Anand Nagar, Krishnankoil, Srivilliputtur (Via), Virudhunagar (Dt) - 626126, Tamil Nadu | info@kalasalingam.ac.in | www.kalasalingam.ac.in

Ensure availability and sustainable management of water and sanitation for all

THE - Impact Rankings 2025

6.3.4 Water Conscious Building standard

Kalasalingam Academy of Research and Education adopted standard policies for water usage in the campus. We are following the Indian and International standard for drinking water supply and rain water harvesting. Pressure reducing plumbing valves. We have an active plumbing team for routine maintenance and to correct leakages of pipes. We use aerators pressure reducing nozzles at taps in order to reduce water loss. We have proximity sensor based taps at our wash areas to prevent unnecessary water loss.

Table 1: Standards for drinking and domestic use

Sl. No	Type of Building	Domestic liters per head/day	Flushing liters per head/day	Total Consumption liters per head/day	
1.	Schools/Educational institutions:				
	a) Without boarding facilities	25	20	45	
	b) With boarding facilities	90	45	135	

SCHOOL OF ADVANCED SCIENCES / DEPARTMENT OF CHEMISTRY CHEMISTRY LABORATORY

09.07.2024

Water Analysis Report

Name of the sample

: KARE Sewage Plant

Date of the sample taken : 09.07.2024

Analyzed Date

: 09.07.2024

	Parameters	Observed Values			
SI. No		Inlet	Outlet	Agriculture Irrigation Standard	
			500 KLD		
1.	pH	10.5	8.1 -	6.5 - 8.5	
2.	TDS	1250 ppm	867 ppm/	< 1000 ppm	
3.	Turbidity	10 NTU	3 NTU/	< 5 NTU	

E. N. Nepeu HoD/Chemistry 2024

TAMILNADU POLLUTION CONTROL BOARD Advanced Environmental Laboratory, Madurai (E Mail: aslmdu@tspch.gov.in, Phone Noc9452 2489497)

ROA No. 226 /AFL-MDU/2022-23, Dated: 01.03.2023

	Advanced I (E Mult: at	Environmental Laboratory, Madurai elmdu@tspch.gov.in, Phone Noc8452 2489497)
	ROA No. 226 /AFL-N	4DU/2022-23, Dated: 01.03.2023
1.	Name and address of the sender	The District Environmental Engineer Tamil Nadu Pollution Control Board Virudhunggar.
2.	Dated and Time of collection	01.02.2023, 3.50 pm, 04.00 pm
3.	Date and Time of receipt at Lab.	02.02.2023, 03.15 pm
4.	Condition of Seal, Fastening	Unsealed, Unfastened
5.	Nature and Number of Samples	2 Numbers of Sewage
6.	Date of Analysis	62.02.2023

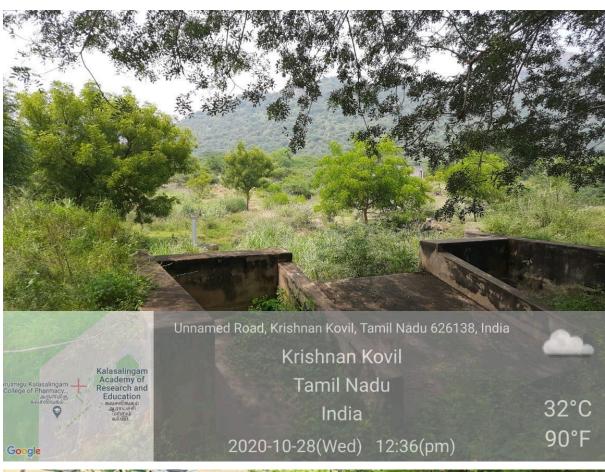
DEE Code No.	Lab code No.	Point of Collection	Whether Untreated/Treated
02-01	1653	STP Inlet	Untreated
02-02	1654	STP Outlet	Treated

Test Report

SI. No	PARAMETER	TEST METHOD	Unit	Test Samples Code Nos.	
				Lab: 1653	Lab: 1654
				DEE: 02-01	DEE: 02-02
1.	pH @ 25° C	APHA 23 th Edit 2017, Part No. 4500 H ⁴	-	6.40	7.16
2	Total Suspended Solids	APHA 23 rd Edit 2017, Part No. 2540 D	mg/L	58	10
3.	Total Dissolved Solids	APHA 23" Edi 2017, Part No. 2540 C	mg/L	1132	968
4.	800 for 3 days @ 27° C	IS 3025 (Part 44) 1993	mg/L	242	4
5.	COD	IS 3025 (Part58) 2006	mg/L	1008	32
6.	Total Solids	APHA 23 st Edi 2017, Part No. 4500- Norg B NH3 B,C, NO ₃ , NO ₃	mg/L	1190	978
7,	Ammoniacal Nitrogen	APHA 23 ^{rt} Edit 2017, Part No. 4500- NH3 B,C	mg/L	20,16	1.12
a.	Total Kjeldahl Nitrogen	APHA 23 rd Edt 2017, Part No. 4500- Norg B	mg/L	44.8	3.92
0.	Total Coliform	APHA 23 ^{rt} Edt 2017, Part No. 9221-6	MPN/ 100mi	33 × 10 ³	32
10.	Fecal Coliform	APHA 23 st Edt 2017, Part No. 9221-E	MPW 100mi	14 x 10 ³	17

Results relate only to the items tested samples.
 The reports shall not be reproduced except in fully approval of the laboratory can provide assurance that parts of a reports are not take out of context.

Checked by


J. M. D. Hen DCSO

Rainwater Harvesting System

KARE has established a sustainable water management system that includes rain water harvesting pits, trenches, check dams, canals and percolation ponds. The rainwater is harvested from the roof-top of the academic buildings and hostels. Our campus maintains separate canals for sewage water, rainwater and drinking water so there is no possibility In our campus of mixing polluted water with drinking water.

The rainwater collected is also used to recharge the groundwater through the campus's bore wells and open wells. Open wells and Borewells, which are strategically placed throughout the campus, are also used to recharge the groundwater. To meet the water needs of the campus community and also to help the nearby communities, the institution maintains open wells on its land near the campus.

Percolation pond for storage of water within the KARE campus

Rain water Storage:

The institution has a huge area for water absorption during the rainfall. The rainwater is also stored in the check dam and percolation pond. Due to this facility the groundwater level within the campus has increased. Rainwater harvesting facility is also provided in each building so as to harvest the rainwater and store them for a long period.

Recharging Percolation Ponds and Rain water harvesting pond inside the KARE campus

Rainwater Harvesting System near Homi. J. Bhabha Block / Block-II / Chemistry Lab

Rainwater Harvesting System near Dr.A.P.J. Abdulkalam Block / Academic Block-IX

Recharge Trenches near Manimandapam

Aeration Tapes are used for reduced water usage