B.Sc.Mathematics (Honours) Choice Based Credit System (CBCS)

(2021-22 onwards)

 $V = (a \oplus b)ivi = 1$ bx + c = 0

Curriculum and Syllabi

 $=1(m / Ma) \pm R_{J}$

H, SC

05 =

Department of Mathematics School of Advanced Sciences Kalasalingam Academy of Research and Education Krishnankoil, Srivilliputhur – 626 126.

CURRICULUM AND SYLLABUS

B.Sc. (HONOURS) IN MATHEMATICS Choice Based Credit System (2021-22 onwards)

DEPARTMENT OF MATHEMATICS SCHOOL OF ADVANCED SCIENCES

2021

Anand Nagar, Krishnankoil - 626126. Srivilliputtur (Via), Virudhunagar (Dt), Tamil Nadu | info@kalasalingam.ac.in | www.kalasalingam.ac.in

UNIVERSITY VISION

To be a Center of Excellence of International Repute in Education and Research.

UNIVERSITY MISSION

To Produce Technically Competent, Socially Committed Technocrats and Administrators through Quality Education and Research.

VISION OF THE DEPARTMENT

To be a global centre of excellence in mathematics for the growth of science and technology.

MISSION OF THE DEPARTMENT

• To provide quality education and research in mathematics through updated curriculum and effective teaching learningprocess.

• To inculcate innovative skills, team work and ethical practices among students so as to meet societalexpectations.

PROGRAMME OUTCOMES (PO)

POs describe what students are expected to know or to be able to do by the time of graduation from the programme. The Program Outcomes of UG in Mathematics are:

PROGRAMME OUTCOMES (POs)

- **PO1** Scientific knowledge: Gain and apply the fundamentals of mathematics, natural sciences, and applied sciences for the usage of modern scientific instrumentation, laboratory techniques and solving the challenges in modern scientific society
- **PO2 Problem analysis:** Identify, formulate, and analyze the complex scientific problems reaching substantiated conclusions.
- **PO3 Design/development of solutions:** Develop the solutions for complex problems using research-based knowledge including design of experiments, analysis and interpretation of data that meet the specified needs with appropriate consideration for the public health and safety, cultural, societal, and environmental considerations.
- **PO4** Modern tools usage: Create, select, and apply appropriate techniques, resources, and modern computing/electronic tools.
- **PO5** Social responsibility: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional practice.

- **PO6** Environment and sustainability: Understand the impact of the scientific solutions in societal and environmental contexts, and demonstrate the knowledge for the sustainable development.
- **PO7** Ethics and Values: Apply and commit towards professional ethical principles, ethical responsibilities, and norms of the scientific practice.
- **PO8** Individual and team work: Function effectively in multidisciplinary settings as an individual or leader in group.
- **PO9** Communication: Communicate effectively on complex activities with the scientific community and with the society at large, being able to comprehend and write effective reports, design documentation and make effective presentations.
- **PO10** National and International Perspectives: Contribution towards the national development and projecting our national priorities at the international level pertaining to their field of interest and future expertise.
- **PO11 Project management:** Capable of identifying/mobilizing appropriate resources required for a project, and manage a project through to completion, while observing responsible and ethical scientific conduct; and safety and laboratory hygiene regulations and practices
- **PO12** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning towards the broadest context of scientific and societal change

B.Sc. MATHEMATICS (HONOURS) - PROPOSED CURRICULUM STRUCTURE

CBCS (2021-22 onwards)

BROAD STRUCTURE

Course Types	No. of Courses	Total Credits
Foundation Core Courses	08	30
Program Core Courses (7×6=42; 7×4=28)	14	70
Generic Electives (4×4=16)	04	16
Discipline Specific Electives $(2 \times 4 = 8; 2 \times 3 = 6)$	04	14
Skill Enhancement Courses (2×3=6; 2×2=4)	04	10
Total	34	140

LIST OF FOUNDATION CORE COURSES

Course Code	Course Title	L	Т	Р	X	Hr	С
211ENG1302	English – I	4	0	0	3	7	5
211ENG1305	Professional Skills	1	0	0	3	4	2
211ENG1303/					3	6	
211TAM1301/	English – II/Tamil/Hindi	3	0	0			4
211HIN1301							
211BCA1301	Digital Skills	3	0	2	3	8	5
211ENG1306	Communicative English	3	0	2	3	8	5
211MAT1304	Basic Statistics	2	0	0	3	5	3
211CHY1101	Environmental Science	3	0	0	0	3	3
211ENG1304	Human Values	2	0	0	3	5	3
	Total	21	0	4	21	46	30

Course Code	Course Title	L	Т	Р	X	Hr	С
212MAT2101	Set Theory	6	0	0	0	6	6
212MAT2102	Differential and Integral Calculus	4	0	0	0	4	4
212MAT2103	Linear Programming	5	1	0	0	6	6
212MAT2104	Differential Equations	3	1	0	0	4	4
212MAT2105	Elementary Algebra	5	1	0	0	6	6
212MAT2106	Modern Algebra	5	1	0	0	6	6
212MAT2107	Discrete Mathematics	5	1	0	0	6	6
212MAT2108	Real Analysis	5	1	0	0	6	6
212MAT1109	Linear Algebra	3	1	0	0	4	4
212MAT1110	Differential Geometry	3	1	0	0	4	4
212MAT2111	Complex Analysis	5	1	0	0	6	6
212MAT1112	Number Theory	3	1	0	0	4	4
212MAT1113	Probability and Distribution Theory	3	1	0	0	4	4
212MAT1114	Graph Theory	3	1	0	0	4	4
	Total	56	14	0	0	70	70

LIST OF PROGRAM CORE COURSES

LIST OF GENERIC ELECTIVE COURSES

Course Code	Course Title	L	Т	Р	X	Hr	С
213PHY1301	Physics - I (IC)	3	0	2	0	5	4
213PHY1302	Physics - II (IC)	3	0	2	0	5	4
213BCA1301	C++ Programming for Mathematics	3	0	2	0	5	4
213MAT1301	Fourier Series and Applications	3	0	2	0	5	4
	Total	12	0	8	0	20	16

LIST OF DISCIPLINE SPECIFIC ELECTIVE COURSES

Course Code	Course Title	L	Т	Р	X	Hr	С
213MAT2101	Mathematical Modelling	4	0	0	0	4	4
213MAT2102	Mathematical Biology	4	0	0	0	4	4
213MAT2103	Actuarial Mathematics	4	0	0	0	4	4
213MAT2104	Cryptography	4	0	0	0	4	4
213MAT2105	Financial Mathematics	3	0	0	0	3	3
213MAT2106	Algorithmic Graph Theory	3	0	0	0	3	3
213MAT2107	Astronomy	3	0	0	0	3	3
	Total (four courses)						25

LIST OF SKILL ENHANCEMENT COURSES

Course Code	Course Title	L	Т	Р	X	Hr	С
214MAT1101	Integral Transforms (X-option)	2	0	0	3	5	3
214MAT1102	Vector Calculus (X-option)	2	0	0	3	5	3
214MAT1103	Introduction to Special Functions (X –	1	0	0	3	4	2
	option)						
214MAT1104	Basic LATEX (X-option)	1	0	0	3	4	2
	Total	6	0	0	12	18	10

SEMESTERWISE DISTRIBUTION

Page 7

Sem.	Category	Course Code	Course Title	L	Т	Р	X	Hr	C
Senie	FC	211ENG1302	English I	4	0	0	3	7	5
	FC	211ENG1305	Professional Skills	1	0	0	3	4	2
	CORE _{6c}	212MAT2101	Set Theory	5	1	0	0	6	6
Ι	CORE 4c	212MAT2102	Differential and Integral Calculus	3	1	0	0	4	4
	GE	214PHY1301	Physics – I	3	0	2	0	5	4
		I	Total	16	2	2	6	26	21
	FC	311ENG1303/		3	0	0	3	6	4
	10	211TAM1301/	English – II/Tamil/Hindi	5	v	Ŭ	5	Ŭ	
		211HIN1301							
	FC	211MAT1304	Basic Statistics	2	0	0	3	5	3
11	CORE _{6c}	212MAT2103	Linear Programming	5	1	0	0	6	6
	CORE 4c	212MAT2104	Differential Equations	3	1	0	0	4	4
	GE	214PHY1302	Physics – II	3	0	2	0	5	4
		·	Total	16	2	2	6	26	21
	FC	211ENG1306	Communicative English	3	0	2	3	8	5
	FC	211CHY1101	Environmental Science	3	0	0	0	3	3
	CORE _{6c}	212MAT2105	Elementary Algebra	5	1	0	0	6	6
ш	DSE _{3c}	213MAT2101	Mathematical Modeling	3	0	0	0	3	3
	GE	214CAS1301	C++ Programming for	3	0	2	0	5	4
			Mathematics						
	SEC	212MAT1301	Integral Transforms	2	0	0	3	5	3
			Total	19	1	4	6	30	24
	EC	011DC+1001		2	0	-	2		
	FC	211BCA1301	Digital Skills	3	0	2	3	8	5
	FC	211ENG1304	Human Values	2	0	0	3	5	3
	CORE _{6c}	212MAT2106	Modern Algebra	5	l	0	0	6	6
IV	DSE _{4c}	213MAT2102	Mathematical Biology	4	0	0	0	4	4
	GE	214MAT1301	Fourier Series and Applications	3	0	2	0	5	4
	SEC	212MA11302	Vector Calculus	2	0	0	3	<u> </u>	3
			lotal	19	I	4	9	33	25
	CORE _{6c}	212MAT2107	Discrete Mathematics	5	1	0	0	6	6
	CORE _{6c}	212MAT2108	Real Analysis	5	1	0	0	6	6
	CORE 4c	212MAT1109	Linear Algebra	3	1	0	0	4	4
V	CORE 4c	212MAT1110	Differential Geometry	3	1	0	0	4	4
	DSE _{3c}	213MAT2107	Astronomy	3	0	0	0	3	3
	SEC	212MAT1303	Introduction to Special Functions	1	0	0	3	4	2
		1	Total	20	4	0	3	27	25
		Ι							
	CORE _{6c}	212MAT2111	Complex Analysis	5	1	0	0	6	6
VI	CORE _{4c}	212MAT1112	Number Theory	3	1	0	0	4	4
	CORE 4c	212MAT1113	Probability and Distribution Theory	3	1	0	0	4	4

CORE 4c	212MAT1114	Graph Theory		3	1	0	0	4	4
DSE _{4c}	213MAT2103	Actuarial Mathematics		4	0	0	0	4	4
SEC	212MAT1304	Basic LATEX		1	0	0	3	4	2
			Total	19	4	0	3	26	24

Semester	L	Т	Р	Χ	Hr	С
Ι	16	2	0	9	27	21
II	16	2	0	9	27	21
III	19	1	2	9	31	24
IV	19	1	2	12	34	25
V	20	4	0	3	27	25
VI	19	4	0	3	26	24
Total Credits	109	14	4	45	172	140

CONSOLIDATED HOURS & CREDITS

FOUNDATION CORE COURSES

Department of Mathematics-KARE

Page 10

211ENC1205	DDOFECCIONAL CVILLO	L	Т	Р	X	Η	С					
211ENG1305	PROFESSIONAL SKILLS	1	0	0	3	4	2					
Pre-requisite: N	Nil Course Ca	Course Category: Foundation Core										
	Course Ty	Course Type : Theory Course										

Objective:

Professional skills are required for an individual to be gainfully employed for a successful and satisfied life. Professional skills are part of life skills. An individual should be able to demonstrate professional skills involving the use of intuitive, logical and critical thinking, communication and interpersonal skills, not limited to cognitive/creative skills. These skills, behavior and quality of output enhance employability.

Course Outcomes:

- **CO1:** To provide opportunity for realizing one's potential through practical experience.
- **CO2:** To increase one's knowledge and awareness of emotional competency and emotional intelligence at place of study/work.
- **CO3:** To develop interpersonal skills and adopt good leadership behavior for empowerment of self and others.
- **CO4:** To set appropriate goals, manage stress and time effectively.

CO5: To manage competency- mix at all levels for achieving excellence with ethics.

Mapping of COs and POs

CO/PO		РО									РО				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1										3	1	
CO2	3	2		1									3	1	1
CO3	3		1										3	2	
CO4	3		1	2									3		1
CO5	3	2	2	1	1								3	2	1

3 - Strong Correlation; 2- Medium Correlation; 1- Low Correlation

Course Topics:

Unit I: Career Skills

Goal Setting - Critical Thinking- Self-esteem - Social skills- Interpersonal Skills - Public Speaking

Unit II: Team skills

Communication- Active Listening - Preparing resume/CV - Interview -

Unit III: Presentation Skills

Creative Thinking - Social Cultural Etiquettes - Presentation Skills - Body Language

Unit IV: Leadership Skills

Problem Solving - Strategic Thinking Skills - Creativity

Unit V: Management Skills

Decision Making –Stress Management – Tips to relieve from stress – Yoga - Meditation

Text Books:

- 1. Kevin Retz. *The Professional Skills Handbook for Engineers and Technical Professionals*, CRC Press, Taylor and Francis Group, London, 2019.
- 2. Stephanie Lynn Slocum. *SHE Engineers*. Engineers Rising LLC; 1st edition, 2018. USA.

Reference Books:

- 1. Sangeetha Sharma and Binod Mishra. Communication Skills for Engineers and Scientists. PHI Learning, New Delhi. 2010.
- 2. Wolfgang Linden. *Stress Management: From Basic Science to Best Practice*. Sage Publications, New Delhi. 2005.

211ENC1202	ENCLISH II	L	Т	Р	X	Η	C
211ENG1505	ENGLISH II	3	0	0	3	6	4
Pre-requisite: N	Pre-requisite: Nil Course Ca					on Co	ore
	pe:	Theo	ory C	ours	e		

Objective:

The course aims to help the students achieve fluency and accuracy in English

Course Outcomes:

CO1: To introduce world-renowned poets to students.

CO2: To introduce world-renowned prose writers to students.

CO3: To make them understand the nuances of Indian plays.

CO4: To excel in Grammar.

CO5: To excel in Composition.

Mapping of COs and POs

CO/PO						Р	0							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1	1										3	1	
CO2	3	2		1									3		1
CO3	3											1	3		
CO4	3		1	2									3		2
CO5	3	1	2	1	1							1	3	2	1

3 - Strong Correlation; 2- Medium Correlation; 1- Low Correlation

Course Topics:

Unit I: Poetry

Nissim Ezekiel- Enterprise

Kamala Das - The Dance of Eunuchs

Toru Dutt - Our Casuarina Tree

Sri Aurobindo- The Tiger and the Deer

Unit II: Prose

B. K. Bhattacharya – The Golden Goddess (Assamese)

Himanshu Vohra - A Member of the Family (Gujarati)

Lalithambika Antharjanam- Daughter of Man (Malayalam)

P. Lankesh – Bread (Kannada)

Unit III: Play

Girish Karnad - Hayavadana

Unit IV: Grammar

- a) Parts of Speech
- b) Articles
- c) Sentence: Kinds, Types
- d) Tense

- f) Degrees of Comparison
- g) Conditional Clause
- h) Voice: Active & Passive
- i) Concord

Department of Mathematics-KARE

e) Reported Speech

Unit V: Composition

- a) Expansion of Proverb
- b) Letters, Email
- c) Reading Comprehension
- d) Cloze Test

- e) Precis Writingf) Note-Making
- g) Writing Dialogues
- h) Notices, Agenda, Minutes

211TAM1201	TAMIL-I	L	Τ	Р	X	Н	С
2111AN11301	இக்கால இலக்கியம்	3	0	0	3	6	4

Pre-requisite: Nil

Course Category: Foundation Core

Course Type: Theory Course

அலகு 1

மரபுக் கவிதை

சஞ்சீவி பர்வதத்தின் சாரல் – பாரதிதாசன்

அலகு 2

புதுக்கவிதை

- 1. பாரதியார் முரசு
- 2. கவிமணி பெண்கள் உரிமைகள்
- 3. கண்ணதாசன் ஒன்று எங்கள் ஜாதியே
- 4. வைரமுத்து தேசப் பாடகனுக்குத் தெருப்பாடகனின்

அஞ்சலி

- 5. சிற்பி அப்துல் கலாமின் வீணை
- 6. கல்யாண்ஜி கண்டும் காணாமல்
- 7. தமிழச்சி தங்கபாண்டியன் புன்னகையின் வன்முறை
- 8. அ. வெண்ணிலா அம்மாக் குழந்தை
- 9. சல்மா விலகிப் போகும் வாழ்க்கை
- 10. சுகிர்தராணி அம்மா
- 11. சக்தி ஜோதி மீன்களை வரைபவள்
- 12. ஷக்தி சந்தேகமேயில்லை

அலகு 3

சிறுகதை

- 1. கு.அழகிரிசாமி ராஜா வந்திருக்கிறார்
- 2. ச. தமிழ்ச் செல்வன் வெயிலோடு போய்
- 3. அம்பை வாகனம்
- 4. ஜெயமோகன் சோற்றுக் கணக்கு
- 5. புதுமைப்பித்தன் காலனும் கிழவியும்
- 6. இரா. தமிழ்நேசன் ஆதி மூதாதையரின் ஜீன்கள்
- 7. புதியமாதவி ஒரு பெரியாரிஸ்டின் தீபாவளி
- 8. சோ. தர்மன் சோகவனம்

- எஸ்.ராமகிருஷ்ணன் தனிமையின் வீட்டிற்கு ஆயிரம் ஜன்னல்கள்
- 10. வண்ணதாசன் ஒரு சிறு இசை

அலகு 4

நாவல்

கீதாரி – சு.தமிழ்ச்செல்வி

அலகு 5

நாடகம்

ஔவை – இன்குலாப்

பாடநூல்கள்

- சஞ்சீவி பர்வதத்தின் சாரல் பாரதிதாசன் (உரையாசிரியர் முனைவர் கமலா முருகன்), சாரதா பதிப்பகம், சென்னை, 2012.
- 2. கீதாரி சு. தமிழ்ச்செல்வி, நியு செஞ்சுரி புக் ஹவுஸ், சென்னை, 2008
- ஒளவை இன்குலாப், அன்னம் அகரம் பதிப்பகம், தஞ்சாவூர்.

211BCA1301	DIGITAL SKILLS	_	L 3	Т 0	P 2	X 3	H 8	C 5
Pre-requisite: N	Vil	Course Cat	ego	ry: l	Foun	datic	on Co	ore
		Course Typ	be: T	Гheo	ry C	ours	e	

Course Topics:

Unit I

Introduction to Computer - Basic Concepts - Basics of Operating System - Drive File Organization -File concepts and operations - File Directory - Working with command prompts-Internet- Concept of Internet - Applications of Internet - Connecting to the Internet, Troubleshooting-Internet Concept of Internet. Applications of Internet.Connecting to the Internet, Troubleshooting.

Unit II

Various applications of Internet - Dial up, ISDN and broadband- Introduction to Internet - addressing, Internet protocols - (TCP/IP, FTP and HTTP, IPV4, IPV6) - Instant messaging, - Use of Social Networking Sites. Word Processing Basics – I -Text Creation and manipulation,

. Tables, pictures, Adjusting Page setting, Working with styles, Understand desktop publishing **Unit III**

 $\begin{array}{l} Google \ Apps - Drive \ - \ Docs \ and \ Sheet \ - \ Forms \ and \ Meet \ - \ Microsoft \ Excel \ - \ I \ - \ Understanding \ excel \ Interface \ - \ Typing \ and \ editing \ cell \ content \ - \ Calculating \ with \ formulas \ - \ Microsoft \ Excel \ - \ II \ - \ Formatting \ a \ worksheet \ - \ Printing \ Worksheet \ - \ Creating \ Charts \end{array}$

Unit IV

Application of Digital Financial Services- Banking products - Payment Mode - Digital Signature- Basic Concepts of PowerPoint presentation -. Preparation of slides -. Digital

Emotional Intelligence -Digital Empathy - Self-Awareness and Management - Relationship Management.

Unit V

Cyber Security - Basic concepts of threats, security policies- Security mechanisms- Data Security and protection concept - .Identifying a secure web site Https, lock symbol. Security Considerations - Digital Safety - Behavioral Cyber- Risk Management. -.Content Cyber. Risk Management. - Commercial and Community Cyber.Risk Manag

211ENC1206	COMMUNICATIVE ENCLISH	L	Τ	Р	X	Η	С
211ENG1500	COMMUNICATIVE ENGLISH	3	0	2	3	8	5
Pre-requisite: N	Nil Course Ca	atego	ory:	Foun	datio	on Co	ore
	Course T	ype:	Theo	ory C	ours	e	

Objectives:

This course aims to impart better writing skills by sensitizing the learners to the dynamics of effective writing. To build up the learners confidence in oral and interpersonal communication by reinforcing the basics of pronunciation specially focusing on interviews / corporate meetings / international business travels.

Course Outcomes:

CO1: To improve and mould students interactive skills in different environments

CO2: To develop and improve students listening capacity

CO3: To enrich and understand students in speaking ability in different situations

CO4: To enhance students reading in through the text

CO5: To gain knowledge about written statements

Mapping of COs and POs

CO/PO						Р	0							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3		1										3	1	
CO2	3			2									3	1	1
CO3	3	1										1	3		
CO4	3	1	1										3		1
CO5	3	2	2									1	3	1	1

3 - Strong Correlation; 2- Medium Correlation; 1- Low Correlation

Course Topics:

Unit – I Language in Professional context

Conversation - types of Conversation - steps involved in conversation - role of body language in conversation - face-to-face conversation - telephone conversation - telephone etiquettetelephone phrases- situational conversation - advantages and disadvantages - etiquettes of conversation.

Unit – II – Listening

Listening - types - techniques of effective listening – importance of active listening- barriers of listening - steps to effective listening - listening to the audio (including lyrics, telephone calls)-listening to the seminar (understanding the questions asked in seminar)- questioning skills & techniques- types of questions- question structure.

Unit – III – Speaking

Speaking - types - importance of speaking skill - fluency - self-introduction - on the spot topic - story telling - narrate any incident –story telling- Power Point Presentation- group discussion - debate.

Unit – IV – Reading

Reading - types - strategies of effective reading - skimming - scanning - reading the text - interpret the text - reading comprehension - cloze reading.

Unit – V – Writing

Writing - types - process of writing skill – general writing & professional writing- essay writing & paragraph writing- structure of an essay- blog writing- structure of blog writing- letter writing – formal & informal writing-giving instructions.

Text Books

- 1. Cambridge English: BEC Preliminary with answers. Cambridge University Press, New Delhi 2016.
- 2. Aruna Koneru, Professional Communication, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2008.

Reference Books

- 1. Dr. A. Vimala, *Career Preparation and Talent Management*, Oviya Publication, Coimbatore
- 2. V. Shasikumar and P V Dhanija, *Spoken English*. Pub. By: Tata Mcgraw Hill, New Delhi
- 3. Mohan ,Krishna &MeeraBannerji . *Developing Communication Skills*. Macmillan India Ltd., Chennai. 2001.
- 4. Raman, Meenakshi & Sharma, Sangeetha. *Technical Communication*. Oxford University Press, 2011.

11114 T1204	DASIC STATISTICS		L	Т	Р	X	Η	С
111VIA I 1304	DASIC STATISTICS		2	0	0	3	5	3
Pre-requisite: N	Vil	Course Ca	tego	ry:	Foun	datio	on Co	ore

Course Type: Theory Course

Objective:

The objective of this course is to provide an understanding for the graduate student on statistical concepts to include data, measurements of location and dispersion, probability, correlation and regression

Course Outcomes:

Upon successful completion of this course, students will be able to

CO1: understand the concept of data and presentation of data

CO2: analyse statistical data using measures of central tendency

CO3: know the concept of various measures of dispersions

CO4: understand the basic concept of probability

CO5: calculate and interpret the correlation and regression between two variables

Mapping	of CC	Js an	d POs	5											
CO/PO						P	0							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1											3	1	
CO2	3	2	1	2									3		2
CO3	3	1	1										3	2	

Department of Mathematics-KARE

Page 16

CO4	3	1	2					3		1
CO5	3	2						3	2	

3 - Strong Correlation; 2- Medium Correlation; 1- Low Correlation

Course Topics:

Unit I: Introduction to Statistics

Definition of Statistics – Scope and Limitations of Statistics – Statistical investigation – Stages in conducting survey - Primary data vs Secondary data - Classification, Tabulation and presentation of data diagram (Simple problems on the above topics)

Unit II: Measures of Central Tendencies

Measures of Central tendency definition; Types of averages, median, mode, Arithmetic mean, Geometric mean, Harmonic mean, Quadratic mean, Relation between mean, median and mode(Simple problems on the above topics)

Unit III: Measures of Dispersion

Definition and properties of dispersion - Absolute vs relative measure of dispersion -Skewness, Kurtosis, Range, Quartile deviation, Mean deviation and Standard deviation (Simple problems on the above topics)

Unit IV: Introduction to Probability

Definitions of Probability – Axioms on probability – Conditional probability (Simple problems on the above topics)

Unit V: Correlation and Regression

Introduction - Types of correlation - Coefficient of Correlation - Rank Correlation -Regression - Principles of least square techniques - Fitting a straight line - Fitting a seconddegree parabola (Simple problems on the above topics)

Text Books:

1. Arumugam and Issac, Statistics, New Gamma Publishers, July 2013.

2. A.M. Goon. M.K.Gupta and B.Dasgupta – Fundamentals of Statistics. Vol. I & II. **Reference Books:**

1. S.C Gupta- Fundamental of statistics- Himalaya publishing house- 2014.

211CHV1101			L	Т	Р	X	H	C
21101 1101	ENVIRONMENTAL SCIENCE		4	0	0	0	3	3
Pre-requisite: H	Basic Knowledge of Chemistry	Cou	rse	Cate	gory	: Fo	unda (tion Core

at the higher secondary curse level

Course Outcomes:

On completion of the course, the students will be able to

CO1: Know the importance of environmental studies and methods of conservation of natural resources

CO2: Describe the structure and function of an ecosystem and explain the values and conservation of bio-diversity

CO3: Explain the sources, environmental effects and control measures of various types of pollutions CO4: Select the appropriate methods for waste management

CO5: Recall social issues and legal provision and describe the necessities for environmental act Mapping of COs and POs

CO/PO	РО	PSO

Department of Mathematics-KARE

15 Hours

15 Hours

15 Hours

15 Hours

Course Type: Theory Course

15 Hours

Page 17

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2		2									3		1
CO2	3	1	1										3	1	2
CO3	3	1	1	1									3	2	
CO4	2		2										3	1	
CO5	3			1									3	1	1

3 - Strong Correlation; 2- Medium Correlation; 1- Low Correlation

Course Topics:

Unit I: Natural resources

Environmental Science: Definition, scope, importance and need for public awareness - Natural resources: forest resources, water resources, land resources, mineral resources, food resources and energy resources – Alternate renewable energy resources: Anaerobic digestion, Bio-gas production – Role of alternate renewable energy resources in environmental impact – Role of an individual in conservation of natural resources.

Unit II: Ecosystem and biodiversity

Ecosystem: Concept of ecosystem and ecology, types of ecosystem, structure of ecosystem (biotic and abiotic components) - Function of an ecosystem: Energy and nutrient flow, biogeochemical cycle (C, N, S and O cycle), food chains, food webs and ecological pyramids.

Biodiversity: Definition, values of biodiversity - Hot spots of biodiversity - Threats to biodiversity -Endangered and endemic species of India - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

Unit III: Environmental pollution

Sources, consequences and control measures of air pollution, water pollution, soil pollution, thermal pollution and nuclear pollution – Environmental threats: Photochemical smog, London smog, acid rain, climate change, global warming (Greenhouse effect) and ozone layer depletion. - Pollution by trace elements (Hg, As, F, Pb and Cd): Biochemical effects, toxicology, toxicity, control and treatment -Fireworks: current environmental issues.

Unit IV: Management of environmental pollution

Causes, effects, treatments methods and control measures of solid waste, municipal waste, biomedical waste, E-waste - Removal of heavy metals by adsorption methods: Zeolite process, Ion-Exchange process, ultrafiltration and reverse osmosis - Waste minimization techniques - Cleaner technology --Disaster management: floods, earthquake, cyclone, landslides and Tsunami.

Unit V: Social issues and the environment

Water conservation, rain water harvesting- Environmental impact assessment- Precautionary and polluters pay principle- environment protection act - air (prevention and control of pollution) act - water (prevention and control of pollution) act - Population explosion - Family Welfare Programmes -Environment and human health - Human Rights - Women and Child Welfare. Green Campus: Definition, need for green campus, room for improvement (waste water recycling and solar powered appliances).

Reference Books:

- 1. E.R. Nagarajan and A. Murugan, Environmental Science, Wiley Publishers, New Delhi, 2017
- 2. S.K. Dhameja, Environmental Engineering and Management, S.K. Kataria and Sons, New Delhi, 2015.
- 3. A. Kaushik and C.P. Kaushik, Environmental Science & Engineering, New Age international Publishers, New Delhi, 2010.
- 4. Gilbert M. Masters, Introduction to Environmental Engineering and Science, Pearson Education Pvt., Ltd., 2nd edition, 2004.
- 5. Erach Bharucha, Textbook for Environmental Studies, UGC, New Delhi, 2004.

9 Hours

9 Hours

Department of Mathematics-KARE

9 Hours

9 Hours

9 Hours

211ENC1204		L	Т	Р	X	Н	С
211ENG1304	HUMAN VALUES	2	0	0	3	5	3
Pre-requisite:	Course C Co	lateg urse	ory: Typ	Fou e: T	ndat heory	ion C y Cou	Core urse

Objectives:

- To know about universal human values and understand the importance of values in individual, social circles, career path, and national life.
- To learn from case studies of lives of great and successful people who followed and practised human values and achieved self-actualization.
- To become conscious practitioners of human values.
- To realise their potential as human beings and conduct themselves properly in the ways of the world.

Course Outcomes:

After completing this course, the student will be able to:

CO1: Know about universal human values and understand the importance of values in individual, social circles, career path, and national life.

CO2: Learn from case studies of lives of great and successful people who followed and practised human values and achieved self-actualisation.

CO3: Become conscious practitioners of human values.

CO4: Realise their potential as human beings and conduct themselves properly in the ways of the world.

Mapping of COs and POs

CO/PO						Р	0						PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	2	1										3		3		
CO2	3	1	1										3				
CO3	3	1											3	1	2		
CO4	3	3											3	2	1		
CO5	3	2	1										3	3			

3 - Strong Correlation; 2- Medium Correlation; 1- Low Correlation

Course Topics:

Unit I

Values – Meaning and Definition – Types – Importance – Love & Compassion : Introduction – Meaning – Forms of Love – Love for self, Parents, Family, Friends, Spouse, Community, Nation, Humanity and other beings, both Living and Non living – Interrelation between Love & Compassion – Empathy – Sympathy – Non Violence – Practicing and non Practicing of Love and Compassion.

Unit II

Truth – Introduction – Meaning – Accuracy – Curiosity – discrement – Fairness – Fearlessness –honesty – honesty – integrity (unity of thought, word and deed) – Intution – Justice – Optimisim – Purity – Quest for knowledge – Reason - Self analysis – Sincerity – sprit of Enquiry – Synthesis – Trust – Truthfulness and determination – Practicing and Non Practicing of Truth.

Unit III

Non Violence – Introduction – Meaning – Need of Non Violence – Prerequisites for Non Violence – Ahimsa (Non Violence and Non-killing) – Values related to Non Violenck (Pshychological and Social) – Practicing and Non Practicing of Non Violence

Unit IV

Righteouseness – Introduction – Meaning – Righteouseness and dharma – Righteouseness and propriety – Values related to Righteouseness – Values related to Right Conduct or Righteouseness (Self help skills, Social skills and Ethical skills) – Practicing and Non Practicing of Righteouseness

Unit V

Peace and Services – Introduction – Meaning - Need of Peace – Peace vs harmony and balance – Attention – Calmness – Equality – Equanimity – Faithfulness – Focus – Gratitude – Happiness - humanity – Inner Silence – optimism – Patience – Selfconfidence – Self Control – Self discipline – Self Esteem – Self respect – Self Control – tolerence and Understanding – Practicing and Non Practicing of Peace

Services – Introduction and Meaning – Forms of Services – Service for Self, Parents, Family, Friend, Spouse, Community, Nation, Humanity and other beings—Living and Non-living, Persons in Distress or Disaster – Practicing and Non Practicing of Services.

Renunciation - Introduction – Meaning – Renunciation and sacrifice – Self restrain and ways of overcoming greed – Practicing and Non Practicing of Renunciation

Reference Books:

- 1. Joshi Rokeach (1973). The Nature of Human Values. New York: The Free Press
- 2. R S Nagarazan (2006) A text book of professional ethics and Human values, New age international publishers

PROGRAM CORE COURSES

Department of Mathematics-KARE

Page 21

212MAT2101	Set Theory	L	Т	Р	X	Н	С
212WA12101	Set Theory	5	1	0	0	6	6

COURSE OBJECTIVE

To qualify the students to understand the central conceptions of Sets, Relations and Number theory and apply them to solve real life problems.

COURSE OUTCOMES

Upon successful completion of this course, the students will be able to

- 1. describe memberships of sets, including the empty set, using proper notation, and decide whether given items are members and determine the cardinality of a given set.
- 2. illustrate the relations between sets regarding membership, equality, subset, and proper subset, using proper notation.
- 3. be able to recognize the properties and arithmetic of Natural Numbers and Sets.
- 4. express the Properties, operations and arithmetic of Cardinal and Ordinal Numbers.
- 5. depict the Recursions, Normal forms of Ordinals and Cardinals. Also about the models of sets.

CO / PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
CO 1		М										L
CO 2	S		S									
CO 3			М									L
CO 4	S											
CO 5		L										

CO – PO MAPPING

*S – Strong; M – Medium; L – Low

UNIT-I: Historical Introduction

Background, Paradoxes, Axiomatic method, axiomatic set theory Objections to axiomatic approach and other proposals, classes and sets, building sentences, building classes, algebra of classes, ordered pairs and cartesian Products, graphs, generalized unions and intersections, sets, Functions: Introduction, Fundamental Concepts, Properties of composite functions and inverse functions, Direct Images and Inverse Images under functions, Product of a family of classes, axiom of replacement.

UNIT-II: Relations and Functions

Relations: Introduction, Fundamental Concepts, Equivalence Relations and partitions, Pre-Image Restrictions, and quotients of Equivalence Relations, Equivalence Relations and Functions Partially ordered classes: Fundamental concepts, order preserving functions and isomorphism Distinguished elements and duality, Lattices, Fully ordered classes and

well ordered classes, isomorphism between well-ordered classes, Axiom of choice and Applications, Maximal Principles, Well-Ordering Theorems.

UNIT-III: Natural Numbers

Natural Numbers: Introduction, Elementary Properties, Finite Recursion, Arithmetic of Natural Numbers, Finite and Infinite sets: Introduction, Equipotence of Sets, Properties of Infinite Sets, Properties of Denumerable sets.

UNIT-IV: Cardinal and Ordinal Numbers

Arithmetic of Cardinal Numbers: Introduction, Operations on Cardinal Numbers, Ordering of the Cardinal Numbers, Special properties of the Infinite Cardinal Numbers, Infinite Sums and Products of Cardinals Numbers, Arithmetic of Ordinal Numbers,: Introduction, Operations on Ordinal numbers, Ordering of the Ordinal Numbers, The alephs and the continuum hypothesis, Construction of the Ordinals and Cardinals.

UNIT-V: Transfinite Recursion, Consistency and Independence

Transfinite Recursion, Properties of Ordinal Exponentiation, Normal Form, Epsilon Numbers, Inaccessible Ordinals and Cardinals, What is a Set? Models, Independence Results in Set Theory, The Question of Models of Set Theory, Properties of The Constructible Universe, The Godel Theorems.

TEXT BOOK(S)

CHARLES C. PINTER, A Book of SET THEORY, DOVER PUBLICATIONS, INC. Mineola New York, 2014.

- Unit-I: Chapters 0, 1 and 2;
- Unit-II: Chapters 3, 4 and 5;
- Unit-III: Chapters 6 and 7;
- Unit-IV: Chapters 8 and 9;
- Unit-V: Chapters 10 and 11

REFERENCE BOOK(S)

- 1. Bourbaki, N., Théorie des Ensembles, Paris, Hermann, 1963.
- 2. Fraenkel, A. A., Set Theory and Logic, Reading, Mass., Addison-Wesley, 1966.
- 3. Halmos, P., Naive Set Theory, Princeton, Van Nostrand, 1960.
- 4. Kamke, E., Theory of Sets, New York, Dover, 1950.
- 5. Monk, J. D., Introduction to Set Theory, New York, McGraw-Hill, 1969.
- 6. Quine, W. V., Mathematical Logic, Cambridge, Mass., Harvard University Press, 1951.
- 7. Rubin, J. E., Set Theory for the Mathematician, San Francisco, Holden-Day, 1966.
- 8. Slupecki, J. and L. Borkowski, Elements of Mathematical Logic and Set Theory, Oxford, Pergamon Press, 1967.
- 9. Suppes, P., Introduction to Logic, Princeton, Van Nostrand, 1957.
- 10. Suppes, P., Axiomatic Set Theory, Princeton, Van Nostrand, 1960

212MAT210	2
	_

Differential and Integral Calculus

L	Т	Р	Х	Η	С
3	1	0	0	4	4

COURSE OBJECTIVE

To introduce and acquire knowledge in basic integral and differential calculus.

COURSE OUTCOMES

Upon successful completion of this course, the students will be able to

- 1. understand the basic idea and Properties of definite integrals and indefinite integrals
- 2. know about the methods of integration and the notion of improper integrals
- 3. to identify the concept of Taylor's series, Binomial series and indeterminate expressions
- 4. have a detailed study on numerical integration and numerical solution of equations
- 5. learn about the concept of functions of several variables.

CO	PO	PO1	PO1	PO1								
/ PO	1	2	3	4	5	6	7	8	9	0	1	2
CO 1		М										L
CO 2	S											
CO 3		М										
CO 4	S											L
CO 5		L										

CO – PO MAPPING

*S - Strong; M - Medium; L - Low

UNIT-I: Fundamentals of Differentiation and Integration

Fundamental Ideas, Definite Integral, Derivative, Indefinite Integral, Simple Methods of Graphical Integration, Connection between integral and Derivative, Estimation of Integrals, Mean value Theorem of Integral Calculus, The Existence of the Definite Integral of a Continuous Function, . The Relation between the Mean Value Theorem of the Differential Calculus and the Mean Value Theorem of the Integral Calculus, Differentiation and Integration of elementary Functions, Some Special Functions, Remarks on the Differentiability of Functions, Some Special Formulae.

UNIT-II: Methods of Differentiation and Integration

Further Development Of The Integral Calculus, Method of substitution, Integration by Parts, Integration of rational and other special classes of functions, Functions which are not Integrable in Terms of Elementary Functions, Improper Integrals, The Second Mean Value Theorem of the

Integral Calculus, Representation of Curves, Applications to the Theory of Plane Curves, Some very Simple Problems in the Mechanics of a Particle, Particle sliding down a Curve, Work, Properties of the Evolute, Areas bounded by Closed Curves.

UNIT-III: Applications of Calculus

The Logarithm and the Inverse Tangent, Taylor's Theorem, Expansions of the Elementary Functions, Geometrical Applications, Example of a Function which cannot be expanded in a Taylor Series, Proof that e is Irrational, Proof that the Binomial Series Converges, Zeros and Infinities of Functions, and So-called Indeterminate Expressions.

UNIT-IV: Numerical Integration

Numerical Integration, Applications of the Mean Value Theorem and of Taylor's Theorem. The Calculus of Errors Numerical Solution of Equations, Stirling's Formula.

UNIT-V: Fundamentals of Several Variable Calculus

The Concept of Function in the Case of Several Variables, Continuity, The Derivatives of a Function of Several Variables, The Chain Rule and the Differentiation of Inverse Functions, Implicit Functions, Multiple and Repeated Integrals.

TEXT BOOK(S)

R. COURANT , DIFFERENTIAL AND INTEGRAL CALCULUS , SECOND EDITION Wiley Classics Library Edition Published 1988

- Unit-I: Chapters 2 and 3;
- Unit II: Chapters 4 and 5;
- Unit III: Chapters 6;
- Unit –IV: Chapter 7;
- Unit V: Chapter 10;

REFERENCE BOOK

1.George A. Osborne, S.B., Differential And Integral Calculus With Examples And

Applications, Revised Edition Boston, U.S.A. D. C. Heath & Co., Publishers 1906.

212MAT2104	DIFFERENTIAL EOUATIONS	L	Т	Р	Х	Η	С
		5	1	0	0	6	6

COURSE OBJECTIVE

To provide students with an introduction to the theory of ordinary differential equations and various methods of solution.

COURSE OUTCOMES

Upon successful completion of this course, the students will be able to

- 1. recognize and solve linear, separable and exact first-order differential equations
- 2. understand the methods in solving the first order higher degree differential equations.
- 3. know about the method of solving higher order differential equations
- 4. know the concept of principle of superposition and general solution.
- 5. obtain series solution of differential equations.

CO - PO MAPPING

CO	PO	РО	PO1	PO1	PO1							
/ PO	1	2	3	4	5	6	7	8	9	0	1	2
CO 1		М										L
CO 2	S											
CO 3		М										
CO 4	S											L
CO 5		L										

S - Strong; M - Medium; L - Low

UNIT-I: Basics of Ordinary Differential Equations

Basic concepts and genesis of ordinary differential equations, Order and degree of a differential equation, Differential equations of first order and first degree, Equations in which variables are separable, Homogenous equations. Exact equations. Integrating factor. Linear equations.

UNIT-II: First Order Ordinary Differential Equations

First order higher degree equations solvable for x, y and p. Clairaut's form and singular solutions. Picard's method of successive approximations and the statement of Picard's theorem for the existence and uniqueness of the solutions of the first order differential equations.

UNIT-III: Second Order Ordinary Differential Equations

Second order linear differential equation's introduction. General solution of homogenous equations. Homogeneous equation with constant coefficients- Transformations of the equation by changing the dependent/independent variable, Method of undetermined coefficients; Reduction of order, Method of variation of parameters

UNIT-IV: Theory of Linear Differential Equations

Principle of superposition for a homogeneous linear differential equation, Linearly dependent and linearly independent solutions on an interval, Wronskian and its properties, Concept of a general solution of a linear differential equation, Linear homogeneous equations of higher order with constant coefficients.

UNIT-V: Applications of Differential Equations to Special Functions

Power series method, Legendre's equation, Legendre polynomials, Rodrigue's formula, Orthogonality of Legendre polynomials, Frobenius method, Bessel's equation, Bessel

functions and their properties, Recurrence relations.

TEXT BOOK(S)

1. George F. Simmons (2017). *Differential Equations with Applications and Historical Notes* (3rd edition). CRC Press. Taylor & Francis.

REFERENCE BOOK(S)

- 1. B. Rai, D. P. Choudhury & H. I. Freedman (2013). *A Course in Ordinary Differential Equations* (2nd edition). Narosa.
- 2. Shepley L. Ross (2007). Differential Equations (3rd edition), Wiley India.

	LINEAR PROGRAMMING	L	Т	Р	Х	Η	С
212MAT2103		5	1	0	0	6	6

COURSE OBJECTIVE

To enable the students to acquire the knowledge of optimization techniques to solve the real world problems.

COURSE OUTCOMES

- 1. upon successful completion of this course, the students will be able to
- 2. understand the basic concepts of Linear Programming Problem
- 3. study about the Duality and its applications
- 4. have a detailed study on the technique of simplex method
- 5. know the concept of factorization process and problems in general form, primal and dual simplex methods.
- 6. understand the concept of game theory

CO - PO MAPPING

СО	PO	PO1	PO1	PO1								
/ PO	1	2	3	4	5	6	7	8	9	0	1	2

CO 1		М						L
CO 2	S		М					
CO 3		М					L	
CO 4	S							L
CO 5		L						

*S – Strong; M – Medium; L – Low

UNIT-I: Basics of Linear Programming

Introduction, Simplex Method, Initialization, Unboundedness, Geometry, Degeneracy, Perturbation/Lexicographic Method, Bland's Rule, Fundamental Theorem of Linear Programming, Geometry

UNIT-II: Concept of Duality in Linear Programming

Efficiency of Simplex Method, performance Measures, Measuring the size of a problem, Measuring the effort to solve a problem, Worst case analysis of the Simplex method, Duality Theory, Weak

Duality Theorem, Strong Duality Theorem, Complementary Slackness, Dual Simplex Method, Dual Based Phase-I Algorithm, Dual of a Problem in General Form, Resource Allocation Problem, Lagrangian Duality

UNIT-III: Various Solution Techniques of Linear Programming

Simplex Method in Matrix Notation, Primal Simplex Method, Dual Simplex Method, Two-Phase Method Negative Transpose Property, Sensitivity Analysis, Parametric Analysis, Homotopy Method, Parametric Self-Dual Simplex Method

UNIT-IV: Implementation Issues and beyond

Implementation Issues, LU Factorization, Exploiting Sparsity, Reusing a Factorization, Performance Tradeoffs, Updating a Factorization, Shrinking the Bump, Partial Pricing, Steepest Edge, Problems in General Form, Primal and Dual Simplex Methods

UNIT-V: Convex Analysis and Optimal Strategies

Convex Analysis, Convex Sets, Caratheodory's Theorem, Separation Theorem, Farkas' Lemma, Strict Complemaentarity, Game Theory, Matrix Games, Optimal Strategies, Minimax Theorem, Poker

TEXT BOOK(S)

- 1. Robert J. Vanderbei, Linear Programming: Foundations and Extensions, Second Edition, Copyright c 2001 by Robert J. Vanderbei. All rights reserved. Printed in the United States of America. 2001.
- Unit-I: Chapters 1,2 and 3;
- Unit-II: Chapters 4 and 5;
- Unit-III: Chapters6 and 7;
- Unit-IV: Chapters8 and 9;
- Unit-V: Chapters 10 and 11

REFERENCE BOOKS

Department of Mathematics-KARE

- 1. V. Chvátal, Linear Programming. New York: W. H. Freeman, 1983.2. Schrijver, A. *The theory of Integer and Linear programming* Addison Wesley, 1998.
- 2.Alon, N., Spencer, *The Probabilistic Method*, John Wiley, 19914.G. Strang, Linear Algebra and its Applications, 3rd ed. San Diego: Harcourt Brace Jovanovich, 1988

212MAT2105	Elementary Algebra	L	Т	Р	Х	Н	С
		3	1	0	0	4	4

Course objective:

To acquire a basic understanding of linear equations (and inequalities) in two variables, including their graphs. To solve a system of linear equations in two variables by various methods. To develop a basic ability to solve applications using the algebraic techniques covered throughout the course.

Course Outcomes:

Upon successful completion of this course, students will be able to

1. familiar with various Real number sets, including the Integers and Rational numbers.

2. acquire skill in solving first degree equations (and inequalities) in one variable.

3. acquire a basic understanding of linear equations (and inequalities) in two variables

4. solve a system of linear equations in two variables by various methods.

5. develop a basic ability to solve applications using the algebraic techniques

CO - PO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S			S								S
CO2		S									S	
CO3	S		S		S							S
CO4	S										S	
CO5	S	S	S	М								S

S- Strong; M-Medium; L-Low.

UNIT-I: Roots of Equations and constructions	(18 Hours)				
Fundamental Theorem of Algebra, Relations between Roots and Coefficients, Ima	iginary roots occur				
in pairs, Upper limit to the real roots, Integral roots, Newton's method, Rational roots, Impossible					
constructions, Analytic criterion of constructability, cubic equations with o	constructible root,				
trisection of an angle, duplication of a cube, regular polygon of seven sides a	and roots of unity,				
reciprocal equations, periods of roots of unity,					

UNIT-II: Cubic and Quartic Equations

(18 Hours)

Department of Mathematics-KARE

Reduced cubic equations, Algebraic solution of a cubic, Discriminant, Number of real roots of a cubic irreducible case, trigonometric solution of a cubic, Ferrari's solution of the quartic equation, resolven cubic, Descarte's solution of the quartic equation, symmetrical form of Descarte's solution

UNIT-III: Isolation of Real Roots and Solutions		(18 Hours)			
Purpose and Methods of Isolating the real roots, Descarte's rule of signs, Sturm's method, Sturm'					
Theorem, Simplifications of Sturm's functions, Sturm's functions for a quartic equation, Sturm'					
Theorem for multiple roots, Budan's Theorem, Horner's Method, Ne	wton's Meth	od			
UNIT-IV: Symmetric Functions		(18 Hours)			
Sigma Functions, Elementary Symmetric Functions, Fundamental Theorem, Functions symmetric in all but one root, Sums of Like Powers of the roots, Waring's Formula, Computation of Sigma Functions, Computation of Symmetric functions					
UNIT-V: Eliminations, Resultants and Discriminants		(18 Hours)			
Elimination, Resultant of Two Polynomials, Sylvestor's Method of eli elimination, General Theorem on Elimination, Discriminants, Funda	mination, Be mental Theo	ezout's method of orem of Algebra			
TEXT BOOK(S)		.			
1.LEONARD EUGENE DICKSON, FIRST COURSE IN THE THEORY OF EQUATIONS, JOHN WILEY & SONS. Inc., 1922					
Unit-I: Chapter 2, 3; U <u>nit-II: Chapter 4 ; Unit-III: Chapter 6, 7; Unit-IV: Chapter 9 ; Unit-V: Chapter 10</u>					
and Appendix (In all the chapters said above only topics mentioned	<u>here)</u>				
REFERENCE BOOKS					
L Carl Stitz, Jeff Zeager, College Algebra, Version $\sqrt{3}$ = 1.7320508075688772, June 29, 2010					

Week	Unit	Lecture Topic
1-3	Unit – 1	 Fundamental Theorem of Algebra, Relations between Roots and Coefficients, Imaginary roots occur in pairs, Upper limit to the real roots, Integral roots, Newton's method, Rational roots, Impossible constructions, Analytic criterion of constructability cubic equations with constructible root, trisection of an angle duplication of a cube, regular polygon of seven sides and roots of unity, reciprocal equations, periods of roots of unity,
4-6	Unit – 2	 Reduced cubic equations, Algebraic solution of a cubic Discriminant, Number of real roots of a cubic, irreducible case trigonometric solution of a cubic Ferrari's solution of the quartic equation, resolvent cubic Descarte's solution of the quartic equation, symmetrical form of Descarte's solution
7-9	Unit – 3	 Purpose and Methods of Isolating the real roots, Descarte's rule of signs, Sturm's method, Sturm's Theorem, Simplifications of Sturm's functions, Sturm's functions for a quartic equation, Sturm's Theorem for multiple roots,

Elementary Algebra – MAT21RXXX

		Budan's Theorem, Horner's Method, Newton's Method
		Sigma Functions, Elementary Symmetric Functions
10		Fundamental Theorem, Functions symmetric in all but one
10-	Unit – 4	root,
12		Sums of Like Powers of the roots,
		Waring's Formula, Computation of Sigma Functions
		 Computation of Symmetric functions
		 Elimination, Resultant of Two Polynomials,
13-		 Sylvestor's Method of elimination,
15	Unit – 5	 Bezout's method of elimination,
		 General Theorem on Elimination, Discriminants,
		Fundamental Theorem of Algebra

213MAT2101	Mathematical Modelling	L T P X H	Н	С			
		3	1	0	0	4	4

COURSE OBJECTIVE

The objective of this course is to make the students understand the concept of 'systems' and enable them to build mathematical models using difference equations to solve real life problems.

COURSE OUTCOMES

Upon successful completion of this course, the students will be able to

- **CO1** understand the basic ideas of 'systems' and how these systems behave.
- **CO2** model a variety of systems of interest in the social and life sciences, ranging from population models to anthropology using some relatively simple mathematics.
- **cO3** learn the standard types of first and second order linear and affine autonomous difference equations and how to set up equations.
- **CO4** analyze the stability in the simplest cases.
- **cos** know about prey-predator systems, unemployment problem and learn how to turn a second order equation in one variable into a first order system in two.

CO – PO MAPPING

CO / PO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	S											
CO2		S			М	S						
CO3	S											
CO4		S	М									

Department of Mathematics-KARE

CO5	М					S						L
*C Strong M. Madium L. Low												

*S – Strong; M – Medium; L – Low

UNIT-I: Fundamentals	(18 Hours)					
Systems and States, Idealisations, Real Numbers and Guns, Bacteria and People, How to do it						
yourself	1 /					
UNIT-II: Growth	(18 Hours)					
Bacteria, People, Money, Logistic Equation Revisited, Death and Taxes, Money, O	f Mice and Men, And					
Rats and Women, History: Truth, Lies and Radioactivity						
UNIT-III: A Menagerie of Difference Equations	(18 Hours)					
Some Definitions, Linear and Affine Difference Equations, First Order Difference	e Equations, Second					
Order Difference Equations,						
UNIT-IV: Iterates of Maps: Stability	(18 Hours)					
Cobwebs and Chaos, More about stability, Heartbeats						
UNIT-V: Higher Dimensional Systems	(18 Hours)					
Eating People is Wrong, But Killing them in War is OK, The Dismal Science, A che	ap Trick					
TEXT BOOK(S)						
 Michael D Alder, An Introduction to Mathematical Modelling, HeavenForBoc © Michael D Alder, 2001 Unit I: Chapter 1; Unit II: Chapter 2; Unit III: Chapter 3; Unit IV: Chapter 4; Ur 	oks.com, This Edition					
REFERENCE BOOKS	•					

 Gerhard Dangelmayr and Michael Kirby, MATHEMATICAL MODELING A Comprehensive Introduction, PRENTICE HALL, Upper Saddle River, New Jersey 07458

Mathematical Modelling – MAT21RXXX

Week	Unit	Lecture Topic						
1		Systems and States						
2	Unit – 1	 Idealisations, 						
3		 Real Numbers and Guns, Bacteria and People, How to do it yourself 						
4		Bacteria, People, Money,						
5	Unit – 2	Logistic Equation Revisited						
6	Unit - 2	 Death and Taxes, Money, Of Mice and Men, And Rats and Women, History: Truth, Lies and Radioactivity 						
7	Unit 2	 Some Definitions, Linear and Affine Difference Equations. 						
8	Unit - S	 First Order Difference Equations, 						

9		 Second Order Difference Equations,
10	Unit – 4	 Cobwebs and Chaos, More about stability, Heartbeats
13		 Eating People is Wrong, , The Dismal Science,
14	Unit – 5	But Killing them in War is OK
15		> A cheap Trick

212MAT1301	Integral Transforms	L	Т	Р	Х	Н	С
		3	1	0	0	4	4

COURSE OBJECTIVE

To enable the students to understand the basic concepts of continuous integral transforms such as Fourier and Laplace Transforms, discrete transform such as Z-transform and their applications.

COURSE OUTCOMES

Upon successful completion of this course, the students will be able to

- **CO1** know about Fourier transforms and its properties.
- **CO2** solve partial differential equations using Fourier Sine and Cosine transforms
- **CO3** understand Laplace transform and inverse Laplace transform with its properties
- **CO4** solve differential equations using Laplace transforms and its properties
- **CO5** implement Z- transform and its properties to solve finite difference equations.

CO – PO MAPPING

P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
S	М										
М	S										L
S	М										
М	S										L
S	М										
	PO1 S M S M S	PO1PO2SMMSSMMSSM	PO1PO2PO3SMMSSMMSSM	PO1PO2PO3PO4SMIIMSIISMIIMSIISMII	PO1PO2PO3PO4PO5SMIIIMSIIISMIIIMSIIISMIII	PO1PO2PO3PO4PO5PO6SMIIIIMSIIIISMIIIIMSIIIISMIIIISMIIII	PO1PO2PO3PO4PO5PO6PO7SMIIIIIMSIIIIISMIIIIIMSIIIIISMIIIIISMIIIII	PO1PO2PO3PO4PO5PO6PO7PO8SMIIIIIIMSIIIIIISMIIIIIIMSIIIIIISMIIIIIISMIIIIII	PO1PO2PO3PO4PO5PO6PO7PO8PO9SMIIIIIIMSIIIIIISMIIIIIIMSIIIIIISMIIIIIISMIIIIIISMIIIIII	PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10SMIIIIIIIIIIMSIIIIIIIIIIISMIIIIIIIIIIIMSIIIIIIIIIIISMIIIIIIIIIIISMIIIIIIIIIII	PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11SMIIIIIIIIIIMSIIIIIIIIIIISMIIIIIIIIIIIMSIIIIIIIIIIIMSIIIIIIIIIIISMIIIIIIIIIII

*S – Strong; M – Medium; L - Low

UNIT-I: Fourier Transforms

(18 Hours)

Department of Mathematics-KARE

Page 33

Introduction, The Fourier Integral Formulas, Definition of the Fourier Transform and Examples, Fourier Transforms of Generalized Functions, Basic Properties of Fourier Transforms, Poisson's Summation Formula, The Shannon Sampling Theorem, The Gibbs Phenomenon, Heisenberg's Uncertainty Principle.

UNIT-II: Applications of Fourier Transforms(18 Hours)Applications of Fourier Transforms to Ordinary Differential Equations, Solutions of IntegraEquations, Solutions of Partial Differential Equations, Fourier Cosine and Sine Transforms withExamples, Properties of Fourier Cosine and Sine Transforms, Applications of Fourier Cosine and SineTransforms to Partial Differential Equations, Evaluation of Definite Integrals, Applications of FourierTransforms in Mathematical Statistics, Multiple Fourier Transforms and Their Applications

UNIT-III: Laplace Transforms

Introduction, Definition of the Laplace Transform and Examples, Existence Conditions for the Laplace Transform, Basic Properties of Laplace Transforms, The Convolution Theorem and Properties o Convolution, Differentiation and Integration of Laplace Transforms, The Inverse Laplace Transform and Examples, Tauberian Theorems and Watson's Lemma

UNIT-IV: Applications of Laplace Transforms

Introduction, Solutions of Ordinary Differential Equations, Partial Differential Equations, Initial and Boundary Value Problems, Solutions of Integral Equations, Solutions of Boundary Value Problems, Evaluation of Definite Integrals, Solutions of Difference and Differential-Difference Equations, Applications of the Joint Laplace and Fourier Transform, Summation of Infinite Series, Transfer Function and Impulse Response Function of a Linear System, The Double Laplace Transform, Functional and Partial Differential Equations.

UNIT-V: Z Transforms

(18 Hours)

(18 Hours)

(18 Hours)

Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples , Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations, Summation of Infinite Series

TEXT BOOK(S)

<u>1.</u> Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, THIRD EDITION, CRC Press Taylor & Francis Group, 2015

Unit I: Chapter 2, 2.1 to 2.9; Unit II: Chapter 2, 2.10 to 2.18; Unit III: Chapter 3, 3.1 to 3.8; Unit IV: Chapter 4, 4.1 to 4.11; Unit V: Chapter 12, 12.1 to 12.7

REFERENCE BOOKS

1. Dimitris N. Chorafas, Integral Transforms and Their Applications, Chapman & Hall/CRC Taylor & Francis Group, 2007.

Week	Unit	Lecture Topic							
1	Unit – 1	 Introduction, The Fourier Integral Formulas, Definition of the Fourier Transform and Examples, Fourier Transforms of Generalized Functions, Basic Properties of Fourier Transforms, Poisson's Summation Formula, 							

Integral Transforms – MAT21RXXX

		The Shannon Sampling Theorem,
		The Gibbs Phenomenon, Heisenberg's Uncertainty Principle
4	Unit – 2	 Applications of Fourier Transforms to Ordinary Differential Equations, Solutions of Integral Equations, Solutions of Partial Differential Equations, Fourier Cosine and Sine Transforms with Examples, Properties of Fourier Cosine and Sine Transforms, Applications of Fourier Cosine and Sine Transforms to Partial Differential Equations, Evaluation of Definite Integrals, Applications of Fourier Transforms in Mathematical Statistics,
7	Unit – 3	 Multiple Fourier Transforms and Their Applications Introduction, Definition of the Laplace Transform and Examples, Existence Conditions for the Laplace Transform, Basic Properties of Laplace Transforms, The Convolution Theorem and Properties of Convolution Differentiation and Integration of Laplace Transforms, The Inverse Laplace Transform and Examples, Tauberian Theorems and Watson's Lemma
10	Unit – 4	 Solutions of Ordinary Differential Equations, Partial Differential Equations, Initial and Boundary Value Problems, Solutions of Integral Equations , Solutions of Boundary Value Problems, Evaluation of Definite Integrals, Solutions of Difference and Differential-Difference Equations, Applications of the Joint Laplace and Fourier Transform Summation of Infinite Series, Transfer Function and Impulse Response Function of a Linear System, The Double Laplace Transform, Functional and Partial Differential Equations.
13	Unit – 5	 Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples , Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations, Summation of Infinite Series

.....
212MAT2106	Modern Algebra	L	Т	Р	Х	Н	С
	O	3	1	0	0	4	4

Course Objective:

To enable the students to acquire the basic knowledge in groups, rings and fields.

Course Outcome(s):

Upon successful completion of this course, students will be able to

- CO1 discuss about the concepts such as morphisms, cosets and types of groups.
- CO2 utilize the concepts of symmetric groups and free groups.
- CO3 understand the concept of linear groups.
- CO4 describe the concepts of Rings and Ideals
- CO5 demonstrate the concept of fields and finite fields.

CO – PO MAPPING:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	S	Μ										L
CO2	S	S	S									
CO3	S		М									L
CO4	S											
CO5	S	L										L

*S – Strong; M – Medium; L – Low

UNIT-I: Fundamentals of Group Theory		(18 Hours)						
Groups and Subgroups, Homomorphisms, Isomorphisms, Cosets, M	Iodular Ai	rithmetic, Product						
Groups, Quotient Groups								
UNIT-II: Symmetric Groups and Free Groups		(18 Hours)						
Cayley's Theorem, The Class Equation, p-Groups, The Class Equat	ion of the	Icosahedral Grou						
Conjugation in the Symmetric Group, Normalizers. The Sylow Theorems Groups of Order 1 2 , Th								
Free Group Generators and Relations, The Todd-Coxeter Algorithm								
UNIT-III: Linear Groups		(18 Hours)						
The Classical Groups, Interlude: Spheres, The Special Unitary Group	SU ₂ , The I	Rotation Group SO						
One-Parameter, Groups, The Lie Algebra, Translation in a Group, Norn	nal Subgro	ups of S L ₂						
UNIT-IV: Ring Theory		(18 Hours)						
Rings, Polynomial Rings, Ideals, Quotient Rings, Product Rings, Integra	al Domains	, Fraction Fields,						
Maximal Ideals								
UNIT-V: Field Theory		(18 Hours)						

Fields, Algebraic and Transcendental elements, Degree of a Field Extension, Construction with Ruler and Compass, Symbolic Adjunction of Roots, Finite Fields

TEXT BOOK(S)

Michael Artin, Algebra, Prentice Hall, 1991.

Unit-I: Chapter 2; U<u>nit-II: Chapter 7; Unit-III: Chapter 9 ; Unit-IV: Chapter 11; Unit-V: Chapter 15</u> **REFERENCE BOOKS**

1.Jacobson, N., *Basic Algebra I, II*, Hindustan Publishing Corporation, 1991. R. Halmos, *Finite-dimensional Vector Spaces*, Springer.2000

2.P.

Week Unit Lecture Topic 1 Groups and Subgroups, Homomorphisms, Isomorphisms 2 Unit – 1 Cosets, Modular Arithmetic 3 Product Groups, Quotient Groups Cayley's Theorem, The Class Equation, p-Groups, The Class \geq 4 Equation of the Icosahedral Group, Conjugation in the Symmetric Group, Normalizers. The \geq 5 Unit – 2 Sylow Theorems Groups of Order 1 2 > The Free Group Generators and Relations, The Todd-6 Coxeter Algorithm > The Classical Groups, Interlude: Spheres, One-Parameter, 7 Groups, The Special Unitary Group SU₂, The Rotation Group SO₃, 8 \geq Unit – 3 \geq The Lie Algebra, Translation in a Group, Normal Subgroups 9 of ► SL₂ **Rings**, Polynomial Rings \triangleright ➢ Ideals, Ouotient Rings 10 Product Rings Unit – 4 **Integral Domains** \geq Fraction Fields 11 Maximal Ideals 12 \geq 13 ➢ Fields, Algebraic and Transcendental elements > Degree of a Field Extension, Construction with Ruler and 14 Unit – 5 Compass Symbolic Adjunction of Roots, Finite Fields 15

Modern Algebra – MAT21RXXX

214MAT1301	Fourier Series and Applications	L	Т	Р	Х	Н	С
		3	1	0	0	4	4

Course objective:

Students will be familiar with Fourier series and their applications and be notionally aware of their convergence. Students will know how to derive the heat, wave and Laplace's equations in several independent variables and to solve them. They will begin the study of uniqueness of solution of these important PDEs.

Course Outcomes:

Upon successful completion of this course, students will be able to

- 1. represent continuous-time periodic signals using Fourier series.
- 2. understand the properties of Fourier series.
- 3. understand the relationship between Fourier series and linear time-invariant system.
- 4. write given function in terms of sine and cosine terms in Fourier series and also to get knowledge in Fourier transforms.
- 5. determining the Fourier series of a discrete time periodic signal.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S	М									S
CO2		S		S						М		
CO3												
CO4	S	S						S			S	
CO5	S	S									S	

CO - PO MAPPING

S- Strong; M-Medium; L-Low.

UNIT-I: Introduction to Fourier Series

Heuristic Derivations, Frequencies, Coefficients, Defining the Trignometric Fourier Series, Computing the Fourier Coefficients, Partial Sums and Graphing, Basic Fourier Series, The Sine Series, Cosine Series, Using these series,

UNIT-II: Complex Fourier Series

Derivation, Notation and Terminology, Computing the Coefficients, Partial Sums, Convergence and Fourier's Conjecture, Pointwise Convergence, Uniform and Non uniform Approximations, Convergence ir Norm, The Sine and Cosine Series, Basic Theorem on Pointwise Convergence, Convergence for a Particular Saw Function, Convergence for Arbitrary Saw Functions, Derivatives and Integrals of Fourier Series Differentiation of Fourier Series, Differentiability and Convergence . Integrating Periodic Functions and Fourier Series.

(18 Hours)

(18 Hours)

UNIT III. Foundary Contacts One Dimensional Works Foundation		(10 Uaura)						
UNIT-III: Fourier Series to One Dimensional wave Equation		(18 Hours)						
Introduction, The One-Dimensional Wave Equation, Boundary Conditions	, Initial Cond	ditions, Introductior						
to the Solution of the Wave Equation, The Fixed End Condition String, Th	e Free End	Conditions Problem						
The Mixed End Conditions Problem.								
UNIT-IV: More About One Dimensional Wave Equation		(18 Hours)						
Generalizations on the Method of Separation of Variables, Sturm-Liouvill	e Theory, Th	ne Frequency						
Domain Interpretation of the Wave Equation, The D'Alembert Solution of	the Wave E	quation, The Effect						
of Boundary Conditions								
UNIT-V: Fourier Series to Two-Dimensional Wave Equation		(18 Hours)						
Introduction. The Rigid Edge Problem, Frequency Domain Analysis, Time	e Domain Ar	alysis, The Wave						
Equation in Circular Regions, Symmetric Vibrations of the Circular Drum	, Frequncy D	Oomain Analysis of						
the Circular Drum, Time Domain Analysis of the Circular Membrane								
TEXT BOOK(S)								
1. KENNETH B. HOWELL, Principles of Fourier Analysis, CHAPMAN & HA	LL/CRC, 20	01						
Unit-I: Chapter II, Sections 8 to 10; Unit-II: Chapter II, Sections 12 to 15;								
2. Arthur L. Schoenstadt, An Introduction to Fourier Analysis Fourier Ser	ies, Partial D	Differential						
Equations and Fourier Transforms, c 1992 - Professor Arthur L. Schoenst	adt, 1992							
Unit-III: Chapter 3, Sections 3.1 to 3.8; Unit-IV: Chapter 3, Sections 3.9 to 3.13 ; Unit-V: Chapter 4								
REFERENCE BOOKS								
1.Murray R.Spiegel, Schaum's outline of Theory and Problems of Fourier Analysis with Applications to								
boundary Value Problems, McGRAW Hill Book Company, 1974								

Fourier Series and Applications - MAT21RXXX

Week	Unit	Lecture Topic
1=3	Unit – 1	 Heuristic Derivations, Frequencies, Coefficients, Defining the Trignometric Fourier Series Computing the Fourier Coefficients, Partial Sums and Graphing, Basic Fourier Series, The Sine Series, Cosine Series, Using these series.
4-6	Unit – 2	 Derivation, Notation and Terminology, Computing the Coefficients, Partial Sums, Convergence and Fourier's Conjecture, Pointwise Convergence, Uniform and Non uniform Approximations, Convergence in Norm, The Sine and Cosine Series, Basic Theorem on Pointwise Convergence, Convergence for a Particular Saw Function, Convergence for Arbitrary Saw Functions, Derivatives and Integrals of Fourier Series, Differentiation of Fourier Series, Differentiability and Convergence Integrating Periodic Functions and Fourier Series.
7-9	Unit – 3	 Introduction, The One-Dimensional Wave Equation, Boundary Conditions, Initial Conditions, Introduction to the Solution of the Wave Equation, The Fixed End Condition String,

Department of Mathematics-KARE

		The Free End Conditions Problem,
		The Mixed End Conditions Problem.
		Generalizations on the Method of Separation of Variables
10-		 , Sturm-Liouville Theory,
12	Unit – 4	The Frequency Domain Interpretation of the Wave Equation
		The D'Alembert Solution of the Wave Equation,
		The Effect of Boundary Conditions
		Introduction
		The Rigid Edge Problem,
13-		Frequency Domain Analysis, Time Domain Analysis,
15	Unit – 5	The Wave Equation in Circular Regions,
		Symmetric Vibrations of the Circular Drum,
		Frequncy Domain Analysis of the Circular Drum,
		Time Domain Analysis of the Circular Membrane

213MAT2102	Mathematical Biology	L	Т	Р	Х	Н	С
		3	1	0	0	4	4

COURSE OBJECTIVE

The objective of this course is to make the students understand the concept of "Population dynamics" using systems of nonlinear Ordinary and Partial Differential equations. Also enable students to build mathematical models on transmission mechanisms of infectious disease and its control strategies. It introduces the fundamental concept of modelling some biological phenomenon using mathematical tools.

COURSE OUTCOMES

Upon successful completion of this course, the students will be able to

- **CO1** understand the basic framework for 'Population dynamics'
- **CO2** model a variety of infectious diseases transmission based on their characteristics.
- **CO3** learn posing control strategies to eradicate an infectious disease also predicts the future course of the same.
- **CO4** analyse the underlying transmission mechanism and asymptotic stability criterion of the steady states of the proposed epidemic models.
- **CO5** know about epidemic models, law of mass actions, dynamic Programming etc.

CO – PO MAPPING

CO / PO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	S											
CO2			S		М							

CO3	М	S	S				
CO4	М	S					
CO5		S					

*S – Strong; M – Medium; L – Low

UNIT-I: Age-structured Populations		(18 Hours)							
Malthusian Growth Model, Logistic Equation, A Model of Species Cor	npetition, 7	The Lotka-Volterra							
Predator-prey Model, Fibonacci rabbits, Golden Ratio ϕ , Fibonacci Numbers in a sun flower, rabbits									
are an age-structured population, Discrete and Continuous Age-Structured populations, The Brood									
size of a hermaphroditic worm									
UNIT-II: Infectious Disease Modeling		(18 Hours)							
SI Model, SIS Model, SIR epidemic disease model, Vaccination, SIR End	demic disea	se model, Evolution							
of Virulence									
UNIT-III: Population Genetics (18 Ho									
Haploid Genetics, Diploid Genetics, Frequency Dependent Selection,	Linkage E	quilibrium, Random							
Genetic Drift									
UNIT-IV: Bio Chemical Reactions		(18 Hours)							
Law of Mass Action, Enzyme Kinetics, Competitive Inhibition, Alloster	ric Inhibitic	on, Cooperativity							
UNIT-V: Sequence Alignment		(18 Hours)							
DNA, Brute Force Alignment, Dynamic Programming, Gaps, Local Alig	nments, So	ftware							
TEXT BOOK(S)									
1. Jeffrey R. Chasnov, Mathematical Biology, Copyright \circ c 2009–2016 by Jeffrey Robert Chasnov									
1Unit-I: Chapter 1, 2; U <u>nit-II: Chapter 4 ; Unit-III: Chapter 5; Unit-IV: Chapter 6 ; Unit-V: Chapter 7</u>									
REFERENCE BOOKS									
1. J.D. Murray, Mathematical Biology, Third Edition, Springer 20	01								

Mathematical Biology - 213MAT2102

Week	Unit	Lecture Topic
1=3	Unit – 1	 Malthusian Growth Model, Logistic Equation, A Model of Species Competition, The Lotka-Volterra Predator-prey Model, Fibonacci rabbits, Golden Ratio φ, Fibonacci Numbers in a sun flower, rabbits are an age- structured population, Discrete and Continuous Age-Structured populations, The Brood size of a hermaphroditic worm
4-6	Unit – 2	 SI Model, SIS Model, SIR epidemic disease model, Vaccination,

			SIR Endemic disease model,							
			\triangleright	Evolution of Virulence						
			\triangleright	Haploid Genetics,						
-			\triangleright	Diploid Genetics,						
7-9	7-9 Unit – 3		\triangleright	Frequency Dependent Selection,						
			\succ	Linkage Equilibrium,						
			\triangleright	Random Genetic Drift						
			\triangleright	Law of Mass Action,						
10-	TT 24		\triangleright	Enzyme Kinetics,						
12	Unit	2-4	\triangleright	Competitive Inhibition,						
12			\triangleright	Allosteric Inhibition,						
			\triangleright	Cooperativity						
			\triangleright	DNA,						
10			\triangleright	Brute Force Alignment,						
13-	Unit	: - 5	\triangleright	Dynamic Programming,						
15			\triangleright	Gaps,						
			\succ	Local Alignments,						
			\triangleright	Software	-					
					L	Т	Р	Х	Н	С
212MA	T1302			Vector Calculus			0	0	4	
					3	1	0	0	4	4

Course Objective(s):

To enable the students to understand the concepts of Curvature, differentiation and integration in vector calculus, irrotational and solenoidal fields, line and surface integrals and application's to Green's theorem, Gauss Divergence theorem and Stoke's theorem.

Course Outcome(s):

Upon successful completion of this course, students will be able to

- **CO1:** understand the concepts of derivatives of vectors, del operator ∇ , the hodograph, integration with applications to kinematics.
- **CO2:** learn about divergence and curl of vector field, Taylor's theorem for vector function, applications to hydromechanics
- **CO3:** solve problems using Green's theorem, Gauss theorem and Stoke's theorem and learn about "pot"
- **CO4:** learn about "new," "lap," "max" and other important operators and relation between them
- **CO5:** solve the problems on application of vector calculus.

CO – PO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	S	М	М	L	L	L	L	L	L	L	L	L
CO2	S	М	М	М	М	L	L	L	L	L	L	L

CO3	S	М	S	Μ	Μ	Μ	L	L	L	L	L	L
CO4	S	S	S	Μ	Μ	L	L	L	L	L	L	L
CO5	S	S	S	Μ	Μ	L	L	L	L	L	L	L

S- Strong; M-Medium; L-Low.

UNIT-I: Differential Calculus of Vectors		(18 Hours)
derivatives and differentials of vector functions with respect to a	scalar varia	ble, curvature and
torsion of gauche curves, kinematics of a particle, the hodograph, the	instantaneo	ous axis of rotation,
integration with applications to kinematics, scalar functions of p	osition in	space, the vector
differentiating operator, $ abla$ the scalar operator, A. $ abla$		
UNIT-II: More on Differential Calculus of Vectors		(18 Hours)
vector functions of position in space, divergence $ abla$. And the curl $ abla imes$, i	interpretati	on of the
divergence ∇ . interpretation of the curl $\nabla \times$, laws of operation of ∇ , ∇	. , $ abla imes$, the p	artial application
of $ abla$. expansion of a vector function analogous to taylor's theorem. A	Applications	to hydromechanics
the differentiating operators of the second order, geometric interpre	tation of lap	olace's operator ∇
as the dispersion		
UNIT-III: Integral Calculus of Vectors		(18 Hours)
line integrals of vector functions with applications, gauss's theorem,	stokes theo	rem, converse
of stokes's theorem with applications, transformations of line , surfac	e, and volu	ne integrals, Green'
theorem, remarks on multiple-valued functions, potential. the integr	ating opera	tor
"pot", commutative property of pot and ∇ , remarks upon the forego	oing	
UNIT-IV: More on Integral Calculus of Vectors		(18 Hours)
the integrating operators "new," " lap , " " ma x, relations between th differentiating operators, the potential "pot " is a solution of Poisson irrotational parts of ' a vector function . certain operators and their i Newtonians , Laplacians , and Maxwellians, certain boundary value t	e integratin 1's equation nverse, mut theorems	g and 1, solenoidal and ual potentials ,
UNIT-V: Applications of Vector Calculus		(18 Hours)
quadric surfaces, the propagation of light in crystals, variable dyadi harmonic vibrations and bivectors.	cs, curvatu	re of surfaces
TEXT BOOK(S)		
1. Edwin B Idwel L Wilso N, Vector Analysis, New York: Charles S Arnold 1 9 0 1,	cribner 'S Sc	ons London : Edward
Unit I: Chapter 3, Arts 55 to 68; Unit II: Chapter 3, Arts 69 to 78; Unit	III: Chapter	4, Arts 79 to 89; Unit
IV: Chapter 4, Arts 90 to 96; Unit V: Chapter 7, Arts 136 to 162;		_
KEFEKENLE BUUKS 1 Murray D Spiegel Vector Analysis and an Introduction to Tana	or Analysis	CUALIM's Comiss

VECTOR CALCULUS – 212MAT1302

Week	Unit	Lecture Topic
1		derivatives and differentials of vector functions with respect to a scalar variable
2	Unit – 1	curvature and torsion of gauche curves, kinematics of a particle, the hodograph, the instantaneous axis of rotation,
3		➤ integration with applications to kinematics, scalar functions of position in space, the vector differentiating operator, ∇ the scalar operator, A.∇
4		➤ vector functions of position in space, divergence ∇. And the curl ∇×,
5		interpretation of divergence ∇. interpretation of the curl ∇×, laws of operation of ∇, ∇., ∇× "
6	Unit – 2	 the partial application of V. expansion of a vector function analogous to taylor's theorem. Applications to hydromechanics, the differentiating operators of the second order, geometric interpretation of laplace's operator V as the dispersion
7		line integrals of vector functions with applications, gauss's theorem, stokes theorem
8	Unit – 3	 converse of stokes's theorem with applications, transformations of line, surface, and volume integrals
9		Green's theorem, remarks on multiple-valued functions, potential. the integrating operator "pot", commutative property of pot and ∇, remarks upon the foregoing
10	Unit - 4	 the integrating operators "new," "lap," "max, relations between the integrating and differentiating operators, the potential "pot" is a solution of Poisson's equation
11	0mt - 4	 solenoidal and irrotational parts of 'a vector function. certain operators and their inverse.
12		 mutual potentials, Newtonians, Laplacians, and Maxwellians, certain boundary value theorems
13		 quadric surfaces, the propagation of light in crystals
14	Unit – 5	 variable dyadic, curvature of surfaces
15		harmonic vibrations and bivectors.

212MAT2107	Discrete Mathematics	L	Т	Р	Х	Н	С
		3	1	0	0	4	4

Course Objective:

To enable the students to acquire the basic knowledge in propositional calculus, predicate calculus, counting techniques and Boolean algebra.

Course Outcome(s):

Upon successful completion of this course, students will be able to:

- CO1 construct simple mathematical proof and possess the ability to verify them
- CO2 apply basic counting techniques to solve combinatorial problems
- CO3 understand the concepts of recurrence relations, generating functions, inclusion and exclusion principles.
- CO4 apply the concepts of Boolean functions in switching theory
- CO5 construct simple mathematical proof and possess the ability to verify them.

CO / PO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	Μ		S								S
CO2	S	S	S	S								L
CO3	S		м	S								L
CO4	S			S								L
CO5	S	L		S								М

CO – PO MAPPING:

*S – Strong; M – Medium; L – Low

UNIT-I: Propositional Calculus	(12 Hours)			
Propositional Logic, Applications of Propositional Logic, Pr	opositional Equivalences, Predicates and			
Quantifiers, Nested Quantifiers, Rules of Inference, Intro	oduction to Proofs, Proof Methods and			
Strategy				
UNIT-II: Counting	(12 Hours)			
The Basics of Counting, The Pigeonhole Principle, Per Coefficients and Identities, Generalized Permutations and and Combinations.	rmutations and Combinations, Binomial Combinations, Generating Permutations			
UNIT-III: Advanced Counting Techniques	(12 Hours)			
Applications of Recurrence Relations, Solving Linear R	ecurrence Relations, Divide-and-Conquer			
Algorithms and Recurrence Relations, Generating Funct	ions, Inclusion–Exclusion, Applications of			
Inclusion–Exclusion				
UNIT-IV: Boolean Algebra	(12 Hours)			
Boolean Functions, Representing Boolean Functions, Logic	Gates ., Minimization of Circuits			
UNIT-V: Predicate Calculus	(12 Hours)			

Syntax of Predicate Logic, Free and Bound Variables, Semantics of Predicate Logic, A simpler notation, Tableaus, Soundness, Completeness, Full Predicate Logic, Semantics, Tableaus, Soundness, Completeness, Peano Arithmetic.

TEXT BOOK(S)

1.Kenneth H. Rosen, Discrete Mathematics and Its Applications, Published by McGraw-Hill, 1981 Unit I: Chapter 1; Unit II: Chapter 6; Unit III: Chapter 8; Unit IV: Chapter 12;

2. J. Keisler, K. Kunen, T. Millar, A. Miller, J. Robbin, Mathematical Logic and Computability, https://people.math.wisc.edu/~miller/res/book.pdf Feb 2006.

Unit V: Chapter 2 to 3

REFERENCE BOOK(S)

- **1.** J.P. Tremblay and R. Manohar, Discrete Mathematical Structure and Its Application to Computer Science, TMG Edition, Tata-Mcgraw Hill Publishing Company, 2001
- **2.** Norman L. Biggs, Discrete Mathematics, Oxford Publications, Tenth Impression 2010.
- **3.** Alan Doerr and Kenneth Levasseur, Applied Discrete Structures for Computer science, Asian Student Edition, Computer Science Series, 1999, Galgotia Publications Pvt Ltd.
- **4.** L.Lovasz, J.Pelikan, K.Vesztergombi, Discrete Mathematics, Elementary and Beyond, Springer International Edition, 2001

Week	Unit	Lecture Topic
1		Propositional Logic ,
		 Applications of Propositional Logic,
2	Unit – 1	 Propositional Equivalences, Predicates and Quantifiers ,
3		▶ Nested Quantifiers, Rules of Inference, Introduction to
		Proofs, Proof Methods and Strategy
4		The Basics of Counting,
4		The Pigeonhole Principle,
		Permutations and Combinations
1	Unit – 2	 Binomial Coefficients and Identities,
5		 Generalized Permutations and Combinations,
		Generating Permutations and Combinations .
6		Monotone and Inverse Functions
7		 Applications of Recurrence Relations,
		Solving Linear Recurrence Relations
8	Unit – 3	Divide-and-Conquer Algorithms and Recurrence Relations
		Generating Functions
9		Inclusion–Exclusion,
-		Applications of Inclusion–Exclusion
10		Boolean Functions,
10	Unit – 4	 Representing Boolean Functions,
		\triangleright

Discrete Mathematics – 212MAT2107

Department of Mathematics-KARE

11		Logic Gates							
12		Minimization of Circuits							
13		 Languages and Grammars, Finite-State Machines with Output, , 							
14	Unit – 5	Finite-State Machines with No Output							
15		Language Recognition, Turing Machines							

212MAT2108	Real Analysis	L	Т	Р	Х	Н	С
		3	1	0	0	4	4

Course Objective:

To enable the students to acquire the essential knowledge on Real Numbers, Limits and Continuity, Derivatives and Integrals, Sequence and Series, Lebesgue Integrals.

Course Outcome(s).

Upon successful completion of this course, students will be able to:

- **CO1** describe the fundamental properties of the real numbers that underpin the formal development of real analysis.
- CO2 demonstrate the concept of limits, continuity, uniform continuity, monotone and inverse functions.
- **CO3** implement the concepts of Mean Value theorem, Taylor's theorem, integral and Darboux integral.
- co4 discuss the concepts of of convergence and divergence for the given sequence and series.
- cos establish the concepts of open sets and closed sets of metric spaces to compact sets.

CO / PO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	М										L
CO2	S	S										L
CO3	S	S		М								L
CO4	S	S		М								L
CO5	М	L										L
*S – Stro	*S – Strong; M – Medium; L – Low											

CO – PO MAPPING:

UNIT-I:Real Numbers

(12 Hours)

Department of Mathematics-KARE

Real Numbers: The Algebraic and Order Properties of R, Absolute Value and the Real Line, The Completeness Property of R, Applications of the Supremum Property, Intervals, SEQUENCES AND SERIES, Sequences and Their Limits, Limit Theorems, Monotone Sequences, Subsequences and the Bolzano-Weierstrass Theorem, The Cauchy Criterion, Properly Divergent Sequences, Introduction to Infinite Series

UNIT-II: Concept of Limit and Functions	(12 Hours)
Limits of Functions, Limit Theorems, Some Extensions of	the Limit Concept, Continuous Functions,
Combinations of Continuous Functions, Continuous Fur	ctions on Intervals, Uniform Continuity,
Continuity and Gauges , Monotone and Inverse Functions	
UNIT-III: Concept of Derivative and Integrals	(12 Hours)
The Derivative, The Mean Value Theorem, L'Hospital's Ru	iles, Taylor's Theorem, Riemann Integral,
Riemann Integrable Functions, The Fundamental Theor	em, The Darboux Integral, Approximate
Integration	
UNIT-IV: Sequences and Series of Functions	(12 Hours)
SEQUENCES OF FUNCTIONS, Pointwise and Uniform (convergence, Interchange of Limits, The
Exponential and Logarithmic Functions, The Trigonomet	ric Functions, INFINITE SERIES, Absolute
Convergence, Tests for Absolute Convergence, Tests f	or Non-absolute Convergence, Series of
Functions	
UNIT-V: Beyond Riemann Integrals	(12 Hours)
THE GENERALIZED RIEMANN INTEGRAL, Definition and	Main Properties, Improper and Lebesgue
Integrals, Infinite Intervals, Convergence Theorems, A GL	IMPSE INTO TOPOLOGY, Open and Closed
Sets in R, Compact Sets, Continuous Functions, Metric Spa	ces
TEXT BOOK(S)	
Robert G. Bartle Donald R. Sherbert, INTRODUCTION TO F	EAL ANALYSIS, Fourth Edition, John
Wiley & Sons, Inc. 2011.	
Unit I: Chapter 2: Unit II: Chapters 4, 5; Unit III: Chapters 6	o, 7; Unit IV: Chapters 8, 9; Unit V: Chapter
DEEEDENCE BOOK(S)	
REFERENCE BOOK(5)	
1. R. Goldberg, Methods of Real Analysis, John Wiley and S	'ons 1976.
2. Rudin, <i>Principles of Mathematical Analysis</i> . McGraw-Hi	
3. L. Cohen and Ehrlick. Structure of the Real Number Sys	tem. New York, D. Van Nostrand Reinhold

- L. Cohen and Ehrlick, Structure of the Real Number System. New York, D. Van Nostrand Reinhold, 1963
- 4. T. Apostol, Calculus, vols I and II, John Wiley and Sons, 1967/1969

REAL ANALYSIS – 212MAT2108

Week	Unit	Lecture Topic
1	Unit – 1	 The Algebraic and Order Properties of R, Absolute Value and the Real Line, The Completeness Property of R Applications of the Supremum Property, Intervals

2		 Sequences and Their Limits, Limit Theorems, Monotone Sequences, Subsequences and the Bolzano-
		Weierstrass Theorem
3		The Cauchy Criterion, Properly Divergent Sequences,
-		Introduction to Infinite Series
		Limits of Functions, Limit Theorems, Some Extensions of the
4		Limit Concept
		Continuous Functions, Combinations of Continuous
	Unit – 2	Functions
5		Continuous Functions on Intervals, Uniform Continuity
		Continuity and Gauges
6		Monotone and Inverse Functions
		The Derivative, The Mean Value Theorem,
7		L'Hospital's Rules
		> Taylor's Theorem
2	Unit – 3	Riemann Integral
8		Riemann Integrable Functions
		The Fundamental Theorem,
9		The Darboux Integral
		Approximate Integration
		Pointwise and Uniform Convergence
10		Interchange of Limits, The Exponential and Logarithmic
		Functions,
	Unit – 4	The Trigonometric Functions
11		INFINITE SERIES, Absolute Convergence,
12		Tests for Absolute Convergence
		Tests for Non-absolute Convergence, Series of Functions
10		> THE GENERALIZED RIEMANN INTEGRAL , Definition and
13		Main Properties
	Unit - 5	Improper and Lebesgue Integrals
14	Unit - J	Infinite Intervals, Convergence Theorems,
15		► A GLIMPSE INTO TOPOLOGY. Open and Closed Sets in R.
10		Compact Sets, Continuous Functions, Metric Spaces

212MAT1109	Linear Algebra	L	Т	Р	Х	Н	С
	Garage	3	1	0	0	4	4

Course Objective(s):

To enable the students to understand the concepts of vector spaces, determinants, matrices, linear transformations and an elementary introduction to canonical forms.

Course Outcome(s):

Upon successful completion of this course, students will be able to

- **CO1:** understand the concepts of vector spaces, bases, dimensions and computation of vector subspaces.
- CO2: relate matrices and linear transformations, linear functionals, double dual.

CO3: know about the algebra of polynomials.

CO4: understand the concept of rings and determinant functions, modules.

CO5: learn the elementary canonical forms and applications to diagonalization method.

CO – PO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	L										
CO2	S	М										
CO3	S	М	S									
CO4	S											
CO5	S		S									
	S- Stro	ng; M-	Mediur	n; L– L	LOW						(1	2.11
UNIT -I	Spaces	Suber	es	2000 20	d Dim	oncion	Summ	ary of	Dow Fr	nuivalon	(1)	Z Hours
Conceri	spaces	, subsp bspaces	S	ases all			Summ	ary or	KUW-EU	Juivalen		iputation
UNIT-I	l: Linea	r Tran	sforma	tions							(1	2 Hours)
Linear Transfoi	Transfo rmation:	rmation s by Mat	s, The rices, Li	Algebr near Fui	a of L nctionals	inear T s, The Do	Fransfor Duble Di	mations al, The	, Isom Transpo	orphism, ose of a L	Repres	entation Insformati
UNIT-I	II: Poly	nomia	ls								(1	2 Hours)
Algebra Factoriz	is, The zation c	Algeb of a Poly	ra of P 7nomial	olynon	nials, L	agrange	e Inter	polatio	n, Poly	nomial	Ideals,	The Prin
UNIT-I	V: Dete	ermina	nts								(1	2 Hours)
Commu	itative	Rings, 1	Determ	inant F	unctior	ns, Perr	nutatio	ns and	the U	niquene	ss of De	eterminar
Additio	nal Pro	perties	of Dete	rminan	ts, Mod	ules, M	ultiline	ar Func	tions, T	The Gras	sman Ri	ng
UNIT-V	: Elem	entary	Canoni	ical For	ms						(1	2 Hours)
Introdu	ction, (Charact	eristic	Values,	Annihi	lating l	Polynor	nials, Iı	nvarian	t Subsp	aces, Si	multaneo
Triangu	lation;	Simult	aneous	Diagon	alizatio	on, Dire	ect-Sum	Decon	npositio	ons,, Inv	ariant I	Direct Sur
The Pri	mary D	ecompo	osition '	l'heorei	n							
TEXTE	SOOK(S)										
1. KENN Unit I:	ETH HOF Chapter	FMAN A	And RAY II: Chaj	KUNZE, I pter 3; I	INEAR A Unit III:	LGEBRA Chapte	Second r 4; Un	Edition, it IV: Ch	PRENTIC	E-HALL, I 5 ; Unit V	NC, 1971 ⁷ : Chapte	er 6

REFERENCE BOOK(S)

1.Gilbert Strang, Introduction to Linear Algebra, 5th Edition, Kindle 2021.

Week	Unit	Lecture Topic
1		 Vector Spaces, Subspaces Bases and Dimension,
2	Unit – 1	Summary of Row-Equivalence.
3		Computations Concerning Subspaces:
4		Linear Transformations, The Algebra of Linear Transformations
5	Unit – 2	 Isomorphism, Representation of Transformations by Matrices,
6		Linear Functionals, The Double Dual, The Transpose of a Linear Transformation
7		 Algebras, The Algebra of Polynomials,
8	Unit – 3	Lagrange Interpolation, Polynomial Ideals,
9		The Prime Factorization of a Polynomial
10		Commutative Rings, Determinant Functions
11	Unit – 4	Permutations and the Uniqueness of Determinants
12		Additional Properties of Determinants, Modules, Multilinear Functions. The Grassman Ring
13		 Introduction, Characteristic Values, Annihilating Polynomials
14	Unit – 5	 Invariant Subspaces, Simultaneous Triangulation; Simultaneous Diagonalization.
15		 Direct-Sum Decompositions,, Invariant Direct Sums The Primary Decomposition Theorem

Linear Algebra - 212MAT1109

212MAT1110	Differential Geometry	L	Т	Р	Х	Н	С
		3	1	0	0	4	4

COURSE OBJECTIVE

The objective of this course is to make the students understand the general theory of curves and surfaces. Students will start being able to develop arguments in the geometric description of curves and surfaces in order to establish basic properties of geodesics, parallel translation and surfaces of constant mean curvature.

COURSE OUTCOMES

Upon successful completion of this course, the students will be able to:

- CO1 understand the fundamental concept on space curves and surfaces,
- CO2 compute quantities of geometric interest such as curvature
- **CO3** learn the method of the moving frame and overdetermined systems of differential equations as they arise in surface theory
- CO4 interpret Holonomy and Hyperbolic Geometry
- CO5 know about the Calculus of Variations and Surfaces of Constant Mean Curvature

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	S											
CO2	S	S										
CO3	S	м										
CO4	S											
CO5	S	М										

CO – PO MAPPING:

*S – Strong; M – Medium; L – Low

UNIT-I: Curves	(12 Hours)						
Examples, Arc length Parametrization, Local Theory: Frenet Frame, Some Global Results							
UNIT-II: Parametrized Surfaces	(12 Hours)						
Parametrized Surfaces and the First Fundamental Form, The Gauss Map and the Second Fundamental							
Form							
UNIT-III: More on Surface Theory	(12 Hours)						
The Codazzi and Gauss Equations and the Fundamenta	The Codazzi and Gauss Equations and the Fundamental Theorem of Surface Theory, Covariant						
Differentiation, Parallel Translation, and Geodesics							

UNIT-IV: Holonomy	(12 Hours)
Holonomy and the Gauss-Bonnet Theorem, An Introductic	on to Hyperbolic Geometry
UNIT-V: Differential Forms	(12 Hours)
Surface Theory with Differential Forms, Calculus of Va	riations and Surfaces of Constant Mean
Curvature	
TEXT BOOK(S)	
1. Theodore Shifrin, Differential Geometry:A First Course i copyright, 2016 Theodore Shifrin	n Curves and Surfaces,

Unit I: Chapter 1 Unit II: Chapter 2 Sections 1, 2; Unit III: Chapter 2 Sections 3,4; Unit IV: Chapter 3 Sections 1, 2; Unit V: Chapter 3, Sections 3, 4

REFERENCE BOOK(S)

- 1. Shoshichi Kobayashi, Differential Geometry of Curves and Surfaces. Springer, 2010
- 2. Szechenyi TERV, Differential Geometry, © 2014–2019, Bal'azs Csik'os, 2019.

Week	Unit	Lecture Topic
1		Examples, Arc length Parametrization, :
2	Unit – 1	Local Theory
3		Frenet Frame, Some Global Results
4		 Parametrized Surfaces,
5	Unit – 2	 First Fundamental Form
6		The Gauss Map and the Second Fundamental Form
7		 Continuous Mappings, Intermediate Value Theorem
8	Unit – 3	The Codazzi and Gauss Equations and the Fundamental Theorem of Surface Theory
9		 Fundamental Theorem of Surface Theory
10		Product Topology, Projections onto Factors of a Product
	Unit 4	
11	UIIIt - 4	Tychonoff's Theorem for Finite Products
12		Covariant Differentiation, Parallel Translation, and Geodesics
13		 Surface Theory with Differential Forms
14	Unit – 5	 Calculus of Variations and Surfaces of Constant
15		Mean Curvature

Differential Geometry – 212MAT1110

212MAT1303	Introduction to Special Functions	L	Т	Р	Х	Н	C	
		3	1	0	0	4	4	

Course Objective(s):

Acquire knowledge about the function that describes the situation in which one quantity determines another quantity, and solve problems in mathematical analysis, functional analysis, geometry, physics, or other applications.

COURSE OUTCOMES

Upon successful completion of this course, the students will be able to

- CO1 understand the basic ideas of special functions
- CO2 study hypergeometric functions, the properties and types of hypergeometric functions
- CO3 study in detail the technology and applications of Legendre functions
- CO4 understand the concept of Bessel functions
- **CO5** understand the concepts of Hermite and Laguerre functions

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		S										
CO2	L		М									L
CO3		S									М	
CO4	S											L
C05		М										

CO – PO MAPPING:

*S – Strong; M – Medium; L – Low

UNIT-I: Basics of Special Functions	(12 Hours)
Origin of Special Functions, ordinary points of a linear differ	ential equation, Regular singular points,
point at infinity, gamma function and related functions, exam	ples
UNIT-II: Hypergeometric Functions	(12 Hours)
Hypergeometric series, Inegral formula, hypergeometric eq	uations, linear relations b/w olutions of
hypergeometric equations, relations of contiguity, conflue	nt hypergeometric function, generalized
hypergeometric series, examples	

UNIT-III: Legendre Functions	(12 Hours)				
Legendre Polynomials, Recurrence relations, Formula of M	urphy and Rodrigues, series of Legendre				
polynomials, Legendre's Differential equations, Neumann'	s formula, Recurrence relations for the				
function $Q_n(\mu)$, Use in Potential Theory, associated functior	ns and their integral expressions, surface				
spherical harmonics, Use in wave mechanics					
UNIT-IV: Bessel Functions	(12 Hours)				
Origin, Recurrence relations for Bessel coefficients, Integra	l expressions, Addition formula, Bessel's				
Differential equations, Spherical Bessel functions, Integrals in	nvolving Bessel functions, modified Bessel				
functions, Ber and Bei functions, Expansions in series of E	Bessel functions, Use in potential theory,				
Asymptotic expansions, Examples					
UNIT-V: Hermite and Laguerre Functions	(12 Hours)				
Hemrmite polynomials, Hermite Differential equations, I	Hermite functions, Occurrence in wave				
mechanics, Laguerre polynomials, Laguerre Differential	equations, Associated polynomials and				
functions, Wave functions for the hydrogen atom, Examples					
TEXT BOOK(S)					
1.Ian N Sneedon, Special Functions of Mathematical Physics a Unit I: Chapter 1; Unit II: Chapter 2; Unit III: Chapter 3; Unit I	nd Chemistry, Oliver and Boyd, 1966. V: Chapter 4; Unit V: Chapter 5				
REFERENCE BOOK(S)					
1. G. E. Andrews, R. Askey, Ranjan Roy, Special Functions	, Encyclopedia of Mathematics and its				
Applications, Cambridge University Press, 1999.					
. E. D. Rainville, Special Functions, Macmillan, New York, 1960					

Week	Unit	Lecture Topic
1		 Origin of Special Functions, ordinary points of a linear differential equation
2	Unit – 1	 Regular singular points, point at infinity,
3		gamma function and related functions, examples
4		 Hypergeometric series, Integral formula, hypergeometric equations
5	Unit – 2	linear relations b/w solutions of hypergeometric equations, relations of contiguity
6		 confluent hypergeometric function, generalized hypergeometric series, examples
7		 Legendre Polynomials, Recurrence relations, Formula of Murphy and Rodrigues, series of Legendre polynomials,
8	Unit – 3	> Legendre's Differential equations, Neumann's formula, Recurrence relations for the function $Q_n(\mu)$
9		Use in Potential Theory, Associated functions and their integral expressions, surface spherical harmonics, Use in wave mechanics

Introduction to Special Functions -212MAT1303

10		Origin, Recurrence relations for Bessel coefficients, Integral expressions, Addition formula, Bessel's Differential equations, Spherical Bessel functions
11	Unit – 4	 Integrals involving Bessel functions, modified Bessel functions, Ber and Bei functions
12		Expansions in series of Bessel functions, Use in potential theory, Asymptotic expansions, Examples
13		 Hermite polynomials, Hermite Differential equations, Hermite functions
14	Unit – 5	 Occurrence in wave mechanics, Laguerre polynomials, Laguerre Differential equations
15		 Associated polynomials and functions, Wave functions for the hydrogen atom, Examples

212MAT2111	Complex Analysis	L	Т	Р	Х	Н	С
	F F J	3	1	0	0	4	4

Course Objective(s):

To enable the students to understand the basic concept of complex variables.

Course Outcome(s):

Upon successful completion of this course, students will be able to

CO1: analyze analytic functions and continuous functions.

CO2: understand local properties of analytic functions.

CO3:.apply Cauchy's theorem for disk and the Integral formula.

CO4: differentiate the Taylor's series and Laurent series.

CO5: study Residue theorem and the argument principle.

CO – PO MAPPING

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	S	S		М								L
CO2	S	S										L
CO3	L	L		М								L
CO4	L	м		м								L

CO5	М	L										L
-----	---	---	--	--	--	--	--	--	--	--	--	---

*S – Strong; M – Medium; L – Low

UNIT-I:Complex Numbers	(18 Hours)
Complex Numbers: Arithmetic Operations, Square Roots, Justification, Conjugation	on, Absolute Value,
Inequalities, Geometric Addition and Multiplication, Binomial Equation, A	nalytic Geometry,
Spherical Representation	
UNIT-II: Analytic Functions	(18 Hours)
Concept of Analytic Function, Polynomials, Rational Functions, Sequence	es, Series, Uniform
Convergence, Power Series, Abel's Limit Theorem, Exponential, Trigonometric Fu Logarithm.	inctions, Periodicity
UNIT-III: Conformal Mappings and Riemann Surfaces	(18 Hours)
Arcs and Closed Curves, Analytic Functions in Regions, Conformal Mapping, Le	ength and Area, The
Linear Group, The Cross Ratio, Symmetry, Oriented Circles, Families of Circle	es, The Use of Leve
Curves, A Survey of Elementary Mappings, Elementary Riemann Surfaces	
UNIT-IV: Complex Integration	(18 Hours)
Line Integrals, Rectifiable Arcs, Line Integrals as Functions of Arcs, Cauchy's The Rectangle, Cauchy's Theorem in a Disk, The Index of a Point with Respect to a Clo Integral Formula, Higher Derivatives, Removable Singularities. Taylor's Theoren The Local Mapping. The Maximum Principle	orem for a osed Curve, The n, Zeros and Poles,
UNIT-V: Chains, Cycles and Homology	(18 Hours)
Chains and Cycles, Simple Connectivity, Homology, The General Statement of Cau Proof of Cauchy's Theorem 4.6 Locally, Exact Differentials, Multiply Connected R Residue Theorem 5., The Argument Principle, Evaluation of Definite Integral, De Properties, The Mean-value Property, Poisson's Formula, Schwarz's Theorem, The Principles	uchy's Theorem 4.5 Legions, The finition and Basic he Reflection
TEXT BOOK(S)	
Lars V. Ahlfors, Complex Anlysis, McGraw-Hill Inc, 1979. Unit-I: Chapter 1; U <u>nit-II: Chapter 2; Unit-III: Chapter 3, Subivisions 2, 3 and 4;</u> <u>Subdivisons 1, 2 and 3 ; Unit-V: Chapter 4, Subdivisions 4, 5 and 6</u> REFERENCE BOOKS	Unit-IV: Chapter 4,
Bak, Joseph, Newman Donald, J, Complex Analysis, Springer, 2010,	

COMPLEX ANALYSIS – 212MAT2111

Week	Unit	Lecture Topic
1		 Complex Numbers: Arithmetic Operations, Square Roots, Justification
2	Unit – 1	Absolute Value, Inequalities, Geometric Addition and Multiplication
3		 Geometric Addition and Multiplication, Binomial Equation, Analytic Geometry, Spherical Representation
4	Unit – 2	Concept of Analytic Function, Polynomials, Rational Functions

5		 Sequences, Series, Uniform Convergence, Power Series,
6		 Abel's Limit Theorem, Exponential, Trignometric Functions, Periodicity, Logarthm,
7		 Arcs and Closed Curves, Analytic Functions in Regions
8	Unit – 3	 Conformal Mapping, Length and Area, The Linear Group, The Cross Ratio, Symmetry, Oriented Circles,
9		 Families of Circles, The Use of Level Curves, A Survey of Elementary Mappings, Elementary Riemann Surfaces
10		 Line Integrals, Rectifiable Arcs, Line Integrals as Functions of Arcs Cauchy's Theorem for a Rectangle, Cauchy's Theorem in a Disk, The Index of a Point with Respect to a Closed Curve
	Unit – 4	The Integral Formula, Higher Derivatives, Removable Singularities.,
11		 Taylor's Theorem, Zeros and Poles The Local Mapping
12		> The Maximum Principle
13		Chains and Cycles, Simple Connectivity, Homology, The General Statement of Cauchy's Theorem 4.5
14	Unit – 5	 Proof of Cauchy's Theorem 4.6 Locally, Exact Differentials, Multiply Connected Regions
15		The Residue Theorem 5., The Argument Principle, Evaluation of Definite Integral, Definition and Basic Properties The Mean-value Property, Poisson's Formula, Schwarz's Theorem, The Reflection Principles

212MAT1112	Number Theory	L	Т	Р	Х	Н	С
		3	1	0	0	4	4

COURSE OBJECTIVE

To squeeze out meritoriously the concepts and results of Number Theory and to apply at various real-life conjectures, by understanding the logics and methods behind.

COURSE OUTCOMES

Upon successful completion of this course, the students will be able to

- **CO1** prove results involving divisibility and greatest common divisors
- **CO2** apply Euler-Fermat's Theorem to prove relations involving prime numbers.
- **cos** identify Perfect, Fermat and Amicable numbers to apply in various fields.

co4 define and analyse Congruency, Divisibility criteria, Euler's phi-function, and Conditional linear congruences.

solve systems of linear, Polynomial, Quadratic congruences and find Primitive roots CO5

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	S	М										L
CO2	S	Μ	S									L
CO3	S	L	М									L
CO4	S											
CO5	S	L										

CO - PO MAPPING:

*S – Strong; M – Medium; L – Low

UNIT-I: Divisibility	(18 Hours)		
The division algorithm, The greatest common divisor, The Euclidean algorithm, I	Pythagorean triples		
UNIT-II: Prime numbers	(18 Hours)		
Euclid on primes, Number theoretic functions, Multiplicative functions, Fac	toring, The greates		
integer function, Primes revisited			
UNIT-III: Perfect and amicable numbers	(18 Hours)		
Perfect numbers, Fermat numbers, Amicable numbers, Perfect-type numbers			
UNIT-IV: Modular arithmetic	(18 Hours)		
Congruence, Divisibility criteria, Euler's phi-function, Conditional linear congru	ences		
UNIT-V: Congruences of higher degree	(18 Hours)		
Polynomial congruences, Quadratic congruences, Primitive roots			
TEXT BOOK(S)			
1 JAMES J. TATTERSALL, Elementary number theory in nine chapters, Cambridge Ur	iversity Press, 1999.		
Unit-I: Chapters 2; Unit-II: Chapters 3; Unit-III: Chapters 4; Unit-IV: Chapters 5 ;	Unit-V: Chapters 6		
REFERENCE BOOKS			
1. David Pierce, Elementary Number Theory, copy right, David Austin Pierce, S	ep 20, 2012		

Week	Unit	Lecture Topic
1	Unit – 1	The division algorithm, The greatest common divisor, The Euclidean algorithm, Pythagorean triples
4	Unit – 2	 Euclid on primes, Number theoretic functions, Multiplicative functions, Factoring, the greatest integer function, Primes revisited
7	Unit – 3	Perfect numbers, Fermat numbers, Amicable numbers, Perfect-type numbers
10	Unit – 4	Congruence, Divisibility criteria, Euler's phi-function, Conditional linear congruences
13	Unit – 5	Polynomial congruences, Quadratic congruences, Primitive roots

Number Theory – 212MAT1112

212MAT1113	Probability and Distribution Theory	L	Т	Р	Х	Н	С
		3	1	0	0	4	4

Course Objective:

Emphasis is placed on theoretical understanding on statistical probabilistic models and the applications of various distributions. The course enables the students to acquire the fundamental ideas about randomness and the use of sampling techniques in real life scenarios.

Course Outcome(s):

Upon successful completion of this course, students will be able to

- CO1 describes the concept of probability, expectation and some ideas on inequalities.
- CO2 incorporates the conditional probabilities and highlights the correlation techniques.
- **CO3** exemplifies the knowledge in some statistical distributions.
- **CO4** gives the sampling approaches and derivatives for distribution functions of random variables.
- **CO5** demonstrates the concept of limiting distributions and applications of the central limit theorem.

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S					М						

CO – PO MAPPING

CO2	S		S	S				L	
CO3	S								L
CO4	S								
CO5	S	S	S	S					

*S – Strong; M – Medium; L – Low

UNIT-I: Distributions of Random Variables	(18 Hours)								
Introduction, Algebra of Sets, Set Functions, The Probability Set Function, Random Varia	bles, The Probability								
Density Function, The Distribution Function, Certain Probability Models, Mathematica	al Expectation, Some								
Special Mathematical Expectations, Chebyshev's Inequality									
UNIT-II: Conditional Probability and Stochastic Independence	(18 Hours)								
Conditional Probability, Marginal and Conditional Distributions, The Corr	relation Coefficient								
Stochastic Independence									
UNIT-III: Some Special Distributions	(18 Hours)								
The Binomial, Trinomial, and Multinomial Distributions, The Poisson Distributi	on, The Gamma and								
Chi-Square Distributions, The Normal Distribution, The Bivariate Normal Distribution									
UNIT-IV: Distributions of Functions of Random 'Variables	(18 Hours)								
Sampling Theory, Transformations of Variables of the Discrete Type, Transform	ations of Variables								
of the Continuous Type, The t and F Distributions, Extensions of the Change-of-V	ariable Technique,								
Distributions of Order Statistics, The Moment-Generating-Function Technique, T	The Distributions of								
E(X) and nS^2/σ^2 Expectations of Functions of Random Variables									
UNIT-V: Limiting Distributions	(18 Hours)								
Limiting Distributions, Stochastic Convergence, Limiting Moment-Generating Fu	inctions, The								
Central Limit Theorem, Some Theorems on Limiting Distributions									
TEXT BOOK(S)									
1 Robert V. Hogg Allen T. Craig, Introduction to Mathematical Statistics Fourth	Edition, Macmillan								
Publishing Co., Inc., 1978									
Unit-I: Chapters 1; Unit-II: Chapters 2; Unit-III: Chapters 3; Unit-IV: Chapters 4;	Unit-V: Chapters 5								
REFERENCE BOOKS									
2. Davison, A.C., Statistical models. Cambridge University Press. 2003									
3. Freedman, D., Statistical models: theory and applications. Cambridge Univer	rsity Press,2005								

4. Lehmann, E.L. and Casella, G., Theory of point estimation. Springer. 1998.

5. Lehmann, E.L. and Romano, J.P., Testing statistical hypotheses. Springer, 2005.

Probability and Distribution Theory – 212MAT1113

Week	Unit	Lecture Topic
1	Unit – 1	Introduction, Algebra of Sets, Set Functions, The Probability Set Function, Random Variables, The Probability Density Function, The Distribution Function, Certain Probability Models, Mathematical Expectation, Some Special Mathematical Expectations, Chebyshev's Inequality

4	Unit – 2	Conditional Probability, Marginal and Conditional Distributions, The Correlation Coefficient, Stochastic
		Independence
		> The Binomial, Trinomial, and Multinomial Distributions,
7	Unit – 3	The Poisson Distribution, The Gamma and Chi-Square
		Distributions, The Normal Distribution, The Bivariate
		Normal Distribution
		Sampling Theory, Transformations of Variables of the
		Discrete Type, Transformations of Variables of the
10		Continuous Type, The t and F Distributions, Extensions of
10	Unit – 4	the Change-of-Variable Technique, Distributions of Order
		Statistics, The Moment-Generating-Function Technique,
		The Distributions of E(X) and nS^2/σ^2 Expectations of
		Functions of Random Variables
10		Limiting Distributions, Stochastic Convergence, Limiting
13	Unit – 5	Moment-Generating Functions, The Central Limit Theorem,
		Some Theorems on Limiting Distributions

212MAT1114	Craph Theory	L	Τ	Р	X	Н	С
2121017411114	Graph Theory	3	1	0	0	4	4

Course objective:

To enable the students to understand the basic concepts of Graph theory such as Trees, Eulerian Graphs, Matching, Vertex colourings, Edge colourings and Planarity. Graph Theory is an integral part of Discrete Mathematics and has applications in diversified areas such as Electrical Engineering, Computer science and Linguistics.

Course Outcomes:

Upon successful completion of this course, students will be able to

- 1. know the basic concepts of graph theory, types of graphs and graph algorithms.
- 2. acquire the knowledge of properties of trees and connectivity.
- 3. know about the colorings and its applications.
- 4. learn the concept of digraphs, tournaments and markov Chains.
- 5. develop the knowledge about matchings and its applications.

CO – PO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S			S								S
CO2				М							S	
CO3		S									S	
CO4			S							S		
CO5	S			L								

S- Strong; M-Medium; L- Low.

UNIT-I: Basics of Graph Theory		(18 Hours)
What is a Graph? , Definition, Examples, Three puzzles, Connectivity, Eulerian g algorithms	raphs, Hamilt	onian graphs, Some
UNIT-II: Trees and Planarity		(18 Hours)
Properties of trees, Counting trees, More applications, Planar graphs, Euler's formu graphs, Infinite graphs	ula, Graphs oi	n other surfaces, Dua
UNIT-III: Coloring of Graphs	(18 Hours)	
Coloring vertices, Brooks' theorem, Coloring maps, Coloring edges , Chromatic polyno	omials	
UNIT-IV: Digraphs		(18 Hours)
Definitions, Eulerian digraphs and tournaments, Markov chains		
UNIT-V: Matching, marriage and Menger's theorem		(18 Hours)
Hall's 'marriage' theorem, Transversal theory, Applications of Hall's theorem, flows	Menger's th	ieorem, Netwok
TEXT BOOK(S)		
.1 Robin J. Wilson, Introduction to Graph Theory, Longman, Fourth edition, 1 Unit-I: Chapters 1 to 3; Unit-II: Chapters 4 to 5; Unit-III: Chapters 6; Unit-I 8	996 V: Chapters	7 ; Unit-V: Chapters
REFERENCE BOOKS 6. J. A. Bondy and U. S. R. Murty, GRAPH THEORY WITH APPLICATIONS,	NORfH-HOL	LAND, 1976.

7. Reinhard Diestel, Graph Theory, Springer Verlag,

Graph Theory 212MAT1114

Week	Unit	Lecture Topic
1	Unit – 1	 What is a Graph?, Definition, Examples, Three puzzles, Connectivity, Eulerian graphs, Hamiltonian graphs, Some algorithms,
4	Unit – 2	Properties of trees, Counting trees, More applications, Planar graphs, Euler's formula, Graphs on other surfaces, Dual graphs, Infinite graphs

7	Unit – 3	Coloring vertices, Brooks' theorem, Coloring maps, Coloring edges Chromatic polynomials				
10	Unit – 4	 Definitions, Eulerian digraphs and tournaments, Markov chains 				
13	Unit – 5	Hall's 'marriage' theorem, Transversal theory, Applications of Hall's theorem, Menger's theorem, Netwok flows				

213MAT2103	Actuarial Mathematics	L	Т	Р	Х	Н	С
		3	1	0	0	4	4

COURSE OBJECTIVE

To enable the students to understand the basic concepts of deterministic and stochastic model, lifetable, life insurance, annuity, mortality, life contracts, decrements. expenses and profits.

COURSE OUTCOMES

Upon successful completion of this course, the students will be able to

- co1 determine interest and discounts using deterministic and stochastic models
- **CO2** calculate various life insurance premiums using spreadsheets.
- **cos** calculate discounts, interest, fractional period premium and reserves of insurance.
- **CO4** apply changes in formulas and projections in annuity tables.
- **CO5** determine the model from the forces of decrement.

CO – PO MAPPING:

CO / PO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	S	Μ	М	S	М			L			L	S
CO2	М	S	М	S	М			L			L	S
CO3	S	М	М	S	М			L			L	S
CO4	М	S	М	S	М			L			L	S
CO5	S	М	М	S	М			L			L	М

*S – Strong; M – Medium; L - Low

UNIT-I: Basic Deterministic Model

(18 Hours)

Risk and Insurance, Deterministic Vs Stochastic Models, Finance and Investments, Adequacy and Equity, Reassessment, cash flows, analogy with currencies, discount functions, calculating discount functions, interest and discount rates, constant interest, values and actuarial equivalence, vector notation, regular pattern cash flows, Balances and reserves, Time shifting and splitting identity,

change of discount function, internal rates of return, forward prices and	d term structure,
spreadsheet calculations	
UNIT-II: Life table, annuities and life insurance	(18 Hours)
Definitions, probabilities, constructing the life tables from the value of q_x Life e	xpectancy, choice o
life tables, sample table, calculating annuity premiums, interest and survivorshi	ip discount function
guaranteed payments, deferred annuities with annual premiums, practi	ical considerations
spreadsheet calculations, calculating life insurance premiums, types of life in	nsurance, combined
insurance and annuity benefits, general insurance-annual identity, single ar	nd annual premium
notation, spreadsheet applications	
UNIT-III: Insurance, annuity reserves, fractional durations	(18 Hours)
Reserves, general pattern, recursion, annuity contract, Bases for reserves, N	onforfeiture values
policies involving return of the reserves, premium difference and paid-up for	rmulas, spreadshee
applications, cash flows discounted with interest only, life annuities paid mthly, i	mmediate annuities
approximation and computation, fractional period premiums and reserves, re	eserves at fractiona
durations, standard notations and terminology	
durations, standard notations and terminology UNIT-IV: Continuous payments and select Mortality	(18 Hours)
durations, standard notations and terminology UNIT-IV: Continuous payments and select Mortality Continuous annuities, force of discount, constant interest case, continuous life ar	(18 Hours)
durations, standard notations and terminology UNIT-IV: Continuous payments and select Mortality Continuous annuities, force of discount, constant interest case, continuous life ar mortality, insurance payable at moment of death, premiums and reserves, gener annuity identity in the continuous case, differential equation of reserves, example	(18 Hours) nnuities, force of ral insurance les of exact
durations, standard notations and terminology UNIT-IV: Continuous payments and select Mortality Continuous annuities, force of discount, constant interest case, continuous life ar mortality, insurance payable at moment of death, premiums and reserves, gener annuity identity in the continuous case, differential equation of reserves, exampl calculation, further approximations, standard actuarial notation and terminolog	(18 Hours) nuuities, force of ral insurance les of exact y, select and
durations, standard notations and terminology UNIT-IV: Continuous payments and select Mortality Continuous annuities, force of discount, constant interest case, continuous life ar mortality, insurance payable at moment of death, premiums and reserves, gener annuity identity in the continuous case, differential equation of reserves, exampl calculation, further approximations, standard actuarial notation and terminolog ultimate tables, changes in formulas, projections in annuity tables	(18 Hours) nnuities, force of ral insurance les of exact y, select and
durations, standard notations and terminology UNIT-IV: Continuous payments and select Mortality Continuous annuities, force of discount, constant interest case, continuous life ar mortality, insurance payable at moment of death, premiums and reserves, gener annuity identity in the continuous case, differential equation of reserves, exampl calculation, further approximations, standard actuarial notation and terminology ultimate tables, changes in formulas, projections in annuity tables UNIT-V: Multiple Life Contracts, Decrement Theory, Expenses and Profits	(18 Hours) nnuities, force of ral insurance les of exact y, select and (18 Hours)
durations, standard notations and terminology UNIT-IV: Continuous payments and select Mortality Continuous annuities, force of discount, constant interest case, continuous life ar mortality, insurance payable at moment of death, premiums and reserves, gener annuity identity in the continuous case, differential equation of reserves, exampl calculation, further approximations, standard actuarial notation and terminolog ultimate tables, changes in formulas, projections in annuity tables UNIT-V: Multiple Life Contracts, Decrement Theory, Expenses and Profits Joint Life status, annuities and insurances, last survivor annuities and insurances insurances, general two life annuity contract, insurance contract, contingent insu problems, applications to annuity credit risk, spreadsheet calculations, basic mo theory, determining the model from the forces of decrement, analogy with joint I machine analogy, associated single decrement tables, effect on reserves, realistic balance calculations, profit measurement TEXT BOOK(S)	(18 Hours) nuities, force of ral insurance les of exact y, select and (18 Hours) s, moment of death urances, duration del of decrement life statuses, c reserves and

REFERENCE BOOKS

 David C.M.Dickson, Mary R. Hardy, Howard R. Waters, Actuarial Mathematics For Life Contingent RiskS, Cambridge University Press, 2009.

Week	Unit	Lecture Topic							
1	Unit – 1	Risk and Insurance, Deterministic Vs Stochastic Models, Finance and Investments, Adequacy and Equity, Reassessment, cash flows, analogy with currencies,							
2		discount functions, calculating discount functions, interest and discount rates, constant interest, values and actuarial equivalence, vector notation, regular pattern cash flows,							

Actuarial Mathematics - 213MAT2103

3		>	Balances and reserves, Time shifting and splitting identity, change of discount function, internal rates of return, forward prices and term structure, spreadsheet calculations
4		>	Definitions, probabilities, constructing the life tables from the value of q_x Life expectancy, choice of life tables, sample table, calculating annuity premiums, interest and survivorship discount function,
5	Unit – 2	\mathbf{A}	guaranteed payments, deferred annuities with annual premiums, practical considerations, spreadsheet calculations, calculating life insurance premiums,
6		>	types of life insurance, combined insurance and annuity benefits, general insurance-annual identity, single and annual premium notation, spreadsheet applications
7		>	Reserves, general pattern, recursion, annuity contract, Bases for reserves, Nonforfeiture values, policies involving return of the reserves, premium difference and paid-up formulas
8	Unit – 3	À	spreadsheet applications, cash flows discounted with interest only life annuities paid mthly
9		>	immediate annuities, approximation and computation, fractional period premiums and reserves, reserves at fractional durations, standard notations and terminology
10		A	Continuous annuities, force of discount, constant interest case, continuous life annuities, force of mortality, insurance payable at moment of death, premiums and reserves, general insurance annuity identity in the continuous case,
11	Unit – 4		differential equation of reserves, examples of exact calculation, further approximations, standard actuarial notation and terminology,
12		>	select and ultimate tables, changes in formulas, projections in annuity tables Joint Life status, annuities and insurances
13		~	last survivor annuities and insurances, moment of death insurances, general two life annuity contract, insurance contract, contingent insurances, duration problems, applications to annuity credit risk
14	Unit – 5	~	spreadsheet calculations, basic model of decrement theory, determining the model from the forces of decrement, analogy with joint life statuses,
15		\rightarrow	machine analogy, associated single decrement tables, effect on reserves, realistic reserves and balance calculations, profit measurement

213MAT2104	Cryptography	L	Т	Р	Х	Н	С
		3	1	0	0	4	4

Course Objective(s):

To enable the students to understand the concepts of coding and decoding.

Course Outcome(s):

Upon successful completion of this course, students will be able to

CO1: know the methods of conventional encryption.

CO2: understand the concepts of Block Ciphers and the Data Encryption

CO3: know Number theory concepts used for advanced encryption

CO4: understand Advanced encryption standard

CO5: know the methods of public key cryptography

CO – PO MAPPING:

СО / РО	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	S	S										L
CO2	S	L	L									L
CO3	м	S		М								L
CO4	S	S	S	м								L
CO5	м	L										L

*S – Strong; M – Medium; L – Low

UNIT-I: Data Security and Stram Ciphers	(18 Hours)
Simple Symmetric Encryption: The Substitution Cipher, Cryptanalysis, General Tho	ughts on Breaking
Cryptosystems, Modular Arithmetic and Ciphers, Modular Arithmetic, Integer Rings, Shif	t Cipher (or Caesar
Cipher), Affine Cipher, Discussion and Further Reading, Stream Ciphers, Stream Cipher	s vs. Block Ciphers,
Encryption and Decryption with Stream Ciphers Random Numbers and an Unbreaka	ble Stream Cipher,
Random Number Generators, The One-Time Pad Towards Practical Stream Ciphers, Sl	nift Register-Based
Stream Ciphers, Linear Feedback Shift Registers (LFSR) Known-Plaintext Attack Agains	t Single LFSRs.
UNIT-II: Encryption Standards	(18 Hours)
DES, Confusion and Diffusion, DES Algorithm , Internal Structure of DES,. Initial and Fina	al Permutation, The
f-Function, Key Schedule, Decryption, Security of DES, Exhaustive Key Search, Analytica	ll Attacks, The
Advanced Encryption Standard (AES) and the AES Finalist Ciphers, Triple DES (3DES) a	nd DESX,
Lightweight Cipher PRESENT, AES Algorithm, Galois Fields, Existence of Finite Fields, Pr	rime Fields,
Extension Fields GF(2m), Addition and Subtraction in GF(2m), Multiplication in GF(2m)	Inversion in
GF(2m), Internal Structure of AES, Byte Substitution Layer, Diffusion Layer, Key Additio	n Layer, Key
Decryption	
UNIT-III: Block Ciphers	(18 Hours)
Encryption with Block Ciphers: Modes of Operation, Electronic Codebook Mode (ECB), G	Cipher Block
Chaining Mode (CBC), Output Feedback Mode (OFB), Cipher Feedback Mode (CFB), Cou	inter Mode (CTR),
Galois Counter Mode (GCM), Exhaustive Key Search Revisited, Increasing the Security of	f Block Ciphers,
Double Encryption and Meet-in-the-Middle Attack, Triple Encryption, Key Whitening	
UNIT-IV: Public-Key Cryptography and RSA	(18 Hours)
Symmetric vs. Asymmetric Cryptography, Practical Aspects of Public-Key Cryptography Mechanisms, The Remaining Problem: Authenticity of Public Keys, Important Public-K Lengths and Security Levels, Key Generation and Proof of Correctness, Encryption and I Exponentiation, Speed-up Techniques for RSA, Fast Encryption with Short Public Expon Decryption with the Chinese Remainder Theorem, Finding Large Primes, How Common Primality Tests, RSA in Practice: Padding	, Security ey Algorithms, Key Decryption: Fast nents, Fast Are Primes?,
UNIT-V Cryptosystems	(18 Hours)
The Discrete Logarithm Problem, The Discrete Logarithm Problem in Prime Fields, The Gene Logarithm Problem, Attacks Against the Discrete Logarithm Problem, Security of the Diffie–I Exchange, The Elgamal Encryption Scheme, From Diffie–Hellman Key Exhange to Elgamal En Elgamal Protocol, Computational Aspects, Security, How to Compute with Elliptic Curves De Curves, Group Operations on Elliptic Curves, Building a Discrete Logarithm Problem with Elli Hellman Key Exchange with Elliptic Curves, Security	ralized Discrete Hellman Key cryption, The finition of Elliptic ptic Curves, Diffie–
TEXT BOOK(S)	
1. Christof Paar, Jan Pelzl, Understanding Cryptography, Springer 2010. Unit-I:Chapters 1 to 2; Unit-II: Chapters 3 to 4; Unit-III: Chapters 5; Unit-IV: Chapter Chapters 8 to 9	ers 6, to 7 ; Unit-V:
REFERENCE BOOKS 1. A.J. Menezes, P. van Oorschot and S.A. Vanstone. The Handbook of Applied Cryptograp	hy. CRC Press, 1997.

Week	Unit	Lecture Topic
1	Unit – 1	Simple Symmetric Encryption: The Substitution Cipher, Cryptanalysis, General Thoughts on Breaking Cryptosystems, Modular Arithmetic and Ciphers, Modular Arithmetic, Integer Rings, Shift Cipher (or Caesar Cipher),
2		 Affine Cipher, Discussion and Further Reading, Stream Ciphers, Stream Ciphers vs. Block Ciphers, Encryption and Decryption with

Department of Mathematics-KARE

		Stream Ciphers Random Numbers and an Unbreakable Stream
3		 Random Number Generators, The One-Time Pad Towards Practical Stream Ciphers, Shift Register-Based Stream Ciphers, Linear Feedback Shift Registers (LFSR) Known-Plaintext Attack Against Single LFSRs.
4		DES, Confusion and Diffusion, DES Algorithm, Internal Structure of DES,. Initial and Final Permutation, The f-Function, Key Schedule, Decryption, Security of DES, Exhaustive Key Search, Analytical Attacks,
5	Unit – 2	The Advanced Encryption Standard (AES) and the AES Finalist Ciphers, Triple DES (3DES) and DESX, Lightweight Cipher PRESENT, AES Algorithm, Galois Fields, Existence of Finite Fields,
6		Prime Fields, Extension Fields GF(2m), Addition and Subtraction in GF(2m), Multiplication in GF(2m, Inversion in GF(2m), Internal Structure of AES, Byte Substitution Layer, Diffusion Layer, Key Addition Layer, Key Decryption
7		Encryption with Block Ciphers: Modes of Operation, Electronic Codebook Mode (ECB), Cipher Block Chaining Mode (CBC), Output Feedback Mode (OFB),
8	Unit – 3	Cipher Feedback Mode (CFB), Counter Mode (CTR), Galois Counter Mode (GCM), Exhaustive Key Search Revisited
9		Increasing the Security of Block Ciphers, Double Encryption and Meet-in-the-Middle Attack, Triple Encryption, Key Whitening
10		 Symmetric vs. Asymmetric Cryptography, Practical Aspects of Public-Key Cryptography, Security Mechanisms, The Remaining Problem: Authenticity of Public Keys,
11	Unit – 4	Important Public-Key Algorithms, Key Lengths and Security Levels, Key Generation and Proof of Correctness, Encryption and Decryption: Fast Exponentiation, Speed-up Techniques for RSA,
12		Fast Encryption with Short Public Exponents, Fast Decryption with the Chinese Remainder Theorem, Finding Large Primes, How Common Are Primes?, Primality Tests, RSA in Practice: Padding
13		The Discrete Logarithm Problem, The Discrete Logarithm Problem in Prime Fields, The Generalized Discrete Logarithm Problem, Attacks Against the Discrete Logarithm Problem
14	Unit – 5	 Security of the Diffie–Hellman Key Exchange, The Elgamal Encryption Scheme, From Diffie–Hellman Key Exhange to Elgamal Encryption, The Elgamal Protocol, Computational Aspects, Security
15		How to Compute with Elliptic Curves Definition of Elliptic Curves, Group Operations on Elliptic Curves, Building a Discrete Logarithm Problem with Elliptic Curves, Diffie-Hellman Key Exchange with Elliptic Curves, Security

21214 A T2107		L	Τ	Р	X	Η	С
213MA12107	Astronomy	3	1	0	0	4	4

Course objective:

To enable the students to understand the various astronomical cycles that affect the Earth and appearance of the sky and by developing some familiarity with various tools and methodologies used to enhance and broaden our knowledge of the Universe. Throughout the semester we will build a conceptual framework that will increase your appreciation and understanding of the nature, scope, and evolution of the Universe.

Course Outcomes:

Upon successful completion of this course, students will be able to

CO1. learn the basic concepts of Spherical Trigonometry.

CO2. gain the knowledge of Celestial Sphere.

CO3. know about the Refraction and its applications.

CO4. learn the concept of Meridian Circle.

CO5. develop the knowledge about Planetary motions.

CO- PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S			S								S
CO2				М							S	
CO3		S									S	
CO4			S							S		
CO5	S	S		L						S		М

S- Strong; M-Medium; L-Low.

UNIT-I: Spherical Trignometry	(18 Hours)				
Spherical Triangles, Length of Small circle arc, Terrestrial Latitude and Longitude, Fundamental Formula, Sine					
Formula, Formula C, Four parts Formula, Alternative Proofs of the formula A, B, C, Righ	t angled, Quadrantal				
triangles, Polar Formula, Haversine Formula, Trignometrical ratios of small angles, Dela	ambres and Napier's				
analogies, Examples					
UNIT-II: Celestial Sphere	(18 Hours)				
Altitude and Azimuth, Declination and Hour angle, Diagram for the southern hemisphere,					
Circumpolar stars, geocentric celestial sphere, solution of the spherical triangle	PZX, Right				
ascension and declination, earth's orbit, celestial latitude and longitude, sidereal time, Mean solar					
time, Hour angle of a heavenly body, rising and setting, rate of change of zenith distance and					
azimuth, Twilight					
UNIT-III: Refraction	(18 Hours)				
Laws of refraction, refraction for small Zenith Distances, general formula for refraction, effect of					
refraction on the time of sunset, Effect of refraction on the right ascension and declination of star,					
Examples,					
UNIT-IV: Meridian Circle	(18 Hours)				

General Description and instrumental errors, Azimuth error and level error and their determinations, collimation error, total correction to the observed time of transit, Bessel's formula, wire intervals, chronograph, measurement of declination, right ascension, time,

UNIT-V Planetary motions(18 Hours)Kepler's I, II and III laws, Newton's law of gravitation, perturbations and principles of orbital
motion, equation of the orbit, velocity of a planet in its orbit, components of the linear velocity, true
and eccentric anomalies, Kepler's equation and solution, eccentric anomalies expressed as a series
in term of e and eccentric anomaly, equation of the centre, orbit in space, heliocentric ecliptic
rectangular coordinates of a planet, heliocentric equatorial coordinates of a planet, heliocentric
rectangular coordinates of earth, Planet's geocentric right ascension and declination, orbital and
synodic periods, earth's orbit, sun's apparent orbit, Moon's orbit

TEXT BOOK(S)

1.W.M.Samart, Text Book on Spherical Astronomy, Cambridge University Press, 1949.. Unit-I:Chapters 1; Unit-II: Chapters 2; Unit-III: Chapter 3; Unit-IV: Chapters 4; Unit-V: Chapters 5

REFERENCE BOOKS

1.Edgar W.Woolard and Gerald M.Clemence, Spherical Astronomy, Academic Press, 1966.

Week	Unit	Lecture Topic
1		 Spherical Triangles, Length of Small circle arc, Terrestrial Latitude and Longitude, Fundamental Formula,
2	Unit – 1	Sine Formula, Formula C, Four parts Formula, Alternative Proofs of the formula A, B, C, Right angled, Quadrantal triangles
3		 Polar Formula, Haversine Formula, Trignometrical ratios of small angles, Delambres and Napier's analogies, Examples
4		Altitude and Azimuth, Declination and Hour angle, Diagram for the southern hemisphere, Circumpolar stars, geocentric celestial sphere, solution of the spherical triangle PZX
5	Unit – 2	 Right ascension and declination, earth's orbit, celestial latitude and longitude, sidereal time, Mean solar time,
6		Hour angle of a heavenly body, rising and setting, rate of change of zenith distance and azimuth, Twilight
7		Laws of refraction, refraction for small Zenith Distances,
8	Unit – 3	general formula for refraction, effect of refraction on the time of sunset,
9		 Effect of refraction on the right ascension and declination of star, Examples
10		 General Description and instrumental errors, Azimuth error and level error and their determinations, collimation error,
11	Unit – 4	total correction to the observed time of transit, Bessel's formula
12		wire intervals, chronograph, measurement of declination, right ascension, time
13	Unit – 5	Kepler's I, II and III laws, Newton's law of gravitation, perturbations and principles of orbital motion, equation of

Astronomy – 213MAT2107

Department of Mathematics-KARE
	the orbit, velocity of a planet in its orbit, components of the linear velocity, true and eceentric anomalies,
14	Kepler's equation and solution, eccentric anomalies expressed as a series in term of e and eccentric anomaly, equation of the centre, orbit in space, heliocentric ecliptic rectangular coordinates of a planet,
15	heliocentric equatorial coordinates of a planet, heliocentric rectangular coordinates of earth, Planet's geocentric right ascension and declination, orbital and synodic periods, earth's orbit, sun's apparent orbit, Moon's orbit

213MAT2105	Financial Mathematics	L	Т	Ρ	Х	Η	С
		3	1	0	0	4	4

COURSE OBJECTIVE

To enable the students to understand the basic concepts of finance and risk management and modeling financial assets in discrete-time markets and continuous-time markets and Black-Scholes and binomial models and their properties.

COURSE OUTCOMES

Upon successful completion of this course, the students will be able to:

- **CO1** know about finance and risk management
- **CO2** understand modeling financial assets in discrete-time market models
- **CO3** know about binomial model and its properties
- **CO4** understand modeling financial assets in continuous-time market models
- CO5 know about continuous-time market of Black-Scholes models
- CO PO MAPPING:

CO / PO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1		Μ										
CO2		Μ							L		Μ	L
CO3		Μ										
CO4		Μ									М	
CO5		М							L		М	

*S – Strong; M – Medium; L – Low

UNIT-I: Financial and Risk Management

(18 Hours)

Basic Financial Derivatives: Future and Forward Contracts, Eisenberg Noo Model, Vanilla call and

Department of Mathematics-KARE

Part options, American Options, Bond and Forward Rate Agreements, credit derivatives, Optimization in Finance, No Dominance Principle and Model Independent Arbitrage INIT-II: Market Models (18 Hours) Arrow Debreu Market Model: Arbitrage Portfolio and Fundamental Theorem of Asset Pricing, Warket Model with risk free bond, one period binomial model, one period trinomial model, replication and complete Market, superreplication and Model Risk, Multiperiod Discrete Time Models: sample space for multiperiod asset price process, arbitrage and trading in multiperiod Biscrete time markets INIT-III: Binomial Model (18 Hours) Sinomial Model: No arbitrage condition, Basic Properties, Arbitrage Pricing and replicating Curopean contingent claims, Dividend paying stock, Calibrating the parameters of the Model to Market Data (18 Hours) Trading and Arbitrage, Bacheller's Continuous Time Market, Limit of Binomial under risk neutral rorbability, pricing contingent claims, Delta hedging, completeness, Error of Discrete Hedging, Cime Varying Black Scholes (B.S) NIT-V Continuous Time Markets of Black Scholes (18 Hours) Yiled Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Differential Equation, Numerical Mathematics Concepts and Computational Methods, Sopyright © 2019, Arash Fahim Unit-I:Chapters 1; Unit-II: Chapters 2, Sections 2.1 and 2.2; Unit-III: Chapter 2, Sect		
Optimization in Finance, No Dominance Principle and Model Independent Arbitrage (18 Hours) INIT-II: Market Models (18 Hours) Arrow Debreu Market Model: Arbitrage Portfolio and Fundamental Theorem of Asset Pricing, Market Model with risk free bond, one period binomial model, one period trinomial model, replication and complete Market, superreplication and Model Risk, Multiperiod Discrete Time Models: sample space for multiperiod asset price process, arbitrage and trading in multiperiod liscrete time markets (18 Hours) INIT-III: Binomial Model (18 Hours) (18 Hours) Binomial Model: No arbitrage condition, Basic Properties, Arbitrage Pricing and replicating Guropean contingent claims, Dividend paying stock, Calibrating the parameters of the Model to Market Data (18 Hours) INIT-IV: Various Continuous Time Markets (18 Hours) Crading and Arbitrage, Bacheller's Continuous Time Market, Limit of Binomial under risk neutral robability, pricing contingent claims, Delta hedging, completeness, Error of Discrete Hedging, Cime Varying Black Scholes (B.S) NIT-V Continuous Time Markets of Black Scholes (18 Hours) Field Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Dividend in B.S EXTENDOK(S) Arash Fahim, Introduction to Financial Mathematics Concepts and Computational Methods, Doyright © 2019, Arash Fahim Unit-I:Chapters 1, Unit-II: Chapters 2, Sections 2.1 and 2.2; Unit-III: Chapter 2, Sections 2.3 to 2.4; Unit-IV: Chapte	Put options, American Options, Bond and Forward Rate Agreements, o	credit derivatives,
JNIT-II: Market Models (18 Hours) Arrow Debreu Market Model: Arbitrage Portfolio and Fundamental Theorem of Asset Pricing, Market Model with risk free bond, one period binomial model, one period trionmial model, replication and complete Market, superreplication and Model Risk, Multiperiod Discrete Time Models: sample space for multiperiod asset price process, arbitrage and trading in multiperiod Biscrete time markets INIT-III: Binomial Model (18 Hours) Sinomial Model: No arbitrage condition, Basic Properties, Arbitrage Pricing and replicating Curopean contingent claims, Dividend paying stock, Calibrating the parameters of the Model to Market Data (18 Hours) Trading and Arbitrage, Bacheller's Continuous Time Market, Limit of Binomial under risk neutral robability, pricing contingent claims, Delta hedging, completeness, Error of Discrete Hedging, Cime Varying Black Scholes (B.S) INIT-V Continuous Time Markets of Black Scholes (18 Hours) Yield Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Differential Equation, Numerical Methods for the Price of a European Option, Stock Price with Dividend in B.S TEXT BOOK(S)	Optimization in Finance, No Dominance Principle and Model Independent Arbiti	age
Arrow Debreu Market Model: Arbitrage Portfolio and Fundamental Theorem of Asset Pricing, Market Model with risk free bond, one period binomial model, one period trinomial model, replication and complete Market, superreplication and Model Risk, Multiperiod Discrete Time Models: sample space for multiperiod asset price process, arbitrage and trading in multiperiod liscrete time markets INT-III: Binomial Model (18 Hours) Binomial Model: No arbitrage condition, Basic Properties, Arbitrage Pricing and replicating Guropean contingent claims, Dividend paying stock, Calibrating the parameters of the Model to Market Data (18 Hours) Trading and Arbitrage, Bacheller's Continuous Time Market, Limit of Binomial under risk neutral probability, pricing contingent claims, Delta hedging, completeness, Error of Discrete Hedging, Time Varying Black Scholes (B.S) INT-V Continuous Time Markets of Black Scholes (18 Hours) Tield Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Differential Equation, Numerical Methods for the Price of a European Option, Stock Price with Dividend in B.S FEXT BOOK(S) Arash Fahim, Introduction to Financial Mathematics Concepts and Computational Methods, Sopyright © 2019, Arash Fahim Unit-I:Chapters 1, Unit-II: Chapters 2, Sections 2.1 and 2.2; Unit-III: Chapter 2, Sections 2.3 to 2.4; Unit-IV: hapters 3, Sections 3.1, 3.2, 3.3.1 to 3.3.6; Unit-V: Chapters 3, Sections 3.3.7 to 3.3.12 UEFERNCE BOOKS J.F. Höllmer and A. Schied, Stochastic finance: an introduction in discrete time, Walter de Gruyter, 2011. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2, Springer, 2004. J. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science & Business Media, 2003 J. H. Holl, Options, Futures and Other Derivatives, 2 earson/Prentice Hall, 2015. J. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & Business Media, 2012.	UNIT-II: Market Models	(18 Hours)
Market Model with risk free bond, one period binomial model, one period trinomial model, eplication and complete Market, superreplication and Model Risk, Multiperiod Discrete Time Models: sample space for multiperiod asset price process, arbitrage and trading in multiperiod liscrete time markets JNIT-III: Binomial Model (18 Hours) Binomial Model: No arbitrage condition, Basic Properties, Arbitrage Pricing and replicating Curopean contingent claims, Dividend paying stock, Calibrating the parameters of the Model to Market Data JNIT-IV: Various Continuous Time Markets (18 Hours) Trading and Arbitrage, Bacheller's Continuous Time Market, Limit of Binomial under risk neutral probability, pricing contingent claims, Delta hedging, completeness, Error of Discrete Hedging, <u>Time Varying Black Scholes (B.S)</u> JNIT-V Continuous Time Markets of Black Scholes (18 Hours) Tield Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Differential Equation, Numerical Methods for the Price of a European Option, Stock Price with Dividend in B.S TEXT BOOK(S) Arash Fahim, Introduction to Financial Mathematics Concepts and Computational Methods, Sopyright © 2019, Arash Fahim Unit-It:Chapters 1; Unit-II: Chapters 2, Sections 2.1 and 2.2; Unit-III: Chapter 2, Sections 2.3 to 2.4; Unit-IV: hapters 3, Sections 3.1, 3.2, 3.3.1 to 3.3.6; Unit-V: Chapters 3, Sections 3.3.7 to 3.3.12 UEFERENCE BOOKS I.H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time, Walter de Gruyter, 2011. 2. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2, Springer, 2004. 3. J. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science & Business Media, 2003 4. J. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, Vearson/Prentice Hall, 2015. 5. J. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & Business Media, 2012. Financial Mathematics – 213MAT2105	Arrow Debreu Market Model: Arbitrage Portfolio and Fundamental Theorem of	Asset Pricing,
eplication and complete Market, superreplication and Model Risk, Multiperiod Discrete Time Models: sample space for multiperiod asset price process, arbitrage and trading in multiperiod liscrete time markets INIT-III: Binomial Model (18 Hours) Binomial Model: No arbitrage condition, Basic Properties, Arbitrage Pricing and replicating Curopean contingent claims, Dividend paying stock, Calibrating the parameters of the Model to Market Data INIT-IV: Various Continuous Time Markets (18 Hours) Trading and Arbitrage, Bacheller's Continuous Time Market, Limit of Binomial under risk neutral probability, pricing contingent claims, Delta hedging, completeness, Error of Discrete Hedging, Time Varying Black Scholes (E.S.) INIT-V Continuous Time Markets of Black Scholes (18 Hours) Vield Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Differential Equation, Numerical Methods for the Price of a European Option, Stock Price with Dividend in B.S TEXT BOOK(S) Araash Fahim, Introduction to Financial Mathematics Concepts and Computational Methods, Copyright © 2019, Arash Fahim Unit-i:Chapters 1; Unit-II: Chapters 2, Sections 2.1 and 2.2; Unit-III: Chapter 2, Sections 2.3 to 2.4; Unit-IV: hapters 3, Sections 3.1, 3.2, 3.3.1 to 3.3.6; Unit-V: Chapters 3, Sections 3.3.7 to 3.3.12 KEFERENCE BOOKS I.H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time, Walter de Gruyter, 21.1. 2. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2, Springer, 2004. 3. J. Full, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, Pearson/Prentice Hall, 2015. 5. J. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & Business Media, 2012. Financial Mathematics – 213MAT2105	Market Model with risk free bond, one period binomial model, one period trinon	nial model,
Models: sample space for multiperiod asset price process, arbitrage and trading in multiperiod discrete time markets (18 Hours) JINT-III: Binomial Model (18 Hours) Binomial Model: No arbitrage condition, Basic Properties, Arbitrage Pricing and replicating European contingent claims, Dividend paying stock, Calibrating the parameters of the Model to Market Data (18 Hours) INT-IV: Various Continuous Time Markets (18 Hours) Trading and Arbitrage, Bacheller's Continuous Time Market, Limit of Binomial under risk neutral robability, pricing contingent claims, Delta hedging, completeness, Error of Discrete Hedging, Time Varying Black Scholes (B.S) JNT-V Continuous Time Markets of Black Scholes (18 Hours) Vield Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Differential Equation, Numerical Methods for the Price of a European Option, Stock Price with Dividend in B.S TEXT BOOK(S)	replication and complete Market, superreplication and Model Risk, Multiperiod	Discrete Time
Hiscrete time markets (18 Hours) Sinomial Model: No arbitrage condition, Basic Properties, Arbitrage Pricing and replicating Suropean contingent claims, Dividend paying stock, Calibrating the parameters of the Model to Market Data JNIT-IV: Various Continuous Time Markets (18 Hours) Frading and Arbitrage, Bacheller's Continuous Time Market, Limit of Binomial under risk neutral probability, pricing contingent claims, Delta hedging, completeness, Error of Discrete Hedging, Cime Varying Black Scholes (18 Hours) WIT-V Continuous Time Markets of Black Scholes (18 Hours) Vield Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Differential Equation, Numerical Methods for the Price of a European Option, Stock Price with Dividend in B.S TEXT BOOK(S)	Models: sample space for multiperiod asset price process, arbitrage and trading	in multiperiod
INIT-III: Binomial Model (18 Hours) Binomial Model: No arbitrage condition, Basic Properties, Arbitrage Pricing and replicating Buropean contingent claims, Dividend paying stock, Calibrating the parameters of the Model to Market Data JNIT-IV: Various Continuous Time Markets (18 Hours) Frading and Arbitrage, Bacheller's Continuous Time Market, Limit of Binomial under risk neutral probability, pricing contingent claims, Delta hedging, completeness, Error of Discrete Hedging, Cime Varying Black Scholes (B.S) JNIT-V Continuous Time Markets of Black Scholes (Ield Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Differential Equation, Numerical Methods for the Price of a European Option, Stock Price with Dividend in B.S FEXT BOOK(S) Arash Fahim, Introduction to Financial Mathematics Concepts and Computational Methods Copyright © 2019, Arash Fahim Unit-Pichapters 1, Unit-II: Chapters 2, Sections 2.1 and 2.2; Unit-III: Chapter 2, Sections 2.3 to 2.4; Unit-IV Chapters 3, Sections 3.1, 3.2, 3.3.1 to 3.3.6; Unit-V: Chapters 3, Sections 3.3.7 to 3.3.12 KEFERENCE BOOKS L.H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time, Walter de Gruyter, 2011. 2. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of fin	discrete time markets	•
Binomial Model: No arbitrage condition, Basic Properties, Arbitrage Pricing and replicating Buropean contingent claims, Dividend paying stock, Calibrating the parameters of the Model to Market Data JNIT-IV: Various Continuous Time Markets (18 Hours) Trading and Arbitrage, Bacheller's Continuous Time Market, Limit of Binomial under risk neutral probability, pricing contingent claims, Delta hedging, completeness, Error of Discrete Hedging, Cime Varying Black Scholes (B.S) INIT-V Continuous Time Markets of Black Scholes (18 Hours) Yield Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Differential Equation, Numerical Methods for the Price of a European Option, Stock Price with Dividend in B.S TEXT BOOK(S)	UNIT-III: Binomial Model	(18 Hours)
Buropean contingent claims, Dividend paying stock, Calibrating the parameters of the Model to Market Data INIT-IV: Various Continuous Time Markets Init of Binomial under risk neutral probability, pricing contingent claims, Delta hedging, completeness, Error of Discrete Hedging, Crime Varying Black Scholes (B.S) INIT-V Continuous Time Markets of Black Scholes (18 Hours) Yield Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Dividend in B.S TEXT BOOK(S) Arash Fahim, Introduction to Financial Mathematics Concepts and Computational Methods, Copyright © 2019, Arash Fahim Unit-I:Chapters 1; Unit-II: Chapters 2, Sections 2.1 and 2.2; Unit-III: Chapter 2, Sections 2.3 to 2.4; Unit-IV: 'hapters 3, Sections 3.1, 3.2, 3.3.1 to 3.3.6; Unit-V: Chapters 3, Sections 3.3.7 to 3.3.12 KEFEENCE BOOKS L.H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time, Walter de Gruyter, 2011. 2. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2, Springer, 2004. 3. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science & Business Media, 2003 k.J. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, Pearson/Prentice Hall, 2015. s. I. Karatzas and	Binomial Model: No arbitrage condition, Basic Properties, Arbitrage Pricing and	replicating
Market Data (18 Hours) INIT-IV: Various Continuous Time Markets (18 Hours) Frading and Arbitrage, Bacheller's Continuous Time Market, Limit of Binomial under risk neutral probability, pricing contingent claims, Delta hedging, completeness, Error of Discrete Hedging, Time Varying Black Scholes (B.S) JNIT-V Continuous Time Markets of Black Scholes (18 Hours) Tield Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Differential Equation, Numerical Methods for the Price of a European Option, Stock Price with Dividend in B.S TEXT BOOK(S)	European contingent claims, Dividend paying stock, Calibrating the parameters	of the Model to
INIT-IV: Various Continuous Time Markets (18 Hours) Trading and Arbitrage, Bacheller's Continuous Time Market, Limit of Binomial under risk neutral probability, pricing contingent claims, Delta hedging, completeness, Error of Discrete Hedging, time Varying Black Scholes (B.S) JNIT-V Continuous Time Markets of Black Scholes (18 Hours) (field Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Differential Equation, Numerical Methods for the Price of a European Option, Stock Price with Dividend in B.S rEXT BOK(5)	Market Data	
Privating and Arbitrage, Bacheller's Continuous Time Market, Limit of Binomial under risk neutral probability, pricing contingent claims, Delta hedging, completeness, Error of Discrete Hedging, fime Varying Black Scholes (B.S) JNIT-V Continuous Time Markets of Black Scholes (18 Hours) Vield Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Differential Equation, Numerical Methods for the Price of a European Option, Stock Price with Dividend in B.S FEXT BOOK(S)	UNIT-IV: Various Continuous Time Markets	(18 Hours)
Financial Mathematics – 213MAT2105 Financial Mathematics – 213MAT2105	Trading and Arbitrage Bacheller's Continuous Time Market Limit of Binomial u	nder risk neutral
Fime Varying Black Scholes (B.S) (18 Hours) JNIT-V Continuous Time Markets of Black Scholes (18 Hours) Vield Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Differential Equation, Numerical Methods for the Price of a European Option, Stock Price with Dividend in B.S TEXT BOOK(5)	probability, pricing contingent claims, Delta hedging, completeness, Error of Dis	crete Hedging,
JNIT-V Continuous Time Markets of Black Scholes (18 Hours) (rield Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Differential Equation, Numerical Methods for the Price of a European Option, Stock Price with Dividend in B.S FEXT BOOK(S) Arash Fahim, Introduction to Financial Mathematics Concepts and Computational Methods Copyright © 2019, Arash Fahim Unit-1:Chapters 1; Unit-11: Chapters 2, Sections 2.1 and 2.2; Unit-111: Chapter 2, Sections 2.3 to 2.4; Unit-IV Chapters 3, Sections 3.1, 3.2, 3.3.1 to 3.3.6; Unit-V: Chapters 3, Sections 3.3.7 to 3.3.12 REFERENCE BOOKS H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time, Walter de Gruyter, 2011. 2. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2, Springer, 2004. 3. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science & Business Media, 2003 4. J. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, Pearson/Prentice Hall, 2015. 5. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & Business Media, 2012. Financial Mathematics – 213MAT2105	Time Varying Black Scholes (B.S)	0.0
 Arield Curve and Forward interest rate, Browning Motion, Physical Versus Risk Neutral, B.S Partial Differential Equation, Numerical Methods for the Price of a European Option, Stock Price with Dividend in B.S Arash Fahim, Introduction to Financial Mathematics Concepts and Computational Methods Copyright © 2019, Arash Fahim Arash Fahim, Introduction to Financial Mathematics Concepts and Computational Methods Copyright © 2019, Arash Fahim Unit-I:Chapters 1; Unit-II: Chapters 2, Sections 2.1 and 2.2; Unit-III: Chapter 2, Sections 2.3 to 2.4; Unit-IV Chapters 3, Sections 3.1, 3.2, 3.3.1 to 3.3.6; Unit-V: Chapters 3, Sections 3.3.7 to 3.3.12 EFERENCE BOOKS H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time, Walter de Gruyter, 2011. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2, Springer, 2004. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science & Business Media, 2003 H. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, Pearson/Prentice Hall, 2015. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & Business Media, 2012. 	UNIT-V Continuous Time Markets of Black Scholes	(18 Hours)
Differential Equation, Numerical Methods for the Price of a European Option, Stock Price with Dividend in B.S TEXT BOOK(S) LArash Fahim, Introduction to Financial Mathematics Concepts and Computational Methods Copyright © 2019, Arash Fahim Unit-I:Chapters 1; Unit-II: Chapters 2, Sections 2.1 and 2.2; Unit-III: Chapter 2, Sections 2.3 to 2.4; Unit-IV: <u>Chapters 3, Sections 3.1, 3.2, 3.3.1 to 3.3.6; Unit-V: Chapters 3, Sections 3.3.7 to 3.3.12</u> REFERENCE BOOKS L.H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time, Walter de Gruyter, 2011. 2. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2, Springer, 2004. 3. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science & Business Media, 2003 k.J. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, 2earson/Prentice Hall, 2015. 5. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & Business Media, 2012. Financial Mathematics – 213MAT2105	Yield Curve and Forward interest rate, Browning Motion, Physical Versus Risk N	eutral, B.S Partial
Dividend in B.S TEXT BOOK(S) I.Arash Fahim, Introduction to Financial Mathematics Concepts and Computational Methods, Copyright © 2019, Arash Fahim Unit-I:Chapters 1; Unit-II: Chapters 2, Sections 2.1 and 2.2; Unit-III: Chapter 2, Sections 2.3 to 2.4; Unit-IV Chapters 3, Sections 3.1, 3.2, 3.3.1 to 3.3.6; Unit-V: Chapters 3, Sections 3.3.7 to 3.3.12 REFERENCE BOOKS I.H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time, Walter de Gruyter, 2011. 2. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2, Springer, 2004. 3. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science & Business Media, 2003 H.J. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, Pearson/Prentice Hall, 2015. 5. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & Business Media, 2012. Financial Mathematics – 213MAT2105	Differential Equation, Numerical Methods for the Price of a European Option, Sto	ock Price with
 FEXT BOOK(S) LArash Fahim, Introduction to Financial Mathematics Concepts and Computational Methods, Copyright © 2019, Arash Fahim Unit-I:Chapters 1; Unit-II: Chapters 2, Sections 2.1 and 2.2; Unit-III: Chapter 2, Sections 2.3 to 2.4; Unit-IV: Chapters 3, Sections 3.1, 3.2, 3.3.1 to 3.3.6; Unit-V: Chapters 3, Sections 3.3.7 to 3.3.12 REFERENCE BOOKS L.H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time, Walter de Gruyter, 2011. P. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2, Springer, 2004. B. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science & Business Media, 2003 H.J. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, Pearson/Prentice Hall, 2015. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & Business Media, 2012. 	Dividend in B.S	
 LArash Fahim, Introduction to Financial Mathematics Concepts and Computational Methods, Copyright © 2019, Arash Fahim Unit-I:Chapters 1; Unit-II: Chapters 2, Sections 2.1 and 2.2; Unit-III: Chapter 2, Sections 2.3 to 2.4; Unit-IV: Chapters 3, Sections 3.1, 3.2, 3.3.1 to 3.3.6; Unit-V: Chapters 3, Sections 3.3.7 to 3.3.12 REFERENCE BOOKS L.H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time, Walter de Gruyter, 2011. 2. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2, Springer, 2004. B. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science & Business Media, 2003 L.J. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, Pearson/Prentice Hall, 2015. S. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & Business Media, 2012. 	TEXT BOOK(S)	
Copyright © 2019, Arash Fahim Unit-I:Chapters 1; Unit-II: Chapters 2, Sections 2.1 and 2.2; Unit-III: Chapter 2, Sections 2.3 to 2.4; Unit-IV Chapters 3, Sections 3.1, 3.2, 3.3.1 to 3.3.6; Unit-V: Chapters 3, Sections 3.3.7 to 3.3.12 REFERENCE BOOKS 1.H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time, Walter de Gruyter, 2011. 2. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2, Springer, 2004. 3. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science & Business Media, 2003 4.J. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, Pearson/Prentice Hall, 2015. 5. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & Business Media, 2012. Financial Mathematics – 213MAT2105	1.Arash Fahim, Introduction to Financial Mathematics Concepts and Comp	utational Methods
 Unit-I:Chapters 1; Unit-II: Chapters 2, Sections 2.1 and 2.2; Unit-III: Chapter 2, Sections 2.3 to 2.4; Unit-IV: Chapters 3, Sections 3.3.7 to 3.3.12 CEFERENCE BOOKS L.H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time, Walter de Gruyter, 2011. 2. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2, Springer, 2004. B. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science & 3usiness Media, 2003 L.J. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, Pearson/Prentice Hall, 2015. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & 3usiness Media, 2012. 	Copyright © 2019, Arash Fahim	
 Reference Books L.H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time, Walter de Gruyter, 2011. P. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2, Springer, 2004. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science & 3usiness Media, 2003 L.J. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, Pearson/Prentice Hall, 2015. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & 3usiness Media, 2012. 	Unit-I:Chapters 1; Unit-II: Chapters 2, Sections 2.1 and 2.2; Unit-III: Chapter 2, Section Chapters 2, Sections 2, 2, 7 to 2, 2, 1	ns 2.3 to 2.4; Unit-IV
 L.H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time, Walter de Gruyter, 2011. 2. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2, Springer, 2004. 3. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science & 3usiness Media, 2003 4. J. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, Pearson/Prentice Hall, 2015. 5. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & 3usiness Media, 2012. 	REFERENCE BOOKS	
 2011. 2. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2, Springer, 2004. 3. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science & Business Media, 2003 4. J. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, Pearson/Prentice Hall, 2015. 5. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & Business Media, 2012. 	1.H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time, V	Valter de Gruyter,
 2. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2, Springer, 2004. 3. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science & Business Media, 2003 4. J. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, Pearson/Prentice Hall, 2015. 5. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & Business Media, 2012. 	2011.	-
 B. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science & Business Media, 2003 B.J. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, Pearson/Prentice Hall, 2015. B. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & Business Media, 2012. Financial Mathematics – 213MAT2105	2. J. Franke, W. K. Härdle, and C. M. Hafner, Statistics of financial markets, vol. 2,	Springer, 2004.
Business Media, 2003 4.J. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Derivatives, Pearson/Prentice Hall, 2015. 5. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & Business Media, 2012. Financial Mathematics – 213MAT2105	3. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer	Science &
Financial Mathematics – 213MAT2105	Business Media, 2003	
5. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113, Springer Science & Business Media, 2012. Financial Mathematics – 213MAT2105	4.J. Hull, Options, Futures and Other Derivatives, Options, Futures and Other Der Rearcon (Prontico Hall, 2015	ivatives,
Susiness Media, 2012. Financial Mathematics – 213MAT2105	Fearson/Frenuce nam, 2013. 5 I Karatzas and S Shreve Brownian motion and stochastic calculus vol 113 S	nringer Science &
Financial Mathematics – 213MAT2105	Business Media, 2012.	pringer bereitet &
Financial Mathematics - 213MAT2105		
Financiai Mathematics – 213MA12103	Financial Mathematics 212MAT2105	
	rinanciai matnematics – 213MA12105	

Week	Unit	Lecture Topic
1		Basic Financial Derivatives: Future and Forward Contracts, Eisenberg Noo Model,
2	Unit – 1	 Vanilla call and Put options, American Options, Bond and Forward Rate Agreements
3		 credit derivatives, Optimization in Finance, No Dominance Principle and Model Independent Arbitrage

Page 73

		Arrow Debreu Market Model: Arbitrage Portfolio and
4		Fundamental Theorem of Asset Pricing, Market Model with
		risk free bond
-		one period binomial model, one period trinomial model,
5	Unit – 2	replication and complete Market, superreplication and
		Model Risk,
C		Multiperiod Discrete Time Models: sample space for
6		multiperiod asset price process, arbitrage and trading in
		multiperiod discrete time markets
7		Binomial Model: No arbitrage condition, Basic Properties, ,
		Achitector Deising and mulicating European contingent
8	Unit – 3	Arbitrage Pricing and replicating European contingent alaima Dividend paying stock
0		Calibrating the neuron store of the Model to Market Date
9		Calibrating the parameters of the Model to Market Data
1.0		Trading and Arbitrage, Bachelier's Continuous Time Market,
10		Limit of Binomial under risk neutral probability
	Unit 1	
11	U III t - 4	pricing contingent claims, Delta hedging
10		Normalatanana Errar of Discuste Hadring Time Versian
12		 Completeness, Error of Discrete Heaging, Time Varying Plack Scholog (P.S)
12		Diack Scholes (B.S) Viold Curro and Formand interact rate Drawning Mation
13		Field Curve and Forward Interest rate, Browning Motion
14	Unit – 5	Physical Versus Risk Neutral, B.S Partial Differential
	01111 - 5	Equation
15		Numerical Methods for the Price of a European Option,
10		Stock Price with Dividend in B.S
•	-	<u>.</u>

213MAT2106	Algorithmic Granh Theory	L	Т	Р	X	Η	С
21311112100	Augoritannie Gruph Theory	3	1	0	0	4	4

Course objective:

To enable the students to explores the knowledge of graph algorithms which is useful in computer networks and analysis.

Course Outcomes:

Upon successful completion of this course, students will be able to

- 1. learn the basic concepts of Graph.
- 2. gain the knowledge of Graph Platforms, Processing and Search Algorithms.
- 3. know about the Centrality Algorithms.
- 4. learn the concept of Community Detection Algorithms.
- 5. develop the knowledge about Graph Algorithms for Practice.

CO -PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
--	-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------

CO1	S			S						S
CO2				М					S	
CO3		S							S	
CO4			S					S		
CO5	S	S		L		S		S		М

S- Strong; M-Medium; L-Low.

UNIT-I: Basics of Graph Algorithm	(18 Hours)
Graph Analytics and Algorithms, Graph Processing, Databases, Queries, and Algo	rithms,
OLTP and OLAP, Graph Analytics Use Cases, Graph Types and Structures,	
Random, Small-World, Scale-Free Structures, Flavors of Graphs, Connected Vs Di	isconnected
Graphs, Unweighted Graphs Vs Weighted Graphs, Undirected Graphs Vs Directed	l Graphs
Acyclic Graphs Vs Cyclic Graphs, Sparse Graphs Vs Dense Graphs, Monopartite, B	Sipartite, and k-
Partite Graphs, Pathfinding, Centrality, Community Detection	
UNIT-II: Graph Platforms, Processing and Search Algorithms	(18 Hours)
Graph Platforms and Processing, Graph Platform and Processing Considerations,	, Transport Graph,
Importing the Data into Apache Spark and Neo4j, BFS &DFS, Shortest Path Varia	tion: A, Single
Source Shortest Path, Single Source Shortest Path with Apache Spark &Neo4j, Mi	inimum Spanning
Tree, Minimum Spanning Tree with Neo4j, Random Walk with Neo4j	
UNIT-III: Centrality Algorithms	(18 Hours)
Graph Data: The Social Graph, Importing the Data into Apache Spark & Neo4j, De	egree Centrality
with Apache Spark, Closeness Centrality with Apache Spark & Neo4j, Closeness C	Centrality Variation:
Wasserman and Faust, Harmonic Centrality, Betweenness Centrality, Betweenne	ess Centrality with
Neo4j, Randomized-Approximate Brandes, PageRank Formula,, Random Surfers,	, and Rank Sinks
PageRank Apache Spark & Neo4j, Personalized PageRank	
UNIT-IV: Community Detection Algorithms	(18 Hours)
Software Dependency Graph, Importing the Data into Apache Spark& Neo4j, Tria Clustering Coefficient- Local Vs Global, Triangle Count with Apache Spark & Neo- Coefficient with Neo4j, Strongly/Normally Connected components with Apache S Label Propagation, Semi-Supervised Learning and Seed Labels, Label Propagatio Spark& Neo4j, Louvain Modularity with Neo4j, Validating Communities	angle Count, 4j, Local Clustering Spark & Neo4j n with Apache
UNIT-V : Graph Algorithms for Practice	(18 Hours)
Analyzing Yelp Data with Neo4j, Yelp Social Network, Data Import, Graph Model, Yelp Data, Trip Planning App, Travel Business Consulting, Finding Similar Catego Airline Flight Data with Apache Spark, Exploratory Analysis, Popular Airports, D Bad Day at SFO, Interconnected Airports by Airline TEXT BOOK(S)	, Overview of the ories, Analyzing elays from ORD
1 Mark Needham and Amy E. Hodler, Graph Algorithms Practical Examples in Apa	ache Spark & Neo4j,
Published by O'Reilly Media, Inc. 2019.	t V. Chanterry 7
Unit-i: Chapters 1 & 2; Unit-ii: Chapters 3 &4; Unit-iii: Chapter 5,; Unit-iv: Chapter 6; Un	it-v: Unapters 7
1.Shimon Even, <i>Graph Algorithms</i> , Computer Science Press, 1979.	

Department of Mathematics-KARE

Algorithmic Graph Theory – 213MAT2106

Week	Unit	Lecture Topic
1		 Graph Analytics and Algorithms, Graph Processing, Databases, Queries, and Algorithms
2	Unit – 1	OLTP and OLAP, Graph Analytics Use Cases, Graph Types and Structures, Random, Small-World, Scale-Free Structures, Flavors of Graphs, Connected Vs Disconnected Graphs, Unweighted Graphs Vs Weighted Graphs, Undirected Graphs Vs Directed Graphs
3		 Acyclic Graphs Vs Cyclic Graphs, Sparse Graphs Vs Dense Graphs, Monopartite, Bipartite, and k-Partite Graphs, Pathfinding, Centrality, Community Detection
4		Graph Platforms and Processing, Graph Platform and Processing Considerations, Transport Graph.
5	Unit – 2	 Importing the Data into Apache Spark and Neo4j, BFS &DFS, Shortest Path Variation: A, Single Source Shortest Path,
6		Single Source Shortest Path with Apache Spark &Neo4j, Minimum Spanning Tree, Minimum Spanning Tree with Neo4j, Random Walk with Neo4j
7		Graph Data: The Social Graph, Importing the Data into Apache Spark & Neo4j, Degree Centrality with Apache Spark, Closeness Centrality with Apache Spark & Neo4i.
8	Unit – 3	 Closeness Centrality Variation: Wasserman and Faust, Harmonic Centrality, Betweenness Centrality, Betweenness Cantrality with Nac 4: Bandomized Approximate Brandes
9		 PageRank Formula, Random Surfers, and Rank Sinks PageRank Apache Spark & Neo4j, Personalized PageRank
10		 Software Dependency Graph, Importing the Data into Apache Spark& Neo4j, Triangle Count, Clustering Coefficient- Local Vs Global, Triangle Count with Apache Spark & Neo4j,
11	Unit – 4	Local Clustering Coefficient with Neo4j, Strongly/Normally Connected components with Apache Spark & Neo4j
12		Label Propagation, Semi-Supervised Learning and Seed Labels, Label Propagation with Apache Spark& Neo4j, Louvain Modularity with Neo4j, Validating Communities
13		Analysing, Yelp Data with Neo4j, Yelp Social Network, Data Import, Graph Model, Overview of the Yelp Data
14	Unit – 5	Trip Planning App, Travel Business Consulting, Finding Similar Categories, Analyzing Airline Flight Data with Apache Spark
15		 Exploratory Analysis, Popular Airports, Delays from ORD Bad Day at SFO, Interconnected Airports by Airline

212MAT1304	BASIC LATEX	L	Т	Р	Х	Η	С
		1	0	0	3	4	2

Course Objective(s):

To enable the students to understand the basic concepts of tex and to create figures, tables and specialized graphics using latex typesetting commands.

Course Outcome(s):

Upon successful completion of this course, students will be able to

CO1: explain the difference between the use of tex and latex and other software.

CO2: write a mini document and a certificate.

CO3: draw tables and figures using latex.

CO4: write the bibliography for an article and also enable to provide cross references.

CO5: write mathematical documents using the mathematical formulae.

CO -PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S			S								S
CO2				М							S	
CO3		S									S	
CO4			S							S		
C05	S	S		L			S			S		Μ

S- Strong; M-Medium; L-Low.

UNIT-I:	(3 Hours)				
Introduction - What is Latex? – History – More about Late	ex – Advantages of Latex – Disadvantages				
of Latex – Simple document: Getting started – A short simple document – Document class and					
ont size – Add on packages – Geometry parameters – Title and author(s) – To make an index -					
Begin document: No complicating features – some simple rules – spaces overlooked – Indent and					
noindent – Commands, arguments and curly brackets – comments.					
UNIT-II:	(3 Hours)				
UNIT-II: Geometry Parameters – Sectioning into chapters a	(3 Hours) nd sections – Quotation marks, new				
UNIT-II: Geometry Parameters – Sectioning into chapters a paragraphs and pages – Different fonts and font sizes -	(3 Hours) nd sections – Quotation marks, new – Format: Centre, left and right – List of				
UNIT-II: Geometry Parameters – Sectioning into chapters a paragraphs and pages – Different fonts and font sizes - items – Landscape format – Double column entries –	(3 Hours) nd sections – Quotation marks, new – Format: Centre, left and right – List of Multiple column entries – Mini page –				
UNIT-II: Geometry Parameters – Sectioning into chapters a paragraphs and pages – Different fonts and font sizes - items – Landscape format – Double column entries – Special characters – Boxes – Rotating – How to type a ce	(3 Hours) nd sections – Quotation marks, new – Format: Centre, left and right – List of Multiple column entries – Mini page – ertificate in latex.				

Figures and tables –Figures : Import figures – Reflection of figures – To generate figures by latex coding. Tables : Simple tables – Multicolumn, Multirow tables – Tables in the landscape format – placing figures and tables side by side.

UNIT-IV:	(3 Hours)
Cross References and Bibliography : Cross referencing	: Pages, equations, figures and tables
Bibliography : A simple case – bibliographic data bases -	- bibliographic styles – bibtex program.

UNIT-V:

Mathematical symbols: Special characters – Greek letters - Math mode accents in latex – Some common mathematical symbols – European characters – Transliteration symbols: Sanskrit alphabet. Mathematical expressions and equations : Simple mathematical expressions – Differentiation and Integrations Symbols – Matrices – Boxed equations – Beamer presentation.

TEXT BOOK(S)

K.B.M. Nambudiripad, Latex for Beginners, Alpha Science International Ltd., 2014

REFERENCE BOOK(S)

1. Stefankotwitz and Olten, *Latexbegineers guide*, Birmingham: Packt publishers, 2011.

2. GeorgeGratzer, *Practical Latex*, Springer, 2014.

Week	Unit	Lecture Topic
1		Introduction - What is Latex? – History – More about Latex – Advantages of Latex – Disadvantages of Latex – Simple document : Getting started – A short simple document
2	Unit - 1	Document class and font size – Add on packages – Geometry parameters – Title and author(s) – To make an index – Begin document : No complicating features
3		some simple rules – spaces overlooked – Indent and noindent – Commands, arguments and curly brackets – comments.
4		 Geometry Parameters – Sectioning into chapters and sections – Quotation marks, new paragraphs and pages – Different fonts and font sizes
5	Unit - 2	Format : Centre, left and right – List of items – Landscape format – Double column entries
6		 Multiple column entries – Mini page – Special characters – Boxes – Rotating – How to type a certificate in latex .
7	Unit - 3	Figures and tables –Figures : Import figures – Reflection of figures

BASIC LATEX-212MAT1304

(3 Hours)

8		To generate figures by latex coding. Tables : Simple tables
		– Multicolumn, Multirow tables
9		Tables in the landscape format – placing figures and
		tables side by side.
10		Cross References and Bibliography : Cross referencing :
10		Pages, equations, figures and tables .
11	Unit - 4	Bibliography : A simple case – bibliographic data bases
12		bibliographic styles – bibtex program.
10		Mathematical symbols: Special characters – Greek letters
13		 Math mode accents in latex – Some common
		mathematical symbols
14	Unit - 5	European characters – Transliteration symbols: Sanskrit
17	Unit - 5	alphabet. Mathematical expressions and equations :
		Simple mathematical expressions – Differentiation and
15		Integrations Symbols – Matrices – Boxed equations –
		Response procentation
		Beamer presentation.

Page 79