information Extraction - Vector Space Model

UNIT 3: TEXT MINING

Categorization : Extraction based Categorization - Clustering - Hierarchical clustering - Flat Clustering - Document classification and routing - Finding and organizing answers from text search - Categories and clusters for organizing retrieval results - Text Categorization - Efficient summarization using lexical chains - Pattern extraction

UNIT 4: GENERIC ISSUES

Multilinguality - Multilingual Information Retrieval and Speech Processing - Multimodality-Text and Images - Modality Integration - Transmission and storage - Speech coding - Evaluation of systems - Human factors and user acceptability.

UNIT 5: APPLICATIONS

Machine translation - Transfer metaphor - Interlingua and statistical approaches - Discourse processing - Dialog and conversational agents - Natural language generation - Surface Realization and discourse planning

TEXT BOOKS:

1. Daniel Jurafsky, James H. Martin, "Speech and Language Processing", Pearson Education, 2009.

2. Ronald Cole, J.Mariani, et.al, "Survey of the state of the art in human language Technology", Cambridge University Press, 1997.

3. Michael W.Berry, "Survey of Txt Mining: Clustering, Classification and Retrieval", Springer Verlag, 2004.

REFERENCES:

James Allen, "Natural Language Understanding", Second Edition, Pearson Education, 2008.
 Gerald J.Kowalski, Mark. T. Maybury, "Information Storage and Retrieval systems", Kluwer Academic Publishers, 2000.

3. Tomek Strzalkowski, "Natural Language Information Retrieval", Kluwer Academic Publishers, 2009.

INT18R425	E-LEARNING TECHNIQUES	L 3	T 1	P 0	C 4
Prerequisite	Nil	5	1	U	-
Course	Honours Elective				
Category					
Course	Theory				
Туре					
Objective(s)	 To gain knowledge about modern technology To be acquainted with e-Learning Tools. To learn technologies involved in e-learning a To become aware of the current business poter business 	applicat	tion deve	-	
Course Outco	ome(s)				
CO1	Work with technologies involved in e-Learning Appl	ication	s		

CO2	Desig	Design and Develop e-Learning Application												
CO3	Knov	Know about the E-Learning tools.												
CO4	Deve	lop we	b based	l E-lea	rning r	nethod	s.							
CO5	Knov	Know about the learning methodology.												
Mapping of	ping of COs with POs													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	Η				Н						Н		
CO2	М	Η	Η											
CO3	L	Η	Η											
CO4		Η	Η	Н	L						Μ	Н		
CO5			Н	Н	L						М	М		
Course Ton	io(a)											•		

UNIT 1: INTRODUCTION

Definition – Benefits – Challenges & opportunities- Developing E-learning-E-learning approachesE-learning components-Synchronous and asynchronous e-learning-Quality of e-learning-Blended learning- ROI metrics & evaluation – E-Learning cycle – Learning strategy – Business drivers – Elearning strategy.

UNIT 2: DESIGN

Identifying and organizing course content-Needs analysis- Analyzing the target audienceIdentifying course content-Defining learning objectives-Defining the course sequence-Defining instructional, media, evaluation and delivery strategies-Defining instructional methods, Defining the delivery strategy, Defining the evaluation strategy. Instructional design – Design issues – Types of learning engagements – Blended learning – Team – Infra structure – Vendor relationships.

UNIT 3: CREATING INTERACTIVE CONTENT

Multi-channel delivery – Learner support – Developing curriculum – E-learning standards – Content development process- Creating storyboards-Structure of an interactive e-lesson Techniques for presenting content-Integrating media elements-Courseware development Authoring tools-Types of authoring tools-Selecting an authoring tool.

UNIT 4: WEB BASED TRAINING

Definition – Need for web based training – Choosing an approach - Kind of courses – Technical standards – Metaphors – Course framework – registration – Running the course – resources – Feedback – Access - Collaborative learning- Moodle and other open-source solutions - E-learning methods.

UNIT 5: LEARNING METHODOLOGY

Organizing learning sequences – Common lesson structures – Creating building blocks – Designing learning sequences – Learning activities – Test and exercise learning – Planning tests – Selecting questions – Sequencing test questions – Feedback – Improve testing – Prevent cheating.

TEXT BOOKS:

1. Clark, R. C. and Mayer, R. E., " eLearning and the Science of Instruction". PHI 3rd edition, 2011

2. Means, B., Toyama, Y., and Murphy, R. "Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies", 2010 **REFERENCES:**

1 Crews, T. B., Sheth, S. N., and Horne, T. M "Understanding the Learning Personalities of

Successful On 2. Madhuri E 2011.									1			-
INT18R426	HETEROGENEOUS COMPUTING								L 3	T 1	P 0	C 4
Prerequisite	Computer Architecture and Organization (CSE17R174)											
Course	Honours Elective											
Category												
Course	Theor	ry										
Type Objective(s)		Tal	ann ah	out the	daval		ofmo	a size la	. m a mall			
Objective(s)	 To learn about the development of massively parallel systems To learn about the challenges in beterogeneous processing systems 											
	• To learn about the challenges in heterogeneous processing systems											
	 Learn to program heterogeneous systems Learn to provide effective parallel solutions for GPGPU architectures 											
Course Outco	me(s)	Leal	n to pr			C paral	101 5010	110115 1			mutul	00
COI COI	()	ify para	allelisn	n in an	applic	ation						
CO2	Identify parallelism in an application Choose the right parallel processing paradigm for a given problem											
CO3	Devise solutions for an application on a heterogeneous multi-core platform											
CO4	Program using CUDA and Open MP											
CO5	Know	v about	the eff	fective	paralle	el solut	ions fo	r GPG	PU arc	hitectur	es	
Mapping of C	COs wi		5									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	Н	L									
CO2		Н	L	Н							-	
<u>CO3</u>		14	Н		H						L	L
CO4		M	т		Н						M	L
CO5 Course Topic	(a)	Н	L								L	Н
UNIT 1: PA	< /	FI CC	MPI	TINC	RASI	76						
Importance of							threads	- Mo	dificat	ions to	von-Ne	umanr
model – ILP,	-											
memory archi					•					•		
scalability – N	lassive	e parall	elism -	GPUs	- GPC	BUs					-	-
UNIT 2: SHA								-				
OpenMP pro	0			-								tives –
Synchronizatie UNIT 3: PR					e issue	es with	caches	s - Case	e study	– Tree	Search	
GPU architec	tures -	Data	paralle	lism -	CUDA	A Basi	cs – C	UDA j	prograi	n struct	ure - T	hreads
Blocks, Grids												
UNIT 4: PR						~						
Parallel patter	rns – C	Convol	ution -	- Prefiz	x sum	– Spar	se mat	rix-vec	ctor mu	ıltiplicat	tion – I	maging
case study	нгр 4	ר י זת ר	חסמי) A N // N /		דידי א דכ	70014	C				
UNIT 5: OT Introduction t	o Oper	n CL -							Program	nming	Heterog	eneous
clusters - CUI	DA and	1 MPI										

TEXT BOOKS:

1. Peter Pacheco, —Introduction to parallel programmingl, Morgan Kauffman, 2011.

2. David B. Kirk, Wen-mei W. Hwu, —Programming massively parallel processors^{II}, Morgan Kauffman, 2013, 2nd Edition

REFERENCES:

1. Shane Cook, —CUDA Programming – A developers guide to parallel computing with GPUsl, Morgan Kauffman, 2013.

2. B.R. Gaster, L. Howes, D.R. Kaeli, P. Mistry, D. Schaa, — Heterogeneous computing with OpenCLI, Morgan Kauffman, 2012.

1 /			,						1			
INT18R427		Р	ATTE	RN RI	ECOG	NITIC	DN				P	C
Duonoquigito	Data Warehousing and Mining (INT18R353)3104											
Prerequisite												
Course	Honours Elective											
Category												
Course	Theory											
Туре												
Objective (s)	• To know about supervised and unsupervised Learning.											
	• To study about feature extraction and structural pattern recognition.											
	• To explore different classification models.											
	 To learn about fuzzy pattern classifiers and perception 											
Course Outco	ome(s)							ł	1			
CO1	Classify the data and identify the patterns											
CO2	Extract feature set and select the features from given data set.											
CO3	Learn about feature extraction and structural pattern recognition											
CO4	Know about the different classification models											
CO5	Know about fuzzy pattern classifiers and perception											
Mapping of (COs wi	ith PO	s									
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н		Н	Н	Μ		L					L
CO2	Н	Н					L					
CO3	Н		Н									
CO4	Η	L										
CO5							Μ					
Course Topic	c(s)				•			•	•	•	•	
Course Topic	:(s)											

UNIT 1: PATTERN CLASSIFIER

Overview of Pattern recognition – Discriminant functions – Supervised learning – Parametric estimation – Maximum Likelihood Estimation – Bayesian parameter Estimation – Problems with Bayes approach – Pattern classification by distance functions – Minimum distance pattern classifier.

UNIT 2: CLUSTERING

Clustering for unsupervised learning and classification – Clustering concept – C Means algorithm – Hierarchical clustering – Graph theoretic approach to pattern Clustering – Validity of Clusters.

UNIT 3: FEATURE EXTRACTION AND STRUCTURAL PATTERN RECOGNITION

KL Transforms – Feature selection through functional approximation – Binary selection - Elements of formal grammars - Syntactic description - Stochastic grammars - Structural representation.

UNIT 4: HIDDEN MARKOV MODELS AND SUPPORT VECTOR MACHINE

State Machines – Hidden Markov Models – Training – Classification – Support vector Machine – Feature Selection.

UNIT 5: **RECENT ADVANCES**

Fuzzy logic – Fuzzy Pattern Classifiers – Pattern Classification using Genetic Algorithms – Case Study Using Fuzzy Pattern Classifiers and Perception.

TEXT BOOKS:

1. M. Narasimha Murthy and V.Susheela Devi, —Pattern Recognition^{II}, Springer 2011. 2. S.Theodoridis and K.Koutroumbas, —Pattern Recognition^{II}, 4th Edition., Academic Press, 2009 **REFERENCES:**

1.Robert J.Schalkoff, —Pattern Recognition Statistical, Structural and Neural Approaches^{II}, John Wiley & Sons Inc., New York, 1992.

2. C.M.Bishop,—Pattern Recognition and Machine Learning, Springer, 2006.

3. R.O.Duda, P.E.Hart and D.G.Stork, —Pattern Classification, John Wiley, 2001.

4. Andrew Webb, -Stastical Pattern Recognition, Arnold publishers, London, 1999.

INT18R428		VISU	J ALIZ	CATIO	N TEO	CHNI(UES		L 3	T 1	P 0	C 4
Prerequisite	Artificial Intelligence (INT18R311)											
Course	Honours Elective											
Category												
Course	Theory											
Туре												
Objective (s)	• To learn about the importance of data visualization.											
	• To know the different types of visualization techniques.											
	•	• To create various visualizations										
Course Outco	ome(s)											
CO1	Compare various visualization techniques.											
CO2	Design creative visualizations											
CO3	Apply visualization over different types of data.											
CO4	Study about types of visualization.											
CO5	Create various visualizations											
Mapping of (COs wi	th PO:	5	-	-			-	-	-	-	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	Η	Μ									Μ
CO2	L	Η	Μ									
CO3	Η	Η	Μ									
CO4	L	Η										
CO5	L	Н	М									Η
Course Topic	c(s)											
UNIT 1: INT	rod	UCTIO)N									

Introduction – Issues – Data Representation – Data Presentation – Common Mistakes in design. **UNIT 2: FOUNDATIONS FOR DATA VISUALIZATION**

Visualization stages – Experimental Semiotics based on Perception Gibson_s Affordance theory – A Model of Perceptual Processing – power of visual perception-Types of Data-visualization and data objects.

UNIT 3: COMPUTER VISUALIZATION

Non-Computer Visualization – Computer Visualization: Exploring Complex Information Spaces – Fisheye Views – Applications – Comprehensible Fisheye views – Fisheye views for 3D data – Interacting with visualization

UNIT 4: MULTIDIMENSIONAL VISUALIZATION

One Dimension – Two Dimensions – Three Dimensions – Multiple Dimensions – Trees – Web Works – Data Mapping: Document Visualization – Workspaces.

UNIT 5: CASE STUDIES

Small interactive calendars – Selecting one from many – Web browsing through a key hole – Communication analysis – Archival analysis

TEXT BOOKS:

1. Colin Ware, —Information Visualization Perception for Design Margon Kaufmann Publishers, 2004, 2nd edition.

2. Robert Spence —Information visualization – Design for interaction^{II}, Pearson Education, 2 nd Edition, 2007

3. Stephen Few, —Information Dashboard Design-The Effective Visual Communication of Datal: O'Reilly Media Publisher,1st Edition 2006

REFERENCES:

1.Stuart.K.Card, Jock.D.Mackinlay and Ben Shneiderman, —Readings in Information Visualization Using Vision to think^{||}, Morgan Kaufmann Publishers. 2008